ON THE PSEUDO-FIBONACCI AND PSEUDO-LUCAS QUATERNIONS

O. DIŞKAYA * AND H. MENKEN

Abstract

There are a lot of quaternion numbers that are related to the Fibonacci and Lucas numbers or their generalizations have been described and extensively explored. The coefficients of these quaternions have been chosen from terms of Fibonacci and Lucas numbers. In this study, we define two new quaternions that are pseudo-Fibonacci and pseudo-Lucas quaternions. Then, we give their Binet-like formulas, generating functions, certain binomial sums and Honsberg-like, d'Ocagne-like, Catalan-like and Cassini-like identities.

1. Introduction

Ferns introduced the pseudo-Fibonacci and pseudo-Lucas sequences in 1968 as novel generalizations of the Fibonacci and Lucas sequences as follows:
First, consider two recurrence relations

$$
\begin{gather*}
\Phi_{n+1}=\Phi_{n}+\Psi_{n} \tag{1}\\
\Psi_{n+1}=\Phi_{n+1}+\gamma \Phi_{n} \tag{2}
\end{gather*}
$$

with initial conditions $\Phi_{1}=1$ and $\Psi_{1}=1$ in which γ is a positive integer. $\left\{\Phi_{n}\right\}$ and $\left\{\Psi_{n}\right\}$ are pseudo-Fibonacci and pseudo-Lucas numbers, respectively (see [1]). Actually, by eliminating first the Φ_{n} 's and then the Ψ_{n} 's, from (1) and (2), the following pseudo-Fibonacci and pseudo-Lucas sequences are obtained

$$
\begin{align*}
& \Phi_{n+2}=2 \Phi_{n+1}+\gamma \Phi_{n}, \tag{3}\\
& \Psi_{n+2}=2 \Psi_{n+1}+\gamma \Psi_{n} \tag{4}
\end{align*}
$$

with initial conditions $\Phi_{0}=0, \Phi_{1}=1$ and $\Psi_{0}=1, \Psi_{1}=1$, respectively. Therefore, although having different initial values, the two numbers described by (3) and (4)

[^0]satisfy the same recurrence relations.
A Binet-like formula for each of the pseudo-Fibonacci sequence $\left\{\Phi_{n}\right\}$ and pseudoLucas sequence $\left\{\Psi_{n}\right\}$ is
\[

$$
\begin{align*}
\Phi_{n} & =\frac{A^{n}-B^{n}}{A-B} \tag{5}\\
\Psi_{n} & =\frac{A^{n}+B^{n}}{A+B} \tag{6}
\end{align*}
$$
\]

where A and B are $1+\sqrt{1+\gamma}$ and $1-\sqrt{1+\gamma}$, respectively.
Thus, it is apparent that

$$
\begin{array}{rr}
A B=-\gamma, & A+B=2, \\
A^{2}=2 A+\gamma, & A-B=2 \sqrt{1+\gamma} \\
A^{2}+B^{2}=2(2+\gamma), & B^{2}=2 B+\gamma \\
\hline
\end{array}
$$

(see [1]).
Quaternions applied to mechanics in three-dimensional space were first discovered by Hamilton (1805-1865) for the purpose of expanding complex numbers. According to Hamilton, a quaternion is the product of two directed lines divided by three, or alternatively, the product of two vectors. A quaternion is defined by

$$
q=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}
$$

where a_{0}, a_{1}, a_{2} and a_{3} are real numbers and $e_{0}=1, e_{1}=i, e_{2}=j$ and $e_{3}=k$ are the standard basis in \mathbb{R}^{4} (see [2]).
The quaternion multiplication is defined using the rules:

$$
e_{0}^{2}=1, \quad e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1
$$

$$
e_{1} e_{2}=-e_{2} e_{1}=e_{3}, \quad e_{2} e_{3}=-e_{3} e_{2}=e_{1} \quad \text { and } \quad e_{3} e_{1}=-e_{1} e_{3}=e_{2}
$$

This algebra is associative and non-commutative.
Let $q=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$ and $p=b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}$ be any two quaternions. Then addition and subtraction them are

$$
q \mp p=\left(a_{0} \mp b_{0}\right) e_{0}+\left(a_{1} \mp b_{1}\right) e_{1}+\left(a_{2} \mp b_{2}\right) e_{2}+\left(a_{3} \mp b_{3}\right) e_{3}
$$

and for $k \in \mathbb{R}$, the multiplication by scalar is

$$
k q=k a_{0} e_{0}+k a_{1} e_{1}+k a_{2} e_{2}+k a_{3} e_{3}
$$

and the conjugate and norm of a quaternion are

$$
\bar{q}=a_{0} e_{0}-a_{1} e_{1}-a_{2} e_{2}-a_{3} e_{3}
$$

and

$$
N(q)=q \bar{q}=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2} .
$$

More studies about the quaternions can be found in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27.

2. The Pseudo-Fibonacci and Pseudo-Lucas Quaternions

In this part, we define two new quaternions that are the pseudo-Fibonacci and pseudo-Lucas quaternions. Then, we give their Binet-like formulas, generating functions, certain binomial sums and Honsberg-like, d'Ocagne-like, Catalan-like and Cassini-like identities.

Definition 2.1. The pseudo-Fibonacci quaternion $\left\{\hat{\Phi}_{n}\right\}_{n \geq 0}$ is defined by

$$
\begin{equation*}
\hat{\Phi}_{n}=\Phi_{n} e_{0}+\Phi_{n+1} e_{1}+\Phi_{n+2} e_{2}+\Phi_{n+3} e_{3} \tag{7}
\end{equation*}
$$

where Φ_{n} is the nth pseudo-Fibonacci numbers.
Definition 2.2. The pseudo-Lucas quaternion $\left\{\hat{\Psi}_{n}\right\}_{n \geq 0}$ is defined by

$$
\begin{equation*}
\hat{\Psi}_{n}=\Psi_{n} e_{0}+\Psi_{n+1} e_{1}+\Psi_{n+2} e_{2}+\Psi_{n+3} e_{3} \tag{8}
\end{equation*}
$$

where Ψ_{n} is the nth pseudo-Lucas number.
Here, e_{1}, e_{2} and e_{3} correspond to the basis vectors for real quaternions. As a result of these definitions, we may derive new sequences using the pseudo-Fibonacci and pseudo-Lucas. These new sequences are called the pseudo-Fibonacci and pseudo-Lucas quaternion sequences. For $n \geq 0$, they are possible to write, respectively,

$$
\begin{align*}
& \hat{\Phi}_{n+2}=2 \hat{\Phi}_{n+1}+\gamma \hat{\Phi}_{n}, \tag{9}\\
& \hat{\Psi}_{n+2}=2 \hat{\Psi}_{n+1}+\gamma \hat{\Psi}_{n} \tag{10}
\end{align*}
$$

with initial conditions

$$
\begin{gathered}
\hat{\Phi}_{0}=e_{1}+2 e_{2}+(4+\gamma) e_{3} \\
\hat{\Phi}_{1}=e_{0}+2 e_{1}+(4+\gamma) e_{2}+(8+4 \gamma) e_{3}
\end{gathered}
$$

and

$$
\begin{gathered}
\hat{\Psi}_{0}=e_{0}+e_{1}+(2+\gamma) e_{2}+(4+3 \gamma) e_{3} \\
\hat{\Psi}_{1}=e_{0}+(2+\gamma) e_{1}+(4+3 \gamma) e_{2}+\left(\gamma^{2}+8 \gamma+8\right) e_{3}
\end{gathered}
$$

respectively.
Theorem 2.1. The Binet-like formulas of the pseudo-Fibonacci and pseudo-Lucas quaternions are, respectively,

$$
\begin{align*}
\hat{\Phi}_{n} & =\frac{\hat{A} A^{n}-\hat{B} B^{n}}{A-B}, \tag{11}\\
\hat{\Psi}_{n} & =\frac{\hat{A} A^{n}+\hat{B} B^{n}}{A+B} \tag{12}
\end{align*}
$$

where $\hat{A}=e_{0}+A e_{1}+A^{2} e_{2}+A^{3} e_{3}$ and $\hat{B}=e_{0}+B e_{1}+B^{2} e_{2}+B^{3} e_{3}$.

Proof. From equalities (7) and (8), the Binet-like formulas (5) and (6) for the pseudo-Fibonacci and pseudo-Lucas numbers, respectively. The proof of the equality (11), we write

$$
\begin{aligned}
\hat{\Phi}_{n} & =\Phi_{n} e_{0}+\Phi_{n+1} e_{1}+\Phi_{n+2} e_{2}+\Phi_{n+3} e_{3} \\
& =\frac{A^{n}-B^{n}}{A-B} e_{0}+\frac{A^{n+1}-B^{n+1}}{A-B} e_{1}+\frac{A^{n+2}-B^{n+2}}{A-B} e_{2}+\frac{A^{n+3}-B^{n+3}}{A-B} e_{3} \\
& =\frac{\left(e_{0}+A e_{1}+A^{2} e_{2}+A^{3} e_{3}\right) A^{n}-\left(e_{0}+B e_{1}+B^{2} e_{2}+B^{3} e_{3}\right) B^{n}}{A-B}
\end{aligned}
$$

The proof of the equality (12) is similar to the first proof.
Thus, the proof is completed.
Theorem 2.2. The generating functions for the pseudo-Fibonacci and pseudoLucas quaternions are, respectively,

1. $G_{\hat{\Phi}}(x)=\frac{e_{1}+2 e_{2}+(4+\gamma) e_{3}+\left(e_{0}+\gamma e_{2}+2 \gamma e_{3}\right) x}{1-2 x-\gamma x^{2}}$
2. $G_{\hat{\Psi}}(x)=\frac{e_{0}+e_{1}+(2+\gamma) e_{2}+(4+3 \gamma) e_{3}+\left(-e_{0}+\gamma e_{1}+\gamma e_{2}+\left(\gamma^{2}+2 \gamma\right) e_{3}\right) x}{1-2 x-\gamma x^{2}}$

Proof. Let

$$
G_{\hat{\Phi}}(x)=\sum_{n=0}^{\infty} \hat{\Phi}_{n} x^{n}=\hat{\Phi}_{0}+\hat{\Phi}_{1} x+\hat{\Phi}_{2} x^{2}+\cdots+\hat{\Phi}_{n} x^{n}+\ldots
$$

and

$$
G_{\hat{\Psi}}(x)=\sum_{n=0}^{\infty} \hat{\Psi}_{n} x^{n}=\hat{\Psi}_{0}+\hat{\Psi}_{1} x+\hat{\Psi}_{2} x^{2}+\cdots+\hat{\Psi}_{n} x^{n}+\ldots
$$

be generating functions of the pseudo-Fibonacci and pseudo-Lucas quaternions, respectively. We have

1. Multiply both of sides of the equality by the term $-2 x$ such as

$$
-2 x G_{\hat{\Phi}}(x)=-2 \hat{\Phi}_{0} x-2 \hat{\Phi}_{1} x^{2}-2 \hat{\Phi}_{2} x^{3}-\cdots-2 \hat{\Phi}_{n} x^{n+1}-\ldots
$$

and multiply by the term $-\gamma x^{2}$ such as

$$
-\gamma x^{2} G_{\hat{\Phi}}(x)=-\gamma \hat{\Phi}_{0} x^{2}-\gamma \hat{\Phi}_{1} x^{3}-\gamma \hat{\Phi}_{2} x^{4}-\cdots-\gamma \hat{\Phi}_{n} x^{n+2}-\ldots
$$

Then, we write

$$
\begin{aligned}
\left(1-2 x-\gamma x^{2}\right) G_{\hat{\Phi}}(x) & =\hat{\Phi}_{0}+\left(\hat{\Phi}_{1}-2 \hat{\Phi}_{0}\right) x+\left(\hat{\Phi}_{2}-2 \hat{\Phi}_{1}-\gamma \hat{\Phi}_{0}\right) x^{2}+\ldots \\
& +\left(\hat{\Phi}_{n}-2 \hat{\Phi}_{n-1}-\gamma \hat{\Phi}_{n-2}\right) x^{n}+\ldots
\end{aligned}
$$

Now, by using

$$
\begin{gathered}
\hat{\Phi}_{0}=e_{1}+2 e_{2}+(4+\gamma) e_{3} \\
\hat{\Phi}_{1}=e_{0}+2 e_{1}+(4+\gamma) e_{2}+(8+4 \gamma) e_{3}
\end{gathered}
$$

and

$$
\hat{\Phi}_{n}-2 \hat{\Phi}_{n-1}-\gamma \hat{\Phi}_{n-2}=0
$$

we get that

$$
G_{\hat{\Phi}}(x)=\frac{e_{1}+2 e_{2}+(4+\gamma) e_{3}+\left(e_{0}+\gamma e_{2}+2 \gamma e_{3}\right) x}{1-2 x-\gamma x^{2}}
$$

2. The proof of the second item is similar to the first proof.

Thus, the proof is completed.
Theorem 2.3. The exponential generating functions of the pseudo-Fibonacci and pseudo-Lucas quaternions are, respectively,

1. $E_{\hat{\Phi}}(x)=\frac{\hat{A} e^{A x}-\hat{B} e^{B x}}{A-B}$
2. $E_{\hat{\Psi}}(x)=\frac{\hat{A} e^{A x}+\hat{B} e^{B x}}{A+B}$

Proof. Let

$$
E_{\hat{\Phi}}(x)=\sum_{n=0}^{\infty} \hat{\Phi}_{n} \frac{x^{n}}{n!} \quad \text { and } \quad E_{\hat{\Psi}}(x)=\sum_{n=0}^{\infty} \hat{\Psi}_{n} \frac{x^{n}}{n!}
$$

be exponential generating functions of the pseudo-Fibonacci and pseudo-Lucas quaternions, respectively. Using the identity (11) and (12), we get
1.

$$
\begin{aligned}
E_{\hat{\Phi}}(x)=\sum_{n=0}^{\infty} \hat{\Phi}_{n} \frac{x^{n}}{n!} & =\frac{\hat{A}}{A-B} \sum_{n=0}^{\infty} \frac{(A x)^{n}}{n!}-\frac{\hat{B}}{A-B} \sum_{n=0}^{\infty} \frac{(B x)^{n}}{n!} \\
& =\frac{\hat{A} e^{A x}-\hat{B} e^{B x}}{A-B}
\end{aligned}
$$

2. The proof of the second item is similar to the first proof.

Thus, the proof is completed.
Theorem 2.4. Let $m, n \in \mathbb{Z}^{+}$. Then, the sums of the first n terms for the pseudoFibonacci and pseudo-Lucas quaternions are, respectively,

1. $T_{\hat{\Phi}}=\frac{\hat{\Phi}_{n+2}-\hat{\Phi}_{n+1}+e_{0}+2 e_{1}+(4+\gamma) e_{2}+(8+4 \gamma) e_{3}}{\gamma+1}$
2. $T_{\hat{\Psi}}=\frac{\hat{\Phi}_{n+2}-\hat{\Phi}_{n+1}+e_{0}+(2+\gamma) e_{1}+(4+3 \gamma) e_{2}+\left(\gamma^{2}+8 \gamma+8\right) e_{3}}{\gamma+1}$

Proof. Let

$$
T_{\hat{\Phi}}=\sum_{k=1}^{n} \hat{\Phi}_{k} \quad \text { and } \quad T_{\hat{\Psi}}=\sum_{k=1}^{n} \hat{\Psi}_{k}
$$

be sums of the first n terms for the pseudo-Fibonacci and pseudo-Lucas quaternions, respectively. Using identities (9) and (10), we have
1.

$$
\begin{aligned}
\hat{\Phi}_{3} & =2 \hat{\Phi}_{2}+\gamma \hat{\Phi}_{1}, \\
\hat{\Phi}_{4} & =2 \hat{\Phi}_{3}+\gamma \hat{\Phi}_{2}, \\
\hat{\Phi}_{5} & =2 \hat{\Phi}_{4}+\gamma \hat{\Phi}_{3}, \\
& \ldots \\
\hat{\Phi}_{n+1} & =2 \hat{\Phi}_{n}+\gamma \hat{\Phi}_{n-1}, \\
\hat{\Phi}_{n+2} & =2 \hat{\Phi}_{n+1}+\gamma \hat{\Phi}_{n}
\end{aligned}
$$

If we sum both of sides of the identities above, we obtain,

$$
\hat{\Phi}_{n+2}+\hat{\Phi}_{1}=\hat{\Phi}_{n+1}+(\gamma+1) \sum_{k=1}^{n} \hat{\Phi}_{k}
$$

2. The proof of the second item is similar to the first proof. Thus, the proof is completed.

Theorem 2.5. Let $m, n \in \mathbb{Z}^{+}$. Then,

1. $\sum_{n=1}^{m}\binom{n}{m} \hat{\Phi}_{n}=\hat{\Phi}_{2 m}$
2. $\sum_{n=1}^{m}\binom{n}{m} \hat{\Psi}_{n}=\hat{\Psi}_{2 m}$

Proof. 1. Applying identities (11), we obtain

$$
\begin{aligned}
\sum_{n=1}^{m}\binom{n}{m} \hat{\Phi}_{n} & =\frac{\hat{A}}{A-B} \sum_{n=1}^{m}\binom{n}{m} A^{n} 1^{m-n}-\frac{\hat{B}}{A-B} \sum_{n=1}^{m}\binom{n}{m} B^{n} 1^{m-n} \\
& =\frac{\hat{A}(A+1)^{m}-\hat{B}(B+1)^{m}}{A-B} \\
& =\frac{\hat{A} A^{2 m}-\hat{B} B^{2 m}}{A-B}
\end{aligned}
$$

2. The proof of the second item is similar to the first proof.

Thus, the proof is completed.
Theorem 2.6. (The Honsberger-like identity). Let $\hat{\Phi}_{n}$ and $\hat{\Psi}_{n}$ be the n-th the pseudo-Fibonacci and pseudo-Lucas quaternions, respectively. For $n, m \in \mathbb{Z}^{+}$, we have

1. $\hat{\Phi}_{n} \hat{\Phi}_{m+1}+\gamma \hat{\Phi}_{n-1} \hat{\Phi}_{m}=\frac{\hat{A}^{2} A^{n+m}-\hat{B}^{2} B^{n+m}}{2 \sqrt{1+\gamma}}$
2. $\hat{\Psi}_{n} \hat{\Psi}_{m+1}+\gamma \hat{\Psi}_{n-1} \hat{\Psi}_{m}=\sqrt{1+\gamma}\left(\frac{\hat{A}^{2} A^{n+m}-\hat{B}^{2} B^{n+m}}{2}\right)$

Proof. 1. Applying identities 11, we get

$$
\begin{aligned}
\hat{\Phi}_{n} \hat{\Phi}_{m+1}+\gamma \hat{\Phi}_{n-1} \hat{\Phi}_{m} & =\left(\frac{\hat{A} A^{n}-\hat{B} B^{n}}{A-B}\right)\left(\frac{\hat{A} A^{m+1}-\hat{B} B^{m+1}}{A-B}\right) \\
& +\gamma\left(\frac{\hat{A} A^{n-1}-\hat{B} B^{n-1}}{A-B}\right)\left(\frac{\hat{A} A^{m}-\hat{B} B^{m}}{A-B}\right) \\
& =\frac{\hat{A}^{2} A^{n+m} A-\hat{A} \hat{B} A^{n} B^{m+1}-\hat{B} \hat{A} B^{n} A^{m+1}+\hat{B}^{2} B^{n+m} B}{(A-B)^{2}} \\
& +\gamma\left(\frac{\hat{A}^{2} A^{n+m} B-\hat{A} \hat{B} A^{n} B^{m+1}-\hat{B} \hat{A} B^{n} A^{m+1}+\hat{B}^{2} B^{n+m} A}{-\gamma(A-B)^{2}}\right) \\
& =\frac{\hat{A}^{2} A^{n+m}(A-B)-\hat{B}^{2} B^{n+m}(A-B)}{(A-B)^{2}} \\
& =\frac{\hat{A}^{2} A^{n+m}-\hat{B}^{2} B^{n+m}}{2 \sqrt{1+\gamma}}
\end{aligned}
$$

2. The proof of the second item is similar to the first proof.

Thus, the proof is completed.
Proposition 1. For $n, m \in \mathbb{Z}^{+}$, The following identities are valid:

1. $\hat{\Phi}_{m+1}^{2}+\gamma \hat{\Phi}_{m}^{2}=\frac{\hat{A}^{2} A^{2 m+1}-\hat{B}^{2} B^{2 m+1}}{2 \sqrt{1+\gamma}}$
2. $\hat{\Psi}_{m+1}^{2}+\gamma \hat{\Psi}_{m}^{2}=\sqrt{1+\gamma}\left(\frac{\hat{A}^{2} A^{2 m+1}-\hat{B}^{2} B^{2 m+1}}{2}\right)$

Proof. If $m+1$ is written instead of n in the Theorem 2.6. the identities are proven.

Theorem 2.7. (The d'Ocagne-like identity). Let $\hat{\Phi}_{n}$ and $\hat{\Psi}_{n}$ be the n-th the pseudo-Fibonacci and pseudo-Lucas quaternions, respectively. For $m \geq n+1$, we have

1. $\hat{\Phi}_{n} \hat{\Phi}_{m+1}-\hat{\Phi}_{n+1} \hat{\Phi}_{m}=(-\gamma)^{m}\left(\frac{\hat{A} \hat{B} A^{n-m}-\hat{B} \hat{A} B^{n-m}}{2 \sqrt{1+\gamma}}\right)$
2. $\hat{\Psi}_{n} \hat{\Psi}_{m+1}-\hat{\Psi}_{n+1} \hat{\Psi}_{m}=(-\gamma)^{m} \sqrt{1+\gamma}\left(\frac{\hat{B} \hat{A} B^{n-m}-\hat{A} \hat{B} A^{n-m}}{2}\right)$

Proof. 1. Applying identities (11), we get

$$
\begin{aligned}
\hat{\Phi}_{n} \hat{\Phi}_{m+1}-\hat{\Phi}_{n+1} \hat{\Phi}_{m} & =\left(\frac{\hat{A} A^{n}-\hat{B} B^{n}}{A-B}\right)\left(\frac{\hat{A} A^{m+1}-\hat{B} B^{m+1}}{A-B}\right) \\
& -\left(\frac{\hat{A} A^{n+1}-\hat{B} B^{n+1}}{A-B}\right)\left(\frac{\hat{A} A^{m}-\hat{B} B^{m}}{A-B}\right) \\
& =\frac{\hat{A}^{2} A^{n+m} A-\hat{A} \hat{B} A^{n} B^{m+1}-\hat{B} \hat{A} B^{n} A^{m+1}+\hat{B}^{2} B^{n+m} B}{(A-B)^{2}} \\
& -\left(\frac{\hat{A}^{2} A^{n+m} A-\hat{A} \hat{B} A^{n+1} B^{m}-\hat{B} \hat{A} B^{n+1} A^{m}+\hat{B}^{2} B^{n+m} B}{(A-B)^{2}}\right) \\
& =\frac{\hat{A} \hat{B} A^{n} B^{m}(A-B)-\hat{B} \hat{A} A^{m} B^{n}(A-B)}{(A-B)^{2}} \\
& =\frac{\hat{A} \hat{B} A^{n} B^{m}-\hat{B} \hat{A} A^{m} B^{n}}{A-B} \\
& =(-\gamma)^{m}\left(\frac{\hat{A} \hat{B} A^{n-m}-\hat{B} \hat{A} B^{n-m}}{A-B}\right)
\end{aligned}
$$

2. The proof of the second item is similar to the first proof.

Thus, the proof is completed.
Theorem 2.8. (The Catalan-like identity). Let $\hat{\Phi}_{n}$ and $\hat{\Psi}_{n}$ be the n-th the pseudoFibonacci and pseudo-Lucas quaternions, respectively. For $n \geq m \geq 0$, we have

1. $\hat{\Phi}_{n-m} \hat{\Phi}_{n+m}-\hat{\Phi}_{n}^{2}=(-\gamma)^{n-m}\left(\frac{\hat{A} \hat{B} B^{m}-\hat{B} \hat{A} A^{m}}{2 \sqrt{1+\gamma}}\right) \Phi_{m}$
2. $\hat{\Psi}_{n-m} \hat{\Psi}_{n+m}-\hat{\Psi}_{n}^{2}=(-\gamma)^{n-m}\left(\frac{\hat{B} \hat{A} A^{m}-\hat{A} \hat{B} B^{m}}{2}\right)\left(\frac{A^{m}-B^{m}}{2}\right)$

Proof. 1. Applying identities 11, we get

$$
\begin{aligned}
\hat{\Phi}_{n-m} \hat{\Phi}_{n+m}-\hat{\Phi}_{n}^{2} & =\left(\frac{\hat{A} A^{n-m}-\hat{B} B^{n-m}}{A-B}\right)\left(\frac{\hat{A} A^{n+m}-\hat{B} B^{n+m}}{A-B}\right) \\
& -\left(\frac{\hat{A} A^{n}-\hat{B} B^{n}}{A-B}\right)^{2} \\
& =\frac{\hat{A}^{2} A^{2 n}-\hat{A} \hat{B} A^{n-m} B^{n+m}-\hat{B} \hat{A} B^{n-m} A^{n+m}+\hat{B}^{2} B^{2 n}}{(A-B)^{2}} \\
& -\left(\frac{\hat{A}^{2} A^{2 n}-\hat{A} \hat{B} A^{n} B^{n}-\hat{B} \hat{A} B^{n} A^{n}+\hat{B}^{2} B^{2 n}}{(A-B)^{2}}\right) \\
& =\frac{(-\gamma)^{n-m}\left(\hat{A} \hat{B} B^{m}-\hat{B} \hat{A} A^{m}\right)\left(A^{m}-B^{m}\right)}{(A-B)^{2}} \\
& =(-\gamma)^{n-m}\left(\frac{\hat{A} \hat{B} B^{m}-\hat{B} \hat{A} A^{m}}{2 \sqrt{1+\gamma}}\right) \Phi_{m}
\end{aligned}
$$

2. The proof of the second item is similar to the first proof.

Thus, the proof is completed.
Theorem 2.9. (The Cassini-like identity). Let $\hat{\Phi}_{n}$ and $\hat{\Psi}_{n}$ be the $n-t h$ the pseudoFibonacci and pseudo-Lucas quaternions, respectively. For $n \geq 1$, we have

1. $\hat{\Phi}_{n-1} \hat{\Phi}_{n+1}-\hat{\Phi}_{n}^{2}=(-\gamma)^{n-1}\left(\frac{\hat{A} \hat{B} B-\hat{B} \hat{A} A}{2 \sqrt{1+\gamma}}\right)$
2. $\hat{\Psi}_{n-1} \hat{\Psi}_{n+1}-\hat{\Psi}_{n}^{2}=(-\gamma)^{n-1} \sqrt{1+\gamma}\left(\frac{\hat{B} \hat{A} A-\hat{A} \hat{B} B}{2}\right)$

Proof. If 1 is written instead of m in the Theorem 2.8 , the identities are proven.

References

[1] Ferns, H. H.: Pseudo-Fibonacci Numbers. Fibonacci Quarterly, 6 (6), 305 - 317, 1968.
[2] Hamilton, W. R.: Elements of quaternions. Longmans, Green, 8 Company, 1866.
[3] Horadam, A. F.: Quaternion recurrence relations. Ulam Quarterly, 2 (2), 23-33, 1993.
[4] Halici, S.: On Fibonacci quaternions. Advances in applied Clifford algebras, 22 (2), 321-327, 2012.
[5] Zhang, F.: Quaternions and matrices of quaternions. Linear algebra and its applications, 251, $21-57,1997$.
[6] Iyer, M. R.: Some results on Fibonacci quaternions. Fibonacci Quarterly, 7 (2), 201 - 210, 1969.
[7] Dişkaya, O., and Menken, H.: On the (s, t) - Padovan and (s, t)-Perrin quaternions. Journal of Advanced Mathematical Studie, 12 (2), 186 - 192, 2019.
[8] Gürses, N., and İşbilir, Z.: On the combined Jacobsthal-Padovan generalized quaternions. Advanced Studies: Euro-Tbilisi Mathematical Journal, 15 (2), 55-70, 2022.
[9] İşbilir, Z., and Gürses, N.: Padovan and Perrin generalized quaternions. Mathematical Methods in the Applied Sciences, 45 (18), 12060 - 12076, 2022.
[10] Cimen, C. B., and Ipek, A.: On pell quaternions and Pell-Lucas quaternions. Advances in Applied Clifford Algebras, 26, 39-51, 2016.
[11] Ipek, A.: On (p, q)-Fibonacci quaternions and their Binet formulas, generating functions and certain binomial sums. Advances in Applied Clifford Algebras, 27, 1343 - 1351, 2017.
[12] Deveci, Ö., and Shannon, A. G.: The quaternion-Pell sequence. Communications in Algebra, 46 (12), 5403 - 5409, 2018.
[13] Tasci, D.: On k-Jacobsthal and k-Jacobsthal-Lucas Quaternions. Journal of Science \& Arts, 17 (3), 2017.
[14] Özkan, E., and Uysal, M.: On quaternions with higher order Jacobsthal numbers components. Gazi University Journal of Science, 36 (1), 336-347, 2023.
[15] Eser, E., Kuloglu, B., and Özkan, E.: On the Mersenne and Mersenne-Lucas hybrinomial quaternions. Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science, 129-144, 2023.
[16] Yüce, S., and Aydın, F. T.: A new aspect of dual Fibonacci quaternions. Advances in applied Clifford algebras, 26, 873-884, 2016.
[17] Akyigit, M., Hüda Kösal, H., and Tosun, M.: Fibonacci generalized quaternions. Advances in Applied Clifford Algebras, 24, 631 - 641, 2014.
[18] Soykan, Y., Özmen, N., and Göcen, M.: On generalized Pentanacci quaternions. Tbilisi Mathematical Journal, 13 (4), 169 - 181, 2020.
[19] Soykan, Y., and Taşdemir, E.: On bicomplex generalized Tetranacci quaternions. Notes On Number Theory and Discrete Mathematics. 26 (3), 163-175, 2020.
[20] Özkoc, A., and Porsuk, A.: A note for the (p, q) - Fibonacci and Lucas Quaternion Polynomials. Konuralp journal of mathematics, 5 (2), 36-46, 2017.
[21] Irmak, N.: More identities for Fibonacci and Lucas quaternions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69 (1), 369-375, 2020.
[22] Polatli, E.: A generalization of Fibonacci and Lucas Quaternions. Advances in Applied Clifford Algebras, 26, 719-730, 2016.
[23] Tan, E., Yilmaz, S., and Sahin, M.: A note on bi-periodic Fibonacci and Lucas quaternions. Chaos, Solitons \& Fractals, 85, 138 - 142, 2016.
[24] Patel, B. K., and Ray, P. K.: On the properties of (p, q)-Fibonacci and (p, q)-Lucas quaternions. Mathematical Reports, 21 (71), 15 - 25, 2019.
[25] Cerda-Morales, G.: Identities for third order Jacobsthal quaternions. Advances in applied clifford algebras, 27 (2), 1043-1053, 2017.
[26] Aydın, F. T.: Pauli-Fibonacci quaternions. Notes on Number Theory and Discrete Mathematics, 27 (3), 184 - 193, 2021.
[27] Arslan, H.: Gaussian Pell and Gaussian Pell-Lucas Quaternions. Filomat, 35 (5), 1609-1617, 2014.

Department of Mathematics, Mersin University, Mersin, Turkey
Email address: orhandiskaya@mersin.edu.tr, hmenken@mersin.edu.tr

[^0]: 2010 Mathematics Subject Classification. 11B39.
 Key words and phrases. Fibonacci numbers, Lucas numbers, quaternions.
 Submitted October. 2023.

