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Abstract:

A New Genetic Algorithm (NGA) for solving the Multiple Choice Multidimensional
Knapsack Problem (MMKP) is presented in this paper. The MMKP can be applied to
solve a wide variety of real life problems i.e., in any area where tasks must be scheduled
or budgeted. This paper introduces NGA algorithm that hybridize the solution
construction mechanism of GA operators (hybrid selection operator, hybrid cross-over
operator and new hybrid mutation operator) for permutation encoding genetic algorithm.
In addition we present a strong initial population is created by the Maximizing Value
per Resources Consumption (MVRC) heuristic algorithm. The experimental results
show that the method is very efficient and competitive to solve the MMKP compared
with the better existing methods
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1. Introduction:

The Multiple Choice Multidimensional Knapsack Problem (MMKP) is a combinatorial
optimization problem and its one of the most complex members of the Knapsack Problem
(KP) family. Actually, the MMKP is the combine aspects of the Multiple Choice
Knapsack Problem MCKP and the Multidimensional Knapsack Problem MDKP. The
(MCKP) is one kind of KP where the picking criteria for items are restricted. In this
variant of KP there are one or more groups of items with the constraint that exactly one
item has to be picked from each group. The (MDKP) is another KP, where the resources
are multidimensional, i.e. there are multiple resource constraints for the knapsack.
The (MMKP) could be stated as follows: We are given m classes with each class i
containing ni items. The jth item of class i has profit pij . Each item has l dimensions of
weight, and the weight at dimension k is denoted as wijk. The knapsack has capacity ck on
each dimension k. The goal is to select one item in each class to maximize the sum of their
profits and to keep the total weight on each dimension no more than the corresponding
capacity. It is generally considered that the profits, weights and the knapsack capacities
take non-negative values, thus we will not explicitly state this constraint in the formulation.
Formally, MMKP could be expressed with an integer programming model
Maximize,
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xij{0,1} , i {1, …, m}  , j {1, …, ni}                   (4)

Equation (1) provides the profit of selecting an item from every class, a value to be maximized.
Equation (2) ensures the resource capacity of knapsack k is not exceeded while Equation (3)
ensures selecting a single item from each of the i classes. Equation (4) is the binary selection
requirement on decision variable xij such that xij = 1 if selected and xij = 0 if not selected.
Since the MMKP is a NP-hard problem, the computation time to reach the optimal solution
increases exponentially with the size of the problem [1]. There are two types of solution
methods: exact algorithms capable to produce the optimal solutions for some problem
instances within a reasonable computational time, and approximate procedures or heuristics
capable to produce “good” (near-optimal) solutions within small computational time.
Several heuristic algorithms have been proposed for MMKP. The first heuristic is
proposed by Moser et al. [2] based on Lagrange multiplier method. Then HEU is
proposed by Khan et al. [1, 3]. Akbar et al. [4] present two heuristic algorithms a
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modified version of HEU named M-HEU and Incremental Heuristic I-HEU. Later, Hifi
et al. proposed heuristic algorithms CPCCP, DerAlgo and MGLS in [5] and MRLS in
[6]. Another heuristic HMMKP, proposed by Hernandez et al. [7]. A convex hull based
method C-HEU was proposed by Akbar et al. [8]. Two algorithms based on the column
generation method have been proposed recently by Cherfi and Hifi [9]. Chantzara et al.
[10] presented the heuristic Maximizing Value per Resources Consumption (MVRC).
Shahriar et all [11] presented MP-HEU, a multiprocessor algorithm based on a M-HEU
heuristic. Hiremath [12] developed and examined three new greedy heuristic approaches
TYPE, CH1, and CH2. Different meta-heuristics have already been applied to solve the
MMKP like Tabu Search (TS) [12, 13], Simulated Annealing (SA) [14], Genetic
Algorithm (GA) [15] , Ant Colony Optimization (ACO) and (ACO &PR) [16].
These heuristics and meta-heuristics are able to obtain fairly good solutions for large
MMKP instances. In comparison, exact algorithms have not received a lot of attention.
Indeed, only very few papers have been proposed in the literature, these papers are
based on the branch-and-bound principle. [3, 17, 18].
MMKP has its application in many resource management problems, budgeting problem,
adaptive multimedia problem, logistic scheduling problem, network design problem,
warehouse container storage problem, resource allocation problem for satellites, airlift loading
problem, and any area where tasks must be scheduled or budgeted. For more detailed see [12].

2. Genetic Algorithms:

Genetic algorithms are an evolutionary technique that use crossover and mutation
operators to solve optimization problems using a survival of the fittest idea. They have
been used successfully in a variety of different NP-hard problems. The technique does
not ensure an optimal solution, however it usually gives good approximations in a
reasonable amount of time. This, therefore, would be a good algorithm to try on the
MMKP problem, one of the most famous NP-hard problems.
In 1975, Holland developed this idea in his book “Adaptation in natural and artificial
systems”. He described how to apply the principles of natural evolution to optimization
problems and built the first Genetic Algorithms. Holland’s theory has been further
developed and now Genetic Algorithms (GAs) stand up as a powerful tool for solving
search and optimization problems. Genetic algorithms are stochastic global search and
optimization methods that mimic the metaphor of natural biological evolution. During
the course of evolution, natural populations evolve according to the principle of natural
selection and ”survival of the fittest”. Individuals which are more successful in adapting
to their environment will have a better chance of surviving and reproducing, whilst
individual which are less fit will be eliminated [19-20].
A GA simulates these processes by taking an initial population of individuals and
applying genetic algorithm in each reproduction. In optimization terms each individual
in the population is encoded into a string or chromosome which represents a possible
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solution to a given problem. The fitness of an individual is evaluated with respect to a
given objective function. Highly fit individuals or solutions have opportunities to
reproduce by exchanging pieces of their genetic information, in a crossover procedure,
with other highly fit individuals. This produces new “offspring” solutions (i.e.,
children), which share some characteristics taken from both parents.
In general, a genetic algorithm has five basic components, as summarized by
Michalewicz [21] and the basic steps of a simple GA are shown in Figure 1. [22]
1. A genetic representation of solutions to the problem
2. A way to create an initial population of solutions
3. An evaluation function rating solutions in terms of their fitness
4. Genetic operators that alter the genetic composition of children during reproduction
5. Values for the parameters of genetic algorithms

Figure (1): Basic steps of a simple GA

A more comprehensive overview of GAs can be found in (S.N.Sivanandam, S.N.Deepa
(2008) [20], Mitsuo Gen, Runwei Cheng (1999) [21], Michalewicz, Z., (1996) [22],
Melanie Mitchell (1996) [23], Glover, F. and G. Kochenberger (2003) [24]).

3. Handling Constraints with Genetic Algorithms

A variety of constraint handling methods have been suggested by many researchers [25].
The most popular constraint handling method among users is penalty function methods
[26]. The idea behind penalty-based methods is to transform a constrained optimization
problem into an unconstrained one by adding (or subtracting) a certain value to/from the

Genetic Algorithm
{

Generate initial population Pt
Evaluate population Pt
While stopping criteria not satisfied Repeat
{

Select elements from Pt to copy into Pt+l
Crossover elements of Pt and put into Pt+l
Mutation elements of Pt and put into Pt+l
Evaluate new population Pt+l
Pt = Pt+l

}
}
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objective function based on the amount of constraint violation present in a certain solution.
In classical optimization, two kinds of penalty functions are considered: exterior and
interior. In the case of exterior methods, we start with an infeasible solution and from there
we move towards the feasible region. In the case of interior methods, the penalty term is
chosen such that its value will be small at points away from the constraint boundaries and
will tend to infinity as the constraint boundaries are approached. Then, if we start from a
feasible point, the subsequent points generated will always lie within the feasible region
since the constraint boundaries act as barriers during the optimization process.
There are several Methods proposed in GAs to handle constrained optimization
problems based on penalty functions (Death Penalty - Static Penalties - Dynamic
Penalties - Annealing Penalties - Adaptive Penalties - Segregated GA - Co-evolutionary
Penalties) [27, 28]. The basic approach in penalty functions is to define the fitness value of
an individual i by extending the domain of the objective function f(S) using two ways:
1. Fitn(S) = f(S) + Pen1(S).
2. Fitn(S) = f(S) × Pen2(S).
Where Pen1(S) and Pen2(S) represent a penalty for an infeasible individual. It is assumed
that if S is feasible then Pen1 = 0 and Pen2 = 1 (i.e. we do not penalize feasible individual).

4. A New Genetic Algorithm (NGA) for the MMKP

In this section we describe the NGA algorithm; this algorithm hybridize the solution
construction mechanism of GA operator (hybrid selection operator, hybrid cross-over
operator and new hybrid mutation operator) and use the Maximizing Value per
Resources Consumption (MVRC) heuristic algorithm to generate the initial population
of the GA. Our proposed algorithm consists of the following sections.

4.1. Representation and Fitness Function

The first step in designing a genetic algorithm for a particular problem is to devise a
suitable representation scheme (Encoding Process), i.e., a way to represent individuals in
the GA population [29]. This process can be performed using bits, numbers, trees, arrays,
lists or any other objects. The encoding depends mainly on solving the problem, There are
many types of representation the problem such that (Binary Encoding, Octal Encoding,
Hexadecimal Encoding, Permutation Encoding (Real Number Coding), Value Encoding,
Tree Encoding).
Hence, in our representation we encode the problem by the Permutation Encoding which every
chromosome is a string of numbers, which represents the index of items that select from each
group. This representation of an individual’s chromosome (solution) for the MMKP is illustrated
in Figure 2. Note that a string S = {S1,S2,….Sn} , Si  {1,2,…, ni }, i {1, …, m},  where ni

number of items in groupi and m number of group in the knapsack problem.
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i 1 2 3 4 5 …… m-1 m
S[i] 2 3 3 1 4 …… 5 2

Figure (2): Example of Permutation Encoding

This encoding ensures that only one item is selected from each group in the knapsack
problem. Thus, the whole of covering constraint set (3) of the MMKP formulation in
section 1 is implicitly fulfilled by this encoding.
The objective function is directly chosen as the fitness function. Since the objective
function is to be maximized, the larger the fitness function, the better the chromosome is.
The population might have infeasible individuals, so the fitness function of infeasible
individuals must be penalized in some way [30]. So that we use penalty value (Pen) that
discussed in section 3 to handle constraint set (2) of the MMKP formulation in section 1,
therefore a fitness function is defined as follows:
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4.2 Generation of the Initial Population:

While genetic algorithms are generally started with an initial population that is
generated randomly, some research has been conducted into using special techniques to
produce a higher quality initial population. Such an approach is designed to give the GA
a good start and speed up the evolutionary process [31].
In this section, instead of selecting the Initial Population according to randomly generated,
we present a strong initial population is created by the heuristic algorithm Maximizing
Value per Resources Consumption (MVRC). The initial population is produced,   a
heuristic is used to creating the initial population based on producing an initial solution of
(MVRC) algorithm [10] by selecting the item with the highest V-ARC of each group.
Considering item ij with value Pij , resources usage Wij = (wij1,..., wijk) , Aggregate
Resources Consumption (ARCij). We define the Value-per unit of V-ARCij = Pij / ARCij ,
where the Aggregate Resources Consumption (ARC) is:

 (6)
/

We generate the initial Population Size chromosomes by Algorithm1, which illustrated
in Figure 3.

Wij1 * C1 + ….. + Wijk* Ck

C1
2

+ ….. + Ck
2
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Figure (3): MVRC Algorithm to Generate the Initial Population

4.3 Parent Selection

The effect of selection is to return a probabilistically selected parent. Although this
selection procedure is stochastic, it does not imply GA employ a directionless search. The
chance of each parent being selected is in some way related to its fitness. Parent selection
is the task of assigning reproductive opportunities to each individual in the population.
Typically in a GA we need to generate two parents who will have (one or two) children.
In this section we present a Hybrid selection method.

4.3.1. Hybrid Selection Method

The hybrid selection method consists of the combination of tow type of selection
methods or more [32], here we use both Roulette wheel Selection Method (RWSM) and
Tournament Selection Method (TSM). We designed these types of hybrid selections,
50% of the population size adopts RSM procedure where as the RWSM procedure is
used in the remaining 50% of the population size. In other words, the offspring is
generated using these procedures, 50% using TSM and another 50% using RWSM.

4.3.2. Roulette Wheel Selection Method (RWSM)
Each individual in the population is assigned a space on the roulette wheel, which is
proportional to the individual relative fitness. Individuals with the largest portion on the
wheel have the greatest probability to be selected as parent generation for the next
generation.

Algorithm 1:
For Individual = 1 To PopulationSize         /* Generate Individuals */
       For Group = 1 To NGroup           /* Generate items in each Group , NGroup is

number of groups in knapsack */
       Do
             Ck1 = Int((NofItem) * Rnd) + 1
             Ck2 = Int((NofItem) * Rnd) + 1
        Loop Until Ck1 <> Ck2

If V-ARC(Group, Ck1) > V-ARC (Group, Ck2) Then CK = Ck1 Else CK = Ck2
        Items(Individual, Group) = CK          /* Select item with the highest V-ARC */

      Next Group
Next Individual
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4.3.3. Tournament Selection Method (TSM)

In tournament selection, a number Tour of individuals is chosen randomly from the
population and the best individual from this group is selected as a parent. This process is
repeated as often as individuals to choose. These selected parents produce uniform
offspring at random. The parameter for tournament selection is the tournament size
Tour. Tour takes values ranging from 2 – Nind (number of individuals in population).

4.4 Crossover Operator

Crossover is the main genetic operator and consists of swapping chromosome parts
between individuals. Cross-over is not performed on every pair of individuals; its
requency being controlled by a crossover probability (Pc). There are several crossover
methods available and here we use hybrid combination of one-point crossover method,
tow-point crossover method, and uniform crossover method [32, 33].

4.4.1 One-Point Crossover

The procedure of one-point crossover is to randomly generate a number (less than or equal to the
chromosome length) as the crossover position. Then, keep the bits before the number unchanged
and swap the bits after the crossover position between the two parents. See Figure 4.

7 3 7 6 1 3 7 3 7 5 2 2

1 7 4 5 2 2 1 7 4 6 1 3

Figure 4: One-point Crossover

4.4.2 Tow-Point Crossover

The procedure of two-point crossover is similar to that of one-point crossover except
that we must select two positions and only the bits between the two positions are
swapped. This crossover method can preserve the first and the last parts of a
chromosome and just swap the middle part. See Figure 5.

7 3 7 6 1 3 7 3 4 5 1 3

1 7 4 5 2 2 1 7 7 6 2 2

Figure 5: Tow-point Crossover
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4.4.2 Uniform Crossover

The procedure of uniform crossover: each gene of the first parent has a 0.5 probability
of swapping with the corresponding gene of the second parent. See Figure 6.

7 3 7 6 1 3 7 7 4 6 2 3

1 7 4 5 2 2 1 3 7 5 1 2
Random Number (0.2, 0.7, 0.9, 0.4, 0.6, 0.1)

Figure 6: Uniform Crossover

4.5 Mutation Operator

After crossover, the strings are subjected to mutation. Mutation helps escape from local
minima’s trap and maintains diversity in the population. It also keeps the gene pool well
stocked, and thus ensuring ergodicity. Mutation is not performed on each individual; its
requency being controlled by a mutation probability (Pm). There are several mutation
methods available and here we use hybrid combination of insert Mutation method,
Inverse Mutation method, Swap mutation method and Reversing Mutation method.

4.5.1. Swap Mutation

Two random positions of the string are chosen and the bits corresponding to those
positions are interchanged. This is shown in Figure 7.

1 2 3 4 5 6 1 5 3 4 2 6

Figure 7: Swap mutation

4.5.2. Reversing Mutation

A random position is chosen and the bits next to that position are reversed and child
chromosome is produced. This is shown in Figure 8.

1 2 3 4 5 6 1 2 6 5 4 3

Figure 7: Reversing mutation
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4.5.3. Insert Mutation

Two random positions of the string are chosen, and then move the second to follow the
first and shifting the rest to accommodate. This is shown in Figure 9.

1 2 3 4 5 6 1 2 5 3 4 6

Figure 9: Insert mutation

4.5.4. Inversion Mutation

Two random positions of the string are chosen, and then invert the substring between
them. This is shown in Figure 10.

1 2 3 4 5 6 1 5 4 3 2 6

Figure 10:  Inversion mutation

F. Djannaty and S. Doostdar [31] present A novel mutation operator is used which is a
kind of variable mutation rate. the following mutation rate was:
Mutation rate = (0.06 * (Iter / PopSize) 10 ) + 0.01  (7)
Where Iter denotes the current iteration number and PopSize is the number of
individuals in the initial population.

4.6 Replacement Techniques.

Once the new offspring solutions are created using crossover and mutation, we need to
introduce them into the parental population. There are many ways we can approach this.
Bear in mind that the parent chromosomes have already been selected according to their
fitness, so we are hoping that the children (which includes parents which did not undergo
crossover) are among the fittest in the population and so we would hope that the population
will gradually, on average, increase its fitness. Some of the most common replacement
techniques are outlined below.

4.6.1 Delete-All Technique

This technique deletes all the members of the current population and replaces them with the
same number of chromosomes that have just been created. This is probably the most common
technique and will be the technique of choice for most people due to its relative ease of
implementation. It is also parameter-free, which is not the case for some other methods.
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4.6.2 Steady-State Technique.

This technique deletes n old members and replaces them with n new members. The number
to delete and replace, n, at any one time is a parameter to this deletion technique. Another
consideration for this technique is deciding which members to delete from the current
population. Do you delete the worst individuals, pick them at random or delete the chromos
omes that you used as parents? Again, this is a parameter to this technique.

4.6.3 Steady-State-No-Duplicates Technique.

This is the same as the steady-state technique but the algorithm checks that no duplicate
chromosomes are added to the population. This adds to the computational overhead but
can mean that more of the search space is explored.
Here we use the steady-state-no-duplicates technique to replace the population with
keep 50% best individual to next generation

4.7 Stopping Criterion

There are several Stopping Criterion methods available (Maximum generations, Elapsed
time, No change in fitness,…. ) and here we use Maximum generations to stop. i.e If the
algorithm is executed to the maximal number of generations MAXGEN, then stop. The
best chromosome found in the last population is then taken as the approximate global
optimal solution. Here we use (No change in fitness) to stop the program

4.8. Algorithmic Outline

The outline of the proposed algorithm NGA for solving MMKP problem is shown in
Algorithm 3. See Figure 11

5. Computational Results

In this section, we present computational results of our proposed algorithm, which was
coded in the visual basic and executed on a computer P4 Intel Core 2 Duo E7300 @ 2.66
GHz CPU Speed and 3GB RAM. To evaluate validity of our proposed algorithm for the
MMKP problem, the performance of our algorithms was tested on benchmark problems.
The benchmark problems are thirteen test problems labeled I01 to I13 and generated by
Khan et al. [1]. Benchmark problems can be downloaded from the OR Library at
http://www.laria.u-picardie.fr/hifi/OR-Benchmark/MMKP/ [34].
Many parameters exist in the NGA algorithm, and the values of these affect directly or indirectly
the final solution quality. The Initial parameters setting for the NGA are shown in Table 1.

http://www.laria.u-picardie.fr/hifi/OR-Benchmark/MMKP/
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Figure 11:  The outline of the proposed algorithm NGA for solving MMKP

Table (1): Initial parameter setting for the NGA

No Parameter / Strategy Initial Setting
1 Number of generation 2000

2 Population Size
The population size varied for all 13 problem instances.
(100-1000)

3 Initiation Population Initial population is created by (MVRC).

4 Selection Type
Hybrid combination. (50% using RWSM and 50% using
TSM)

5 Crossover Type
Hybrid combination (one-point crossover, tow-point crossover,
and uniform crossover) with probability 1/3 for each.

6 Crossover Probability 0.9

7 Mutation Type
Hybrid combination (insert mutation, inverse mutation, swap
mutation and reversing mutation) withprobability 0.25 for each.

8 Mutation Probability Mutation probability = (0.06 * (Iter / PopSize) 10 ) + 0.01

9 Replacement Strategy
Steady-state-no-duplicates technique with keep 50%
best individual to next generation

10 Stopping Criteria No improvement for 100 generations
11 Penalty weight 10

Algorithm 3. A NGA for the MMKP
0: Data. Choose the Initial parameters setting for the NGA.
1: Set Gen = 1;  /* Iteration counter */
2: Generate initialize population by Algorithm 1
3: Evaluate P(Gen) = { fitn(S1), . . . , fitn(Sn)}; /* Use penalty function */

4: Find S*  P(Gen) s.t f (S*)  f (S),  S P(Gen) and S* is feasible
5: While (gen < MAXGEN ) /* MAXGEN is Maximum number of generations */
6: Select {P1; P2} =  P(Gen);  /* = Hybrid RWSM and TSM */
7: Crossover C = c (P1; P2);  /* c = Hybrid one-point, tow-point, and uniform crossover */
8: Mutate C ← m; /* m = Hybrid insert, inverse, swap and reversing Mutation */
9: Evaluate f (c) ;  /* Use penalty function */
10: Find S`  P(Gen) s.t f (S`)  f (S),  S P(Gen) and S` is feasible
11: Replace S`← C; /* Steady-state-no-duplicates and Keep 50% best individuals to next generation */
12: if f (C)  f (S*) then S* ← C; Endif /* update best solution S* found */
13: Gen = Gen + 1;
14: End While
15: Return S*, f (S*).
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To save a lot of memory space and reduce runtime, first, We performed run for each
problem with 10 sample population size (100-200-300-400-500-600-700-800-1000) to
determine what the suitable population size for each problem is.
Second, We performed 10 independent runs for each benchmark problem. The statistical
results of NGA are summarized in Table 2.
We compare NGA with a number of the better methods available for the (MMKP), such
as MOSER algorithm [2], HEU algorithm [1], CPCCP and DerAlgo algorithms [5],
MRLS algorithm [6], greedy heuristic approaches (CH1, and CH2) [12], meta-heuristic
approaches (FLTS, FanTabu, and CCFT) [12], ACO and ACO&PR [16]. The results of
comparison are described in Table 3.
Figure 12 shows the Comparison of NGA with other Heuristics based on Number of
Problems Solved on the MMKP Test Sets and Figure 13 summarizes the average
relative percentage error of NGA and other Heuristics for the MMKP Test Sets
The results show that the proposed NGA has a higher solution quality and lower relative
percentage error in comparison to the other heuristics. NGA reaches the optimal solution
more often and provides better performance than other heuristics.

6. Conclusions:

In this paper, we propose an NGA algorithm, this algorithm hybridize the solution
construction mechanism of GA operator (hybrid selection operator, hybrid cross-over
operator and new hybrid mutation operator) and use the heuristic algorithm (MVRC) to
generate the initial population of the GA. The experimental results show that the
proposed NGA has a higher solution quality and lower relative percentage error in
comparison to the other heuristics. NGA reaches the optimal solution more often and
provides better performance than other heuristics.
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Table (2): Solution Quality for NGA on MMKP Problems

P
ro

bl
em

F
ile

P
ro

bl
em

si
ze

(m
,n

,l)

po
pu

la
ti

on
si

ze

N
G

A
So

lu
ti

on

M
ea

n
F

it
ne

ss

St
an

de
r

D
ev

ia
ti

on

O
pt

im
al

it
y

P
er

ce
nt

R
el

at
iv

e
E

rr
or

C
P

U
 T

im
e

G
en

er
at

io
n

N
um

be
r

M
em

or
y

U
sa

ge

I01 (5,5,5) 100 173 159.2 13.9 100% 0% 0.63 21 12012
I02 (10,5,5) 100 364 339.7 24.35 100% 0% 1.015 79 12020
I03 (15,10,10) 600 1602 1563 31.99 100% 0% 94 1104 12104
I04 (20,10,10) 500 3591 3541.5 33.55 99.8% 0.2% 48 646 12428
I05 (25,10,10) 100 3905.7 3797.4 108.8 100% 0% 0.594 50 12040
I06 (30,10,10) 100 4799.3 4665.2 134.6 100% 0% 1.75 125 12096
I07 (100,10,10) 800 24443 24318.1 114.9 99.4% 0.6% 478 1128 16076
I08 (150,10,10) 800 36605 36408.2 192.9 99.3% 0.7% 604 960 16240
I09 (200,10,10) 900 48747 48473.5 255.6 99.1% 0.9% 991 1080 18204
I10 (250,10,10) 1000 60787 60173.9 613.6 98.9% 1.1% 1534 1183 19168
I11 (300,10,10) 1000 73210 72685.9 521.4 99.2% 0.8% 2873 1771 19204
I12 (350,10,10) 1000 85216 84758.3 454.95 99 % 1.0% 3108 1653 21664
I13 (400,10,10) 1000 97500 96680 820.68 99 % 1.2% 3996 1855 21708

Memory Usage in KB , CPU Time in Second
Optimality Percent = (NGA Solution / Exact Solution) * 100
Relative Error = ((Exact Solution - NGA Solution) / Exact Solution) * 100
(m,n,l) represents (groups, items, resources) in knapsack problems
Exact Solution according to ( Hiremath [12])

Table (3): Compare NGA with other Algorithms

Problem
File

Exact
Solution

MOSER HEU DerAlgo CPCCP CH1 CH2 MRLS FLTS FanTabu CCFT ACO ACO
&PR

NGA

I01 173 151 154 159 159 167 173 161 158 169 173 169 173 173
I02 364 291 354 312 312 332 364 354 351 354 352 353 364 364
I03 1602 1464 1518 1432 1407 1509 1572 1496 1445 1557 1518 1521 1556 1602
I04 3597 3375 3297 3322 3322 3369 3461 3435 3350 3473 3419 3383.2 3452 3590
I05 3905.7 3905.7 3894.5 3905.7 3889.9 3905 3905 3847.3 3905.7 3905.7 3905.7 3800.1 3905.7 3905.7
I06 4799.3 4115.2 4788.2 4723.1 4723.1 4689 4799 4680.6 4793.2 4799.3 4799.3 4723.4 4799.3 4799.3
I07 24587 23556 - 23480 23237 23529 23711 23828 23547 23691 23739 23600 23938.2 24443
I08 36877 35375 34338 35525 35403 35691 35816 35685 35487 35684 35698 35405 35997 36605
I09 49167 47205 - 47471 47154 47687 47647 47574 47107 47202 47491 47225 47928 48747
I10 61437 58648 - 59039 58990 59703 59351 59361 59108 58964 59549 58824.3 59846 60787
I11 73773 - - 71018 70685 71761 71405 71565 70549 70555 71651 - - 73210
I12 86071 - - 83154 82754 83701 83174 83314 82114 81833 83358 - - 85216
I13 98429 - - 94628 84465 95432 94934 95076 91551 94168 94874 - - 97500
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