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Abstract:

In This paper, we present a hybrid approach combining two optimization techniques 
for solving Economic Emission Load Dispatch Optimization Problem EELD. The EELD 
problem is formulated as a nonlinear constrained multiobjective optimization problem with 
both equality and inequality constraints. Our approach integrates the merits of both genetic 
algorithm (GA) and local search (LS). The proposed approach employs the concept of co-
evolution and repair algorithm for handling nonlinear constraints. Also, it maintains a finite-
sized archive of non-dominated solutions which gets iteratively updated in the presence of new 
solutions based on the concept of  -dominance. The use of  -dominance also makes the 
algorithms practical by allowing a decision maker to control the resolution of the Pareto set 
approximation. To improve the solution quality we implement local search (LS) technique as 
neighborhood search engine where it intends to explore the less-crowded area in the current 
archive to possibly obtain more nondominated solutions.

Several optimization runs of the proposed approach are carried out on the standard 
IEEE 30-bus 6-genrator test system. Simulation results with the proposed approach have been 
compared to those reported in the literature. The comparison demonstrates the superiority of 
the proposed approach and confirms its potential to solve the multiobjective EELD problem.

Keywords: Economic emission load dispatch; Evolutionary algorithms; Multiobjective 
optimization, Local search.

1. Introduction.

The purpose of EELD problem is to figure out the optimal amount of the generated 
power for the fossil-based generating units in the system by minimizing the fuel cost and 
emission level simultaneously, subject to various equality and inequality constraints including 
the security measures of the power transmission/distribution. Various optimization techniques 
have been proposed by many researchers to deal with this multiobjective programming
problem with varying degree of success.

Different techniques have been reported in the literature pertaining to economic emission 
load dispatch problem. In [5,12] the problem has been reduced to a single objective problem by 
treating the emission as a constraint with a permissible limit. This formulation, however, has a 
severe difficulty in getting the trade-off relations between cost and emission. Alternatively, 
minimizing the emission has been handled as another objective in addition to usual cost
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objective. A linear programming based optimization procedures in which the objectives are 
considered one at a time was presented in [10]. Unfortunately, the EELD problem is a highly 
nonlinear and a multimodal optimization problem. Therefore, conventional optimization
methods that make use of derivatives and gradients, in general, not able to locate or identify the
global optimum. On the other hand, many mathematical assumptions such as analytic and 
differential objective functions have to be given to simplify the problem. Furthermore, this 
approach does not give any information regarding the trade-offs involved.

In other research direction, the multiobjective EELD problem was converted to a single 
objective problem by linear combination of different objectives as a weighted sum [6,9,25,26]. 
The important aspect of this weighted sum method is that a set of Pareto-optimal solutions can 
be obtained by varying the weights. Unfortunately, this requires multiple runs as many times as 
the number of desired Pareto-optimal solutions. Furthermore, this method cannot be used to 
find Pareto-optimal solutions in problems having a nonconvex Pareto-optimal front. In 
addition, there is no rational basis of determining adequate weights and the objective function 
so formed may lose significance due to combining noncommensurable objectives. To avoid
this difficulty, the  -constraint method for multiobjective optimization was presented in
[15,24]. This method is based on optimization of the most preferred objective and considering 
the other objectives as constraints bounded by some allowable levels. These levels are then 
altered to generate the entire Pareto-optimal set. The most obvious weaknesses of this approach 
are that it is time-consuming and tends to find weakly nondominated solutions.

Goal programming method was also proposed for multiobjective EELD problem [17]. In 
this method, a target or a goal to be achieved for each objective is assigned and the objective 
function will then try to minimize the distance from the targets to the objectives. Although the 
method is computationally efficient, it will yield an inferior solution rather than a noninferior 
one if the goal point is chosen in the feasible domain. Hence, the main drawback of this 
method is that it requires a priori knowledge about the shape of the problem search space.

Heuristic algorithms such as genetic algorithm have been recently proposed for solving 
OPF problem [4,22,23]. The results reported were promising and encouraging for further 
research. Moreover the studies on heuristic algorithms over the past few years, have shown that 
these methods can be efficiently used to eliminate most of difficulties of classical methods 
[1-3,8,11]. Since they are population–based techniques, multiple Pareto-optimal solutions can, 
in principle, be found in one single run.

In this paper a new hybrid multiobjective approach is proposed, which based on 
concept of co-evolution and repair algorithm for handing constraints. It is based on the  -
dominance concept which maintains a finite-sized archive of non-dominated solutions which 
gets iteratively updated according to the chosen  -vector. Also, LS method is introduced as 
neighborhood search engine where it intends to explore the less-crowded area in the current 
archive to possibly obtain more nondominated solutions.

2. Multiobjective Optimization

Multiobjective optimization differs from the single objective case in several ways: 

 The usual meaning of the optimum makes no sense in the multiple objective case because 
the solution optimizing all objectives simultaneously is, in general, impractical; instead, a 
search is launched for a feasible solution yielding the best compromise among objectives 
on a set of, so called, efficient solutions; 

 The identification of a best compromise solution requires taking into account the 
preferences expressed by the decision-maker; 
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 The multiple objectives encountered in real-life problems are often mathematical functions 
of contrasting forms. 

 A key element of a goal programming model is the achievement function; that is, the 
function that measures the degree of minimization of the unwanted deviation variables of 
the goals considered in the model. A general multiobjective optimization problem is 
expressed by:

MOP :

                    

T
1 2 m

T
1 2 n

 M in   F (x )  (  f ( x ), f ( x ), ..., f (x ))
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Where 1 2( ( ), ( ), ..., ( ))mf x f x f x are the m objectives functions, 1 2 n( , ,..., )x x x  are the n

optimization parameters, and nS R   is the solution or parameter space. 

Definition 1.( Pareto optimal solution ): *x  is said to be a Pareto optimal solution of MOP if 
there exists no other feasible x  (i.e., x S ) such that, *( ) ( )j jf x f x for all 1,2,...,j m  and 

*( ) ( )j jf x f x for at least one objective function jf .

Definition 2 [18]. (ε-dominance) Let : mf x R  and ,a b X . Then a  is said to ε-dominate b
for some ε > 0, denoted as a b , if and only if for {1,..., }i m

(1 ) ( ) ( )i if a f b                 

     Fig. 1: Graphs visualizing the concepts of dominance (left) and ε-dominance (right).

Definition 3 [18]. (ε-approximate Pareto set) Let X  be a set of decision alternatives and 0  . 
Then a set x  is called an ε-approximate Pareto set of X , if any vector a x  is ε-dominated by 
at least one vectorb x  , i.e.,

a x : b x  such that b a                                      

According to definition 2, the ε value stands for a relative “tolerance” allowed for the 
objective values which declared in figure1. This is especially important in higher dimensional 
objective spaces, where the concept of ε-dominance can reduce the required number of 
solutions considerably. Also, the use of  -dominance also makes the algorithms practical by 
allowing a decision maker to control the resolution of the Pareto set approximation by 
choosing an appropriate   value.

3. Economic Emission Load Dispatch (EELD)
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The economic emission load dispatch involves the simultaneous optimization of fuel cost 
and emission objectives which are conflicting ones. The deterministic problem is formulated as 
described below.

3.1 Objective Functions

Fuel Cost Objective. The classical economic dispatch problem of finding the optimal
combination of power generation, which minimizes the total fuel cost while satisfying the total 
required demand can be mathematically stated as follows [24]:

2

1 1

( ) ( ) ( )$ /
n n

t i Gi i i Gi i Gi
i i

f C C P a b P c P hr
 

      
Where

i

i i i

C: total fuel cost ($/hr),  C : is fuel cost of generator i

a ,b ,c : fuel cost coefficients of generator i,
GiP : power generated (p.u)by generator i,

n: number of generator.

Emission Objective. The emission function can be presented as the sum of all types of 
emission considered, such as xNO , 2SO , thermal emission, etc., with suitable pricing or 

weighting on each pollutant emitted. In the present study, only one type of emission xNO is 

taken into account without loss of generality. The amount of xNO emission is given as a 

function of generator output, that is, the sum of a quadratic and exponential function:

2 2
2

1

( ) [10 ( ) exp( )] /
x

n

NO i i Gi i Gi i i Gi
i

f E P P P ton hr    



     
Where, , , , ,i i i i i     : coefficients of the ith generator's xNO emission characteristic.

3.2 Constraints

The optimization problem is bounded by the following constraints:
 Power balance constraint. The total power generated must supply the total load demand 

and the transmission losses.

1

0
n

Gi D Loss
i

P P P


  
Where    DP : total load demand (p.u.), and           lossP : transmission losses (p.u.).

The transmission losses are given by[13]:

1 1

[ ( ) ( ]
n n

Loss ij i j i j ij i j i j
i i

P A P P Q Q B Q P P Q
 

   

Where ij ij,    Q ,    A cos( ),   B sin( )ij ij
i Gi Di i Gi Di i j i j

i j i j

R R
P P P Q Q

V V V V
          

n : number of buses

ijR : series resistance connecting buses i and j

iV  : voltage magnitude at bus i

i : voltage angle at bus i

iP  : real power injection at bus i

iQ  : reactive power injection at bus i

 Maximum and Minimum Limits Of Power Generation. The power generated GiP  by

each generator is constrained between its minimum and maximum limits, i.e.,

min max min max min max,       ,     ,              1,......,Gi Gi Gi Gi Gi Gi i i iP P P Q Q Q V V V i n      

where   minGiP : minimum power generated, and    maxGiP : maximum power generated.
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 Security Constraints. A mathematical formulation of the security constrained EELD 
problem would require a very large number of constraints to be considered. However, for
typical systems the large proportion of lines has a rather small possibility of becoming 
overloaded. The EELD problem should consider only the small proportion of lines in 
violation, or near violation of their respective security limits which are identified as the
critical lines. We consider only the critical lines that are binding in the optimal solution. 
The detection of the critical lines is assumed done by the experiences of the DM. An 
improvement in the security can be obtained by minimizing the following objective 
function.

max

1

( ) (| ( ) | / )
k

Gi j G j
j

S f P T P T


  
Where, ( )j GT P  is the real power flow max

jT is the maximum limit of the real power flow 

of the j th line and k is the number of monitored lines. The line flow of the j th line is expressed 
in terms of the control variables GsP , by utilizing the generalized generation distribution factors 

(GGDF) [20] and is given below.

1

( ) ( )
n

J G ji Gi
i

T P D P


 
where, jiD is the generalized GGDF for line j, due to generator i

 For secure operation, the transmission line loading lS is restricted by its upper limit as

max , 1,....,S S n   

Where n is the number of transmission line.

4. Multiobjective Formulation of EELD Problem.

The multiobjective EELD optimization problem is therefore formulated as:

2
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  
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5. The proposed Algorithm
Recently, the studies on evolutionary algorithms have shown that these algorithms can be 

efficiently used to eliminate most of the difficulties of classical methods which can be 
summarized as :

 An algorithm has to be applied many times to find multiple Pareto-optimal solutions.
 Most algorithms demand some knowledge about the problem being solved.
 Some algorithms are sensitive to the shape of the Pareto-optimal front.
 The spread of Pareto-optimal solutions depends on efficiency of the single objective 

optimizer.
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It is worth mentioning that the goal of a multiobjective optimization problem is not only 
guide the search towards Pareto-optimal front but also maintain population diversity.

5.1. Initialization Stage

The algorithm uses two separate population, the first population 
( )tP consists of the 

individuals which initialized randomly satisfying the search space (The lower and upper 

bounds), while the second population 
( )tR consists of reference points which satisfying all 

constraints. However, in order to ensure convergence to the true Pareto-optimal solutions, we 
concentrated on how elitism could be introduced in the algorithm. So, we propose an 
archiving/selection [18] strategy that guarantees at the same time progress towards the Pareto-
optimal set and a covering of the whole range of the non-dominated solutions. The algorithm 
maintains an externally finite-sized archive ( )tA  of non-dominated solutions which gets 
iteratively updated in the presence of new solutions based on the concept of  -dominance.

5.2. Repair Algorithm

The idea of this technique is to separate any feasible individuals in a population from those 
that are infeasible by repairing infeasible individuals. This approach co-evolves the population 
of infeasible individuals until they become feasible. Repair process works as follows. Assume, 
there is a search point S (where S is the feasible space). In such a case the algorithm 
selects one of the reference points (Better reference point has better chances to be selected), say 
r S and creates random points Z  from the segment defined between ,r , but the segment
may be extended equally on both sides determined by a user specified parameter [0,1] . 
Thus, a new feasible individual is expressed as:             

1 2. (1 ) . ,    (1 ) . .          z r z r

 Where (1 2 )       and [0,1]  is a random generated number

5.3. LS stage

In this stage, we present modified local search technique (MLS) to improve the solution 
quality and to explore the less-crowded area in the external archive to possibly obtain more 
nondominated solutions nearby. We propose a MLS, which is a modification of Hooke and 
Jeeves method[14] to be suitable for MOP. The general procedure of the MLS techniques can 
be described by the following steps.

Step 1. Start with an arbitrarily chosen point  X n t
m E � , and the prescribed step lengths 

ix in each of the coordinate directions u , 1,2,...., .i i n Set m = 0, assume that m is  

the size of tE . 
Step 2. Set m=m+1, and k =1 where k is number of trial (s.t., max1,...,k k ) to obtain preferred 

solution than Xm . 

Step 3. The variable ix is perturbed about the current temporary base point Xm  to obtain the 

new temporary base point '
mX as :

 
      
      

'

        if    

        if                               i=1,2,...,n          

                     if    



 

 

   
      


   







m

m i i

m i i

m

X x u f f

X X x u f f f

X f f f
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Where,    mf f X  ,    m i if f X x u     , and    m i if f X x u     . Assume 

 f is the evaluation of the objective functions at a point.

Step 4. If the point mX unchanged.

 While the number of trial k not satisfied, reduce the step length ix . The following 

dynamic equation is presented to reduce ix ,

  max1 ,      [0,1]      
 

k

k
i ix x r r

and go to step 3.  

Step 5. Else, if '
mX is preferred than mX (i.e.,    '

m mf X f X ) ,

 The new base point is '
mX .

Step 6. With the help of the base points mX and '
mX , establish a pattern direction S as

'
m mS X X 

and find a point mX as  ' λS  m mX X  ,Where λ is the step length, (taken as 1).

Step 7. If    '' '
m mf X f X set '

m mX X , ' ''
m mX X  , and go to 6.

Step 8. If    '' '
m mf X f X set '

m mX X , and  go to 4.

These steps is implemented on all nondominated solutions in tA  to get the true Pareto 
optimal solution and to explore the less-crowded area in the external archive . Figure 2 shows 
the pseudo code of the MLS algorithm .

LS technique
Start with t

mX E

Generate '
mX

While (    '
m mf X f X stopped criterion satisfied ) 

DO
If '

m mX X
Reduce ix   Generate '

mX
End
Establish a pattern direction S   Generate ''

mX

If    '' '
m mf X f X , set '

m mX X , ' ''
m mX X

Set S   Generate ''
mX

Else if    '' '
m mf X f X

'
m mX X

End
End

Fig.2 : The pseudo code of the MLS algorithm

5.4. Basic Algorithm

It uses two separate population, the first population ( 0)tP (where t is the iteration counter) 
consists of the individuals which initialized randomly satisfying the search space, while the 
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second population ( )tR consists of reference points which satisfying all constraints. Also, it 
stores initially the Pareto-optimal solutions externally in a finite sized archive of non-
dominated solutions (0)A . We use cluster algorithm[7] to create the next population ( 1)tP , if 

( ) ( )| | | |t tP A (i.e., the size of the population ( )tP  greater than the size of archive 
( )tA ) then 

new population ( 1)tP consists of all individual from ( )tA and the population ( )tP are considered 
for the clustering procedure to complete ( 1)tP , if ( ) ( )| | | |t tP A  then | |P  solutions are picked 

up at random from ( )tA and directly copied to the new population ( 1)tP  .

Since our goal is to find new nondominated solutions, one simple way to combine multiple 
objective functions into a scalar fitness function is the following weighted sum approach:

1 1
1

( ) ( ) ... ( ) ... ( ) ( )
m

i i m m j j
j

f x w f x w f x w f x w f x


     
Where x is a string (i.e., individual), ( )f x  is a combined fitness function, ( )if x  is the ith

objective function. When a pair of strings is selected for a crossover operation, we assign a 
random number to each weight as follows.

1

(.)
,     1,2,..,

(.)

i
i m

j
j

random
w i m

random


 


 Calculate the fitness value of each string using the random weights iw . Select a pair of 

strings from the current population according to he following selection probability ( )x of a 

string x in the population ( )tP

( )

( )
( ) ( )min

min( )
min

( ) ( )
( ) ,   where ( ) min{ ( ) | }

{ ( ) ( )}
t

t
t t

t

x P

f x f P
x f P f x x P

f x f P





  


This step is repeated for selecting | | / 2P  Paris of strings from the current populations. For 

each selected pair apply crossover operation to generate two new strings, for each strings 
generated by crossover operation, apply a mutation operator with a prespecified mutation 
probability. The system also includes the survival of some of the good individuals without 
crossover or selection. This method seems to be better than the others if applied constantly.

Algorithm in Table 2, shows the proposed algorithm. The purpose of the function 
generate is to generate a new population in each iteration t, possibly using the contents of the 

old population ( 1)tP  and the old archive set ( 1)tA  in associated with variation (recombination 

and mutation). The function update gets the new population ( )tP  and the old archive set 
( 1)tA and determines the updated one, namely ( )tA as indicated in table 1. The function Ls is 

to explore the less-crowded area in the current archive to possibly obtain more nondominated
solutions.

The algorithm maintains a finite-sized archive of non-dominated solutions which gets 
iteratively updated in the presence of a new solutions based on the concept of  -dominance, 
such that new solutions are only accepted in the archive if they are not  -dominated by any 
other element in the current archive (table 1), The use of  -dominance also makes the 
algorithms practical by allowing a decision maker to control the resolution of the Pareto set 
approximation by choosing an appropriate   value.
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Table 1: Algorithm of select operator Table 2: Algorithm of the proposed algorithm
1.  A,x

2. D {x A:box(x) box(x ))

3. if D  

4. { } \

5. : ( ( ) ( ) )

6. { } \{ }

7. : ( ( ) ( ))

8. { }

9. 

10. 

11. 

12.  

INPUT

then

A A x D

else if x box x box x x x then

A A x x

else if x box x box x then

A A x

else

A A

endif

OUTPUT


 




    
 

 






� 

� 



� 



� 

�

A

(0) (0)

(0) (0)

(t)

( ) ( 1) ( 1)

( ) ( 1) ( )

1. t 0

2. Create P ,

3. nondominated( )

3.  terminate (A , )  do

4. 1

5. P generate( , ) {generate new search point}

6. update( , )     {update archiv

 









�

�

�

�

t t t

t t t

R

A P

while t false

t t

A P

A A P

( ) ( )

( )

e (table 1)}

7.  

8. ( )

9. Output :

t t

t

end while

A LS A

A

6. Implementation of the Proposed Approach

The described methodology is applied to the standard IEEE 30-bus 6-generator test system 
to investigate the effectiveness of the proposed approach. The values of fuel cost and emission 
coefficients are given in Table 3. For comparison purposes with the reported results, the system 
is considered as losses and the security constraint is released. The techniques used in this study 
were developed and implemented on 1.7-MHz PC using MATLAB environment. Table 4 lists 
the parameter setting used in the algorithm for all runs. 

           Table 3: Generator cost and emission coefficients
G1 G2 G3 G4 G5 G6

Cost a 10 10 20 10 20 10
b 200 150 180 100 180 150
c 100 120 40 60 40 100

Emission  4.091 2.543 4.258 5.426 4.258 6.131

 -5.554 -6.047 -5.094 -3.550 -5.094 -5.555

 6.490 4.638 4.586 3.380 4.586 5.151

 2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5

 2.857 3.333 8.000 2.000 8.000 6.667

                              Table 4: GA parameters
Population size (N) 60
No. of Generation 200
Crossover probability 0.98
Mutation probability 0.02
Selection operator Roulette Wheel 
Crossover operator BLX-α
Mutation operator Polynomial mutation
Relative tolerance  10e-6

                
7. Results and Discussions

Fig. 3 shows well-distributed Pareto optimal nondominated solutions obtained by the
proposed algorithm after 200 generations.
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Fig. 3: Pareto-optimal front of the proposed approach.

Table 5 and 6 show the best fuel cost and best xNO emission obtained by proposed algorithm 

as compared to Nondominated Sorting Genetic Algorithm (NSGA) [1], Niched Pareto Genetic 
Algorithm (NPGA) [2] and Strength Pareto Evolutionary Algorithm (SPEA) [3]. It can be
deduced that the proposed algorithm finds comparable minimum fuel cost and comparable 
minimum xNO emission to the three evolutionary algorithms. 

            Table 5: Best fuel cost
NSGA NPGA SPEA Proposed 

1GP 0.1168 0..1245 0.1086 0.1737

2GP 0.3165 0.2792 0.3056 0.3568

3GP 0.5441 0.6284 0.5818 0.5411

4GP 0.9447 1.0264 0.9846 0.9490

5GP 0.5498 0.4693 0.5288 0.4529

6GP 0.3964 0.39993 0.3584 0.3715

Best cost 608.245 608.147 607.807 606.4523
Corresponding Emission 0.21664 0.22364 0.22015 0.20280

            Table 6: Best xNO Emission

NSGA NPGA SPEA Proposed

1GP 0.4113 0.3923 0.4043 0.3885  

2GP 0.4591 0.4700 0.4525 0.4984

3GP 0.5117 0.5565 0.5525 0.5167

4GP 0.3724 0.3695 0.4079 0.4502

5GP 0.5810 0.5599 0.5468 0.5205

6GP 0.5304 0.5163 0.5005 0.5005

Best Emission. 0.19432 0.19424 0.19422 0.1882
Corresponding Cost 647.251 645.984 642.603 642.8976

8. Conclusion

The approach presented in this paper was applied to economic emission load dispatch 
optimization problem formulated as multiobjective optimization problem with competing fuel 
cost, and emission. The algorithm maintains a finite-sized archive of non-dominated solutions 
which gets iteratively updated in the presence of new solutions based on the concept of  -
dominance. Moreover, local search is employed to explore the less-crowded area in the current 
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archive to possibly obtain more nondominated solutions. The following are the significant 
contributions of this paper:

(a) The proposed technique has been effectively applied to solve the EELD considering two 
objectives simultaneously, with no limitation in handing more than two objectives.

(b) The non-dominated solutions in the obtained Pareto-optimal set are well distributed and 
have satisfactory diversity characteristics.

(c) Allowing a decision maker to control the resolution of the Pareto set approximation by 
choosing an appropriate   value

(d) The proposed approach is efficient for solving nonconvex multiobjective optimization 
problems where multiple Pareto-optimal solutions can be found in one simulation run. 

(e) Local search method is employed to explore the less-crowded area in the current archive to 
possibly obtain more nondominated solutions.

(f) This work may be very valuable for on-line operation of power systems when 
environmental constraints are also need to be considered. In addition to on-line operation, 
this work can be a part of an off-line planning tool when there are hard limits on how much 
emission is acceptable by a utility over a period of a month or a year.
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