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Abstract:

The paper Present a new receiver for detection of covert M.sequence regardless the chip
code sequences and the type of modulation. A Higher Order Statistics (HOS) based on
the Kurtosis of the received signal is used to classify the type of the modulation, and so
decide the modulator. The Triple Correlations Function (TCF) of M. sequence of the
demodulated which differs from sequence to another according to the feedback
connection is used to decide the generation function g (x) from the peak position of this
M-sequence. This paper is classified into four sections the first section, we introduce
some property of modulation and how the (TCF) of the M.sequence generated.
Secondly, the digital modulation classification is classified and tabulated using
theoretical cumulants Statistics C40, C42. The Triple Correlation function (TCF) of
M.sequence is showed in section three. Computer simulation of determination of
feedback polynomial y(x) at section four. Finally, the conclusion is presented in at the
rest of this paper.
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1. Introduction:

There has been separate work in the problems of modulation classification [1,2] and
detection of covert M-seq. In [3,4 ] a method for detecting the M-seq. and finding its
code generating function g (x) was presented[5]. Its was shown that even if we receive a
truncated copy of the signal we can still (to a limit) be able to find the feedback
polynomial. The method presented in the paper assumed that the kind of modulation is
known and assumed BPSK.
In [6,7] a simple method based on elementary fourth-order cumulants, is proposed for
the classification of digital modulation schemes. These statistics are natural in this
setting as they characterize the shape of the distribution of the noisy baseband I and Q
samples. It is shown that cumulant-based classification is particularly effective when
used in a hierarchical scheme, enabling separation into subclasses at low signal-to-noise
ratio with small sample size.
In our paper presents receiver for  detecting M-seq. if the chip code sequences are
unavailable and the type of modulation is unknown, A simple method based on the
kurtosis of the received
signal is used to classify the type of demodulated signal. Then the Triple correlation
function   is used to decide the generating function g (x)[ 5].

2. Digital modulation classification:

This method uses the zeroth lags of the 4th order cumulated as follows:
For a complex-valued stationary random process y(n), second-order moments can be
defined in two different ways depending on placement of conjugation.

And (1)

Similarly, fourth-order moments and cumulants can be written in three ways. Thus,
fourth-order cumulants can be defined as

C40=cum(y(n), y(n), y(n), y(n))

C41= cum(y(n), y(n), y(n), y*(n))

C41= cum(y(n), y(n), y*(n), y*(n)) (2)
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The statistics in (1) and (2) are the zeroth lags of the correlations and fourth-order
cumulants of y(n). For zero-mean r.v.’s , w,x,y, and z, the fourth-order cumulant can be
written as
cum(w,x,y,z)=E(wxyz) – E(wx)E(yz) – E(wy)E(xz) – E(wz)E(xy) (3)
We can use (2) to express C40, C41 , or C42 in terms of the fourth-and second-order
moments of y(n), with the appropriate conjugations. See [7] for further details.

(4)

(5)
Where the superscript ^ denotes a sample average. This leads to the following estimates:

(6)

(7)

(8)

We will assume, without loss of generality (wlog), that the constellations are normalized
to have unit energy, implying that C21 =1 . In practice, we estimate the normalized
cumulants

(9)

This self-normalizes the cumulant estimates and removes an scale problems in the data.
The complexity of (8) and (9) is of order N , requiring only about  2N  and  4N
complex   multiples
for          and         , respectively. In the case of noisy data,         in (9)   must be replaced
by                      , where          is still given by (2) and                 is an estimate of the
variance of the additive noise g(n); an estimate of             is usually available in practice.
Theoretical values of the 4th order Cumulants for various signal constellation of
integers are computed for noise free signals, these value are used for the detection
procedure [6].
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Table 1:
Theoretical Cumulant Statistics C40 and C42 For Various Constellation Types, And
Variance of Their Sample Estimates

Constellation C40 C42 N var (Ĉ40)
N var
(Ĉ42)

N var1
(Ĉ42)

BPSK -2.0000 -2.0000 0.00 0.00 36.00
PAM(4) -1.3600 -1.3600 2.56 2.56 34.72
PAM(8) -1.2381 -1.2381 4.82 4.82 32.27
PAM(16) -1. 2094 -1.2094 5.52 5.52 31.67
PAM(32) -1.2024 -1.2024 5.70 5.70 31.52
PAM(64) -1.2006 -1.2006 5.74 5.74 31.49
PAM(∞) -1.2000 -1.2000 5.76 5.76 31.47
PSK(4) 1.0000 -1.0000 0.00 0.00 12.00

PSK(>4) 0.0000 -1.0000 1.00 0.00 12.00
V32 0.1900 -0.6900 2.86 1.18 9.70
V29 0.5185 -0.5816 3.51 1.77 8.75

QAM(∞) -0.6000 -0.6000 3.91 2.31 8.59
QAM(32,32) -0.6012 -0.6012 3.89 2.29 8.61
QAM(16,16) -0.6047 -0.6047 3.83 2.24 8.65
QAM(8,8) -0.6191 -0.6191 3.58 2.06 8.82
QAM(4,4) -0.6800 -0.6800 2.66 1.38 9.54

V29c -1.2000 -0.6400 1.85 1.44 9.12
8AMPM -0.5600 -0.7200 2.66 1.38 9.54

The constellations in Table 1 naturally divide into the following four subclasses: binary
PSK (BPSK) (binary real-valued), PAM (real-valued), PSK (constant-modulus), and
QAM-V29-V32 (general complex-valued). We therefore propose a hierarchical
classification structure which is shown in Fig. 1. We use C42 first to decide whether the
constellation is real-valued (BPSK/PAM), circular (PSK), or rectangular (QAM). Then,
if the unknown phase rotation can be assumed to be small, C40 may be used to help
differentiate within each subclass. If the unknown phase rotation cannot be ignored,
then must be used rather than C40. As we see from Table 1, when using, there is a
potential performance loss in some cases, e.g., V29 versus QAM (8,8). If the initial
decision is PSK, we use to decide whether it is PSK (4) [QAM (2, 2)] or PSK (>4).
Similarly, if the initial decision is QAM, we use C40 or to decide whether it is V32,
V29, QAM (8, 8), QAM (4, 4), or V29c. If the unknown phase rotation can be assumed
to be small, we can distinguish between PSK (2), PSK (4), and their rotated versions.
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Note that the value of C40 for QAM (8, 8) and QAM (4, 4) are close to one another;
may be a better statistic. The hierarchical approach attempts to first classify the data
using “macro” characteristics as shown in figure(1); it then refines the membership
using “micro” characteristics, in the spirit of which considered the three-class
BPSK/quaternary PSK (QPSK)/offset QPSK problem.

Figure 1. Hierarchical classification scheme based on HOS.

Form the table it is obvious that the variances of 40ĉ are approximately the same,
justifying the use of threshold detector.
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3-Triple correlation of M-sequences:

Previous work [3,4] showed that each feedback connection [m-sequence] have a certain
peak locations, which differ from sequence to another. This property was used to detect
covert signals through finding the locations of the peaks.
If we have an m-sequence, u = {u (1), u (2), u (L)}, u (i)      0 , 1
We can define the vector, v = {v (1), v (2), v (L)},
such that v(i) =1 If u(i) =0     and v(i) = 0  if u(i) = 1.
The Triple correlation of complete m-sequences is evaluated as follows,

(10)

The shift and add property states that for certain delays   (             ),

It follows that for all i ,              . For these delays the triple correlation has the

following value,

(11)

For other (p,q) pairs,  vp* vq= Vs where Vs closure, in such case

                                                                                                          (12)

The location of the peaks differs from a feedback connection to another  as shown in
figure(2) and figure(3) for connection-1[ 1  1  1  1  0 1]  and connection-2[ 1 0 1 1 1 1 ]
respectively, and so they represent a deterministic feature for each sequence. Figures (2,3)
show also the  mesh and peaks locations for each  m-sequences without noise and have the
complete length used in our analysis.

Our propose at first find the kind of the modulation ,in this case ,the kind of modulation is
BPSK (m-sequence) as shown in figure (2). The second we calculate the triple correlation
function (TCF), C (p, q), using equations (8)and(9) of the received signal which figured  in
figures (3,4) . The final step used to find the determination of feedback polynomial g(x) from
the triple correlation  peak  location using computer simulation.
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4- Determination of feedback polynomial g(x) from Triple Correlation Peak Location:

In this section we will show a reconstruction method, which is, in general much easier than
aforementioned direct-decomposition approach [4].
Let (r1,sl), (r2,s2,.….,L-1,sL-1) be all the peak positions of the triple  correlation of some
m-sequence. From the number L-1 of peaks as shown in figure (4), the length or
equivalently the degree of the feedback connection of the m-sequence can be recovered by
the equation L= 2n- 1 , m- sequences are L-periodic. In particular, L must be known to
evaluate the TCF C (p , q ).
However, there is evidence that sufficiently long partial m- sequence produce good
estimation of peak locations.
L may me derived from the peak locations (i,j), (2j,2j),... ,( 2k  j,r)  for i <j ,  r < 2k  j
mode(L) , or L =  2k  .

For an example the pairs (1,20) , (2,9)  would produce  L as  L= 2 x 20 - 9 = 40 - 9 = 31.
Every peak position (ri,si) corresponds to a polynomial satisfying

(13)

Assume that f(x) is the feedback connection of the m-sequence, then f (α )=0 and  f(x)
divides  gcd  for all possible {1,2,1}, where gcd [a(x) ,b(x)]
is the  popular   greatest- common-divisor, which has a smaller degree and can which has
a smaller degree and can be easily calculated.  Because of the identity gcd[a(x),b(x), c(x)]=
gcd{[a(x),b(x)], c(x)}, the gcd

can be easily determined in recursion. If we are lucky to find
 h(x) = gcd

of degree n, then this polynomial  h(x) is just the wanted feedback connection of the m-
sequence. If, unfortunately, every possible gcd has its degree larger
than n, we now choose, among such polynomials, one of the smallest degree [5] to this
polynomial of such smaller degree.
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5- Computer Simulation:

 In order to show the superiority of our new approach, we consider an example. Let { b(i),
0     i      30} be the m-sequence with feedback f(x)=1+x+ x2+ x3+ x5   .  After running
the program of m-sequence  the output gives the  peak  positions  of   this  m-sequence
are    (1,12),(12,1), (2,24), (24,2), (3,8), (8,3), (4,17), (17,4), (5,28), (28,5), (6,16), (16,6),
(7,9), (9,7), (10,25), (25,10), (11,30), (30,11), (13,27), (27,13) ,(14,18), (18,14), (15,21),
(21,15), (19,20), (20,19), (22,29), (29,22), (23,26), (26,23) as shown in figure (6). Now we
will use the new approach to reconstruct the feedback connection f(x) based only on these
30 peak positions.
At first from the number 30, we get the length L-1 = 30, we get L=31 of the m-sequence,
or equivalently deg f(x) = 5. On the other hand, among the 30 polynomials, 0     i     30,
corresponding to the peak positions {(ri,si): 0   i     30}, the polynomials a(x) = 1+ x3+ x8

and  b(x) = 1+ x7 + x9 , corresponding to the peak positions (3,8) and (7,9) respectively, are
of the smallest degree degrees.

                                                                      (14)

It is lucky that gcd [a(x), b(x)]= 1 +x+ x2+ x3+ x5 is of degree 5, the expected degree of
f(x), thus this polynomial is exactly   the feedback connection of the given m-sequence. By
the same way, if another peak location is known the primitive g(x) can be solved.
Moreover, as previously explained, it is possible to derive the actual polynomial generator
function from the positions (p,q) of a very limited   number of peaks.

Conclusion:

We have shown that Higher Order Statistics are useful for classification and detection of
digitally modulated signals. They are practically effective when use in hierarchically
scheme, allowing broad classification at low SNR. Also we have shown that Triple
correlation function in generally much easier method to find the original feedback
polynomial g(x).
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Figure(2-a) BFSK signal (m-sequence 1 f(x)=1+x+x2+x3+x5)
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Figure(2-b) BFSK signal (m-sequence 2 f(x)=1+x2+ x3+ x4+ x5 )
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Figure(3-a) Mesh of Tripe correlation
function
w.r.t. (m-sequence 1 f(x)=1+x+x2+x3+x5)
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Figure(3-b) Mesh of Tripe correlation
function
w.r.t. (m-sequence 1 f(x)=1+x+x2+x3+x5)
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Figure(4-a) Mesh of Tripe correlation
function
w.r.t. (m-seq. 2 f(x)=1+x+x2+x3+x4+x5)
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function
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