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Abstract:

Recently many countries have gone through deregulation and restructuring of the
electrical power systems with the aim of improving economic efficiency. In the
deregulated environment, the generation company (GENCO) finds the optimum
schedules of its energy to be sold in the market by running the profit-based dynamic
economic dispatch (PBDED) problem with its aim to maximize its own profit (revenue
minus generation cost). The objective of the PBDED is to maximize the GENCO's own
profit based on the forecasted energy demand and prices, while satisfying the generators'
ramp rate constraints and various other constraints. In [11], model predictive control
(MPC) method has been proposed for the periodic implementation of the optimal
solutions for the dynamic economic dispatch (DED) problem with periodic demand. In
this paper we applied the MPC approach proposed in [11] for the PBDED problem
under the assumption that both the energy price and demand is periodic. The
convergence and robustness of the MPC algorithms are demonstrated through the
application of MPC to the PBDED problem with a six-unit system.
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1. Introduction:

In a vertically integrated monopolistic environment, the dynamic economic dispatch
(DED) problem is formulated to determine the optimal scheduling of the committed
generating unit's output so as to meet the load demand over a dispatch period at
minimum operating cost while satisfying various constraints (see the review [12]). In
this environment, utilities are obliged to server all customers and meeting all demands.
After deregulation of the electricity markets, the DED has evolved from a minimum
cost-based to a maximum profit-based, giving rise to the new profit-based dynamic
economic dispatch (PBDED) problem. The objective function of the PBDED can be
formulated to maximize the generation company's (GENCO's) own profit from selling
energy into the market [1]. Therefore, the GENCO can choose to sell energy less than
the predicted values if a higher profit is realized. The PBDED problem can be used to
create the decision criteria for the GENCO. The first purpose of our paper is to
introduce formulation to produce electricity with minimum operating cost and sell it
with maximum profit.
Both DED and PBDED formulations and their solving algorithms suffer from the
deficiency of not allowing to compensate for inaccuracies originating from modeling
uncertainties, external disturbances, and unexpected reactions of some of the power
system components. In the terminology of control theory, these formulations are in fact
open-loop systems and there is no way to feedback account for the inaccuracy
information so that the solutions can be compensated. In other words, these
formulations are not closed-loop systems. A possible solution to this problem is to apply
the model predictive control (MPC) method. This method obtains a feedback control by
solving a finite horizon optimal control problem at each sampling instant using the
current state of the plant as the initial state for the optimization and applying only ``the
first part'' of the optimal control [6]. MPC method has emerged and been successfully
applied particularly in the process control industry since 1970's. Theoretical properties
such as stability and robustness of the MPC have been studied by many authors since
the early work of Kleinman [5]. Up to present, MPC has become one of the most widely
used multivariable control algorithms in various industries including chemical
engineering, food processing, automotive, aerospace applications [10], and recently in
power systems [9], [11]. This is due to its facility of handling constraints, being able to
use simple models, and its closed-loop stability and inherent robustness. Moreover,
MPC solves optimal control problem on-line for the current state of the plant which is a
mathematical programming problem and is much simpler than determining the feedback
solution by dynamic programming [6].
MPC has been proposed for the periodic implementation of the optimal solutions for the
DED problem in [11]. It has been shown theoretically that the closed-loop MPC
solutions asymptotically approach the optimal solution of the DED problem and the
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MPC algorithm is also robust under certain disturbances and uncertainties. The second
purpose of this paper is to apply the MPC approach proposed in [11] to the PBDED
problem.
The remainder of this paper is organized as follows: In Section 2, we introduce the DED
and PBDED formulations. In Section 3, we outline the MPC approach for the DED
problem. The simulation results for the application of MPC to the PBDED problem are
given in Section 4. The last section is the conclusions.

2. Problem Formulation:

In this section we introduce the DED and PBDED formulations. For a sampling period
T , the dynamic dispatch problem is considered over dispatch intervals, ))(,[ TNiiT 
where the optimization is considered, for 0i , N is a fixed positive integer, and NT  is
the dispatch period. For simplicity, we make the convention throughout the paper that

),[ ji  denotes the time interval ),[ jTiT . Assume that n  is the number of committed units,
k

iP  is the generation of unit i  during the k -th time interval ),1[ kk  ; )( k
ii PC  is the

generation cost for unit i  to produce k
iP ; kk SPD , are the demand and energy price at

time k (i.e., the k -th time interval); the control variable k
iu  is the ramp rate of the unit i

at time k ; iUR  and iDR  are the maximum ramp up/down rates for unit i ; min
iP  and max
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periodic with period N . This periodic assumption is made to reflect the cyclic
consumption behavior and seasonal changes over the dispatch interval. The following
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2.1 Dynamic Economic Dispatch
The objective of the DED problem is to determine the generation levels for the
committed units which minimize the total fuel cost over the dispatch period ],0[ NT ,
while satisfying a set of constraints ([11], [12]). The DED can be mathematically stated
as follows:
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In this paper we consider for simplicity, the cost functions in quadratic forms:
2)()( t
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t

iii
t

ii PcPbaPC 

where ii ba ,  and ic  are the fuel cost coefficients of generator i and they are constants.
The constraints (2)-(4) are usually used in the conventional DED problem. Since the
demand and constraints are periodic, one may obtain the solution of the conventional
DED problem (1)-(4) over e.g. 24 hours ( 24N and 1T ) then this solution is
implemented not only for the first day, but also for all the other week days. Sometimes
such an optimal solution is not able to be practically implemented, or in other words, the
solution is not practically feasible. The ramp rate constraint may be violated when the
generators are moved from the 24 -th hour of a day to the first hour of the next day. This
problem can be resolved by including the ramp limit on the difference between 24

iP  and
125

ii PP  . This can be achieved by adding the constraint (5) to the conventional DED
problem [11].
We note that the above DED problem can be solved over the dispatch period ],[ Nmm 
for any 0m  and it can be formulated as:
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then DED  is shift-invariant (see [13]). The shift-invariant property of DED  is needed for
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the application of the MPC approach to the PBDED problem.
The solution of the DED problem will give the amount of power to be generated by the
committed units with minimum total fuel cost. But after deregulation, the GENCO has
the goal to produce electricity with minimum operating cost and sell it with maximum
profit, therefore, to take into account the profit in the dynamic dispatch problem we
shall formulate a new dynamic dispatch problem under deregulated electric power
system.

2.2 Profit-Based Dynamic Economic Dispatch
The objective of the PBDED problem is to determine the generation levels for the
committed units which maximize the profit (revenue minus generation cost) over the
dispatch period ],0[ NT , while satisfying a set of constraints [1]. The PBDED can be
mathematically stated as follows:
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where the feasible domain )P( 0
PBDED  is defined to be the set of
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where tSP  is the forecasted energy price at time t .
We note that the constraints in the DED did not changed except the constraint (2) which
has been changed into constraint (7). Constraint (7) means that under the deregulated
environment, GENCO is not obliged to serve all demand, but may sell its energy at less
than the system's forecasted demand equilibrium.

2. MPC approach to DED:

In this section, we outline the MPC approach proposed in [11] and give a review on the
results obtained in [11]. We first introduce the control variables t

iu as (see [7], [8]):
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where t
iu  is the ramping action of unit i  at time t . This equation is actually defined
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The optimal solution of the DED problem is implemented repeatedly at instants which
equal to multiples of N . To introduce the MPC approach, let us consider the DED
problem starting at an arbitrary instant mt   and over a dispatch interval ],[ Nmm  .
Then the optimization variables are changed into  niPPP Nm
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In an MPC approach, a finite-horizon optimal control problem is repeatedly solved and
the input is applied to the system based on the obtained optimal open-loop control. In
our case, the horizon is chosen to be N . Instead of solving the DED problem with
 niuuuP Nm

i
m
i

m
i

m
i ,...,2,1,,...,,, 1211   as the optimization variables, the MPC algorithm

solves the following problem:
Problem MPCDED ( ],[,,1 NmmuPm  ) Given ,,,,...,2,1,,,,,, 1maxmin  m

iiii PDniDRURPPNn

let
1,...,2,1,,...,2,1,,...,2,1,:,:,: 11   NjNtniDDuuPP mttjm

i
j

i
m

ii                      (13)
and solve the following minimization problem

,1,...,2,1,,...,2,1),,(tosubject

)(min

1

1 1

1

1

1
U



 
 





NjniUPu

TuPC

D
j

i

N

t

n

i

t

j

j
iii

where the feasible domain ),,( 1 UPD  is defined to be the set of
 niuuuP N

iiii ,...,2,1,,...,,, 1211 

,1,...,2,1,,...,2,1

,,...,2,1,,...,2,1

,,...,2,1,

max
1

1

1min

1

1

1

1

















 










NjniURuDR

NtniPTuPP

NtDTuP

i
j

ii

i

t

j

j
iii

t
N

t

t

j

j
ii

The notation Problem MPCDED ( ],[,,1 NmmuPm  ) denotes the optimization problem
is solved over the interval ],[ Nmm   with variables j

iu  and for known inputs 1mP ,
ni ,...,2,1 , 1,...,2,1  Nmmmj .
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In order to make the above MPCDED problem solvable, the following hypothesis is
needed as in [3], [4] and [11].
Feasibility Hypothesis: After the change of variables in (13) over any dispatch interval

],[ Nmm   with 0m , the set ),( 1 UPD  is not empty.
This hypothesis ensures the solvability of the problem MPCDED ( ],[,,1 NmmuPm  ).
Denote the optimal solution of MPCDED for given initial generation 1mP  by
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mm In the model predictive control method
the optimal solution mu  is applied only in the first sampling period ]1,[ mm  that is,
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iP . Since the optimal controller )(u 1mm P  depends on
1mP , in this way a feedback can be obtained. We define the MPC feedback controller
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The above ideas can be strictly formulated into the following MPC algorithm.
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(1) Compute the open-loop optimal solution mu  to the MPCDED ( ],[,,1 NmmuPm  ).
(2) The (closed-loop) MPC controller m

iv  is applied to the plant in the sampling interval
)1,[ mm  to obtain the closed-loop MPC solution
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over the period )2,1[  mm .
(3) Let 1:  mm  and go to step (1).

Theorem 1 [11] Suppose Feasibility Hypothesis holds, *P  is the globally optimal
solution of the DED problem, and the initial power output 1P  at time 1t  satisfies

),,( 11 UPP D  then MPC Algorithm converges to *P .
Now we consider the inherent robustness properties of the MPC algorithm (IRP-MPC).
For simplicity, suppose that disturbance happens only in the execution of the controller.
That is, the disturbance happens only in Step (2) of MPC Algorithm so that when the
control m

iv is applied to the plant in the sampling interval )1,[ mm , the system actually
execute
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over the period )2,1[  mm , where 1m
iw  is the disturbance. We assume that, the

disturbances satisfy the following bound
0,,...,2,1,0,1  mniwm

i  .                             (16)

Theorem 2 [11] Suppose Feasibility Hypothesis holds, *P  is the globally optimal
solution of the DED problem, the norm of the gradient of the fuel cost function of DED
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problem has the upper bound L on DED ,   is a small enough positive constant, c is a
positive constant which is less than  , (15) is executed in Step (2) of MPC Algorithm
instead of (14), the constant disturbance k

iw  satisfies (16) where   is small enough so
that  LcLc /)(,/min   , then there exists an integer 0N such that for any 0Nk  , the
optimal MPC solution 1kP of the k-th loop in MPC Algorithm belongs to the domain

 cPPP  *:: .

Theorems 1 and 2 are based on the assumption that the objective function C of the DED
problem is strictly convex and differentiable over the set DED which is bounded.
Since the fuel cost function is assumed to be quadratic, then function G is strictly
convex and differentiable over the set PBDED . Also since the demand and energy price
are assumed to be periodic then the set PBDED  is shift invariant. Therefore, Theorems 1
and 2 are valid for the PBDED problem.

4. Simulation Results:

In this section we present the results of PBDED problem with a six-unit system. The
demand and energy price are assumed to be periodic over a dispatch period of one day
and the sampling period is chosen to be one hour. The initial 1

iP  is chosen such that

1

1

1 DP
n

i




. We apply MPC approach to the periodic implementation of the optimal

solutions of the PBDED. Also we show the convergence and robustness properties of
the MPC algorithm to the PBDED problem. The technical data of the units and the
demand are taken from [2]. The optimization problem is solved by the fmincon code of
the MATLAB Optimization Toolbox.
The result of the optimization is dependent on the energy price data. Indeed, minor
changes in the energy price may give a significant change in the power generation of
thermal units. Hence, the influence of price forecasting on the optimal solution of the
PBDED is analyzed. We consider three different energy price profiles which are given
in Table 1. The effect of the energy prices on the total amount of power which produced
by the total generators is shown in Table 1. It will be noted that, for price-I and price-II,
the total power is less than the demand except some intervals as shown by bold font in
Table 1. For price-III, the total power satisfies the demand over the whole dispatch
period. We note that, the profit increases according to the energy prices. Figures 1, 2
and 3 show that the MPC closed-loop solutions asymptotically approach the optimal
solutions of the PBDED problem for the three price profiles.
To show the IRP-MPC for the PBDED problem, let (15) be executed, and the
disturbance m

iw  is generated by )(2 mrw ii
m
i   where the parameters )'(mr s are

uniformly distributed random numbers on ]1,0[  and si '  are chosen as
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2and,3,2,4,5,10 654321   .
. In this case the initial 1

iP  for the MPC are chosen as the optimal solution of the
PBDED problem at 1t , i.e., 11

ii PP  . From Figure 4, we can see that, the IRP-MPC can
keep the disturbed system around the optimal solutions of the PBDED problem.
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Fig. 1. Convergence of the closed-loop MPC solutions to those of PBDED for price-I.
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Fig. 2. Convergence of the closed-loop MPC solutions to those of PBDED for price-II.
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6. Conclusions:

This paper presents an extension of the work of [11] to include profit-based
considerations for operations in a deregulated market. The proposed model predictive
control method is tested on a six-unit system with three different energy prices and
shown to approach the optimal solutions of the profit-based dynamic economic
dispatch. The method is finally tested robustness under disturbance conditions and
shown to keep the disturbed system about the optimal solutions.
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