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Abstract: Smartphones are mobile devices that can connect to the Internet through various means such 

as Wi-Fi, cellular data networks (3G, 4G, 5G), or even through tethering to another device. Once 

connected to the Internet, smartphones can access a wide range of online services and applications, 

including web browsing, social media, email, streaming videos, online gaming, and much more. Malware 

attacks have significantly increased as a result of data movement. Malware causes unexpected 

smartphone behavior, including changing phone bill charges, intrusive advertisements, confusing 

messages being sent to contacts, unreliable performance, the appearance of new apps, unusual data use, 

and a noticeable drop in battery life. But smartphone consumers are still vulnerable to malware attacks. 

To solve this problem, we created a Malware detection system. Malicious Android Apps are categorized 

using static analysis through the APK’s metadata file. “Drebin” dataset primarily uses the Android 

manifest file as one of the key features for Android malware detection. Additionally, we investigated 

algorithms for static analysis, including adaboost, ANN, decision trees, extra trees, K-nearest neighbors, 

lasso regression, logistic regression, MLP, naïve bayes, random forests, ride regression, support vector 

machines and XGB. We employ “Drebin" dataset with different feature extractors to reduce dataset 

dimensionality. We use TF-IDF and word2vec feature extractor. The experimental results show that 

TF_IDF performs better on "Drebin" dataset. 
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1. Introduction  

 

Google created the Android operating system for mobile devices [1]. It is most widely used in the world 

mobile operating system and is used on millions of devices, including smartphones, tablets, smart TVs, 

and other internet-enabled devices. Android is designed to be open source, which means that it is freely 

available for developers to use and modify. Android is also highly customizable and allowing users to 
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change the look and feel of their device. One of the key features of Android is the Google Play Store, 

which is the official Android application store. The Play Store offers a vast selection of apps, games, 

movies, music, and books that users can download and install on their devices. Other notable features of 

Android include a built-in voice assistant called Google Assistant, support for multiple user profiles, and 

a variety of security features, including biometric authentication and regular security updates. 

Additionally, a variety of communication methods are supported by Android, including Wi-Fi, Bluetooth, 

NFC, and mobile data  [1]. Android malware refers to any malicious software that targets Android devices. 

Malware can take many forms, and it can be distributed through various channels, including malicious 

apps, email attachments, phishing websites, and even SMS messages. Once installed on an Android 

device, malware can cause a range of problems, such as stealing sensitive information, showing intrusive 

advertisements, and seizing the device, or encrypting files and demanding a ransom for their release [2]. 

In this article, we investigated machine learning classifiers on “Drebin” dataset like including adaboost, 

ANN, decision trees, extra trees, K-nearest neighbors, lasso regression, logistic regression, MLP, naïve 

bayes, random forests, ride regression, support vector machines and XGB. We use two feature extractors 
Word2Vec and TF-IDF. The result shows that TF-IDF gives better accuracy. 

 

The rest of the paper is organized as follows. Section 2, the background and related works are covered. 

Section 3 summarizes Android Malware Types and Analysis, Section 4 illustrates methodologies. 

Experiments are presented in Section 5 and Section 6 presents the paper stating the conclusion and future 

works.  

 

2. Background and Related Works 

 

In [3], DroidAPIMiner was one of the first studies to integrate APIs with package level and APIs 

information parameters. K-NN, linear SVM, and DT algorithms such as ID3, C4.5 were evaluated on a 

dataset comprising 20,000 and 3,987 goodware and malware apps, respectively. While K-NN achieved 

up to 99% accuracy, other classifiers only achieved 96% accuracy. 

In [4], Using a dataset of 621 goodware and 175 malicious apps, authors investigated the efficacy of 

popular classifiers. Results in this instance showed that combining permissions and APIs can increase 

accuracy to a level of roughly 90.3%. 

In [5], the authors showed how a dataset with 1,846 legitimate apps and 5,560 malicious ones could be 

used to assess a Bayesian Network's (BN) efficacy. The results showed a True Positive Rate (TPR) of up 

to 95%. 

In [6], the accuracy of different Machine Learning (ML) classifiers, including Extra Randomized Tree 

(ERT), K-NN, SVM, and others. By splitting the data into equal portions for malware and goodware, 

classifiers were assessed. The Drebin dataset contains 11,120 apps, and the authors use a wide range of 

features, including permissions, API calls, and additional ones. 

In [7], using a dataset comprising 1,000 malicious apps and 4,000 legitimate apps, the authors tested the 

Deep Belief Network (DBN). They found that DBN can achieve up to 93% F-Measure and performs 

better than conventional ML classifiers. An ensemble method was developed by combining the output of 

multiple popular classifiers to assess whether an app is malicious or not. Results for a dataset with 1,246 

malware apps and 445 goodware apps were published. The dataset showed up to 99% performance 

accuracy. An ensemble method was used to combine the output of multiple popular classifiers to 

determine whether an app is malicious or not. Results for a data set with 1,246 malware apps and 445 

goodware apps were published, and they showed up to 99% performance accuracy. 
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In [8], In order to illustrate the effectiveness of a Bayesian Network (BN), the authors used a dataset that 

included 5,560 malware apps and 1,846 goodware apps. The accuracy achieved by the authors after 

combining multiple features was up to 99.7%. 

In [9], the authors fed suspicious API calls, intents, permissions, system commands, and other malicious 

actions (like IMEI access) into ML classifiers. Using a dataset of 11,187 legitimate software and 18,677 

malicious programs, the authors tested a number of classifiers (SVM, DT, RF, and so forth). An F1-score 

with a maximum of 96% was used to evaluate the algorithms' efficacy. A dataset consisting of commands, 

permissions, and APIs was utilized by the authors in [10], who also used the same approach. This method 

was evaluated with up to 95% accuracy using a dataset of 2,000 apps and a Bayesian classification system. 

A recent study [11] focuses on the factors that influence how well Machine Learning (ML) classifications 

are made. The authors use a variety of feature selection techniques, including BI-Normal Separation and 

Mutual Information, in addition to SVM. According to the findings, BI-Normal Separation selects the 

best characteristics to achieve accuracy levels of up to 99.6%. 

In [12], with an emphasis on Naive Bayes (NB) classifier optimizations, the authors present a multimodal 

malware detection approach for Android IoT devices that makes use of a number of features. The results 

show that accuracy with this approach can be as high as 98%. 

In [13], the authors evaluated the efficacy of SVM, ANN, and random forest (RF) and integrated APIs 

with permissions. A dataset comprising 1,260 malicious and 5,000 goodware applications was utilized by 

them. Up to 96% accuracy was achieved in evaluating the authors' approach. 

In [14], while there are differences in the features taken into account when classifying an application as 

malware, most approaches center on the efficacy of popular machine learning (ML) classifiers like K-

Nearest Neighbour (K-NN), Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT), 

and so forth. The Drebin data set, which comprises 5,560 malicious apps and 123,453 goodware apps, 

serves as the basis for the analysis. Elements from the Drebin dataset are included in the manifest file. 

The Chi-square Test, Random Forest, Bernoulli Naive Bayes, L1 and L2 regularization, neural network, 

and Support Vector Machine were some of the algorithms that were employed. 

In [15], the authors examined how quickly malware classifiers expire and how concept drift affects 

malware classifiers for malware samples that are specific to Android. These employed two classifiers 

(Adaptive Random Forest and Stochastic Gradient Descent classifier), two representations (Word2Vec 

and TF-IDF), four drift detectors, and two representations (Word2Vec and TF-IDF) to examine 480 K 

sample Android apps from two datasets (DREBIN and AndroZoo) gathered over a nine-year period 

(2009-2018). Random Forest yields the best results with an accuracy rate of 99.23%. 

In [16], the decision trees, naive bayes, random forests, K-nearest neighbors, XGB, MLP, support vector 

machines, logistic regression, adaboost, lasso regression, ride regression, artificial neural networks, and 

additional trees were among the static analysis techniques that the authors investigated. They used the 

small and large "Drebin" datasets. Extra trees offer the best overall accuracy with a large dataset, 99.48%, 

while Multi-layer perceptron (MLP) offers the best overall accuracy with a small dataset, but it has the 

longest execution time (33.4 seconds).   

 

3. Android Malware Types and Analysis 

 

In this section, we present the most common android malware types and android malware analysis. 

 

3.1 Android Malware Types  
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Android malware refers to malicious software specifically designed to target devices running the Android 

operating system. As with other types of malware, Android malware aims to exploit vulnerabilities, steal 

information, gain unauthorized access, or cause harm to Android devices. Here are some common types 

of Android malware [17]:  

Trojans: Once they are set up, trojans can carry out a number of nefarious tasks, such as stealing personal 

data, sending costly text messages, or allowing unauthorized users access to the device. 

Ransomware: When a victim tries to access their data or device, ransomware prevents them from doing 

so until a ransom is paid. 

Spyware: As it enables cybercriminals to obtain private and secret information, it is frequently used for 

espionage, identity theft, and other nefarious reasons. 

 

3.2 Malware Analysis 

 

The objective of Android malware analysis is to uncover the malware's behavior, characteristics, 

capabilities, and potential risks it poses to devices and users. This process involves various techniques, 

such as static analysis, dynamic analysis and hybrid analysis [18]. 

 

3.2.1 Static Analysis: 

 

Static analysis of Android malware refers to the process of examining the code, resources, and other 

characteristics of an Android application (APK) without starting the application or executing it. This 

analysis is conducted to identify potential malicious behavior, security vulnerabilities, and other 

suspicious attributes within the APK file itself. It does not involve running the application on a device or 

emulator. In static analysis, security researchers, analysts, or automated tools analyze the structure, source 

code, permissions, manifest file, and other components of the APK to detect any indicators of malware, 

such as code that performs unauthorized or malicious actions, hardcoded malicious URLs, the use of 

sensitive permissions, hidden functionality, or attempts to obfuscate or hide malicious behavior. 

The goal of static analysis is to uncover the inner workings of an Android application and identify any 

potential security threats or risks it may pose, allowing for the development of countermeasures or 

mitigation strategies to protect users and devices from the malware's harmful effects. Static analysis is an 

important step in the broader process of Android malware analysis and serves as an initial assessment of 

an APK's suspicious or malicious nature [16,19].  
 

3.2.2 Dynamic Analysis: 

 

Dynamic Android malware analysis refers to the process of analyzing and understanding the behavior of 

a suspicious or malicious Android application APK by running it in a controlled and monitored 

environment. This analysis involves executing the APK on a device or emulator while observing its 

interactions with the operating system, device resources, network, and other software components in real-

time. The primary goal of dynamic analysis is to uncover the malware's actions, intentions, and potential 

harm it can cause when executed, without risking actual harm to the user's device or data [16,19]. 

 

3.2.3 Hybrid Analysis 

 

Static and dynamic analysis are used to perform hybrid analysis, which looks at malware using both 

methods. Static analysis, for instance, can be used to spot possible dangers, while dynamic analysis can 
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be used to watch the behavior of the virus in real time. Because it gives a full understanding of both the 

code and behavior of a sample, hybrid analysis is frequently regarded as the most efficient way of malware 

analysis. [16]. 

 

4. Methodology 

 

4.1 Dataset 

 

The Drebin dataset is a well-known dataset used for Android malware detection research. It contains a 

collection of Android applications, both benign and malicious, that were gathered for the purpose of 

evaluating and training machine learning models to recognize malware. The Drebin dataset primarily 

focuses on Android malware, specifically the types of malwares that can infect Android devices. It 

includes various families and types of malwares that have been identified and analyzed by researchers. 

The dataset contains samples of malicious apps that exhibit a range of behaviors. The most common 

malware applications in “Drebin” dataset includes FakeInstaller, DroidKungFu, GoldDream and 

GingerMaster [20] 

The goal of using the Drebin dataset is to develop and test machine learning models that can accurately 

distinguish between benign and malicious Android applications. These models can then be used in real-

world scenarios to enhance mobile security and protect users from potentially harmful applications. We 

used Drebin Dataset for Machine Learning contains 5,560 malicious and 123,453 benign Android 

applications. Dataset upload date is ‘’8-2022” [21].  

 

4.2 Feature Extractor 

 

A feature extractor for text is a method or algorithm that converts raw text data into numerical or 

categorical features that can be used as input for machine learning models. Text data is typically 

unstructured, so feature extraction is essential to represent text in a format that can be processed by 

machine learning algorithms. We use two feature extractors Word2Vec and TF-IDF which are suitable 

for Drebin dataset [21]. These feature extractors convert textual data such as the content of Android app 

files in the "Drebin" dataset into numerical representations that machine learning classifiers can 

understand and process effectively. 

 

4.2.1 Word2Vec 

 

Word2Vec is an unsupervised learning algorithm that learns word embeddings from large amounts of text 

data. The basic idea behind Word2Vec is to represent each word in a continuous vector space, where 

words with similar meanings are closer together. Word embeddings capture semantic relationships 

between words, making them valuable for various natural language processing (NLP) tasks. It was 

introduced by researchers at Google in 2013 and has since become a fundamental tool in natural language 

[22]. 

Word2Vec works by training a neural network on a large corpus of text using either the Continuous Bag 

of Words (CBOW) or Skip-gram model. Both CBOW and Skip-gram have the same goal: to learn word 

embeddings, but they have different approaches to achieve it. 

 

Continuous Bag of Words (CBOW): 
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In CBOW, the model predicts the target word based on the context words surrounding it. The context 

words are used as input, and the target word is the output. The architecture is shown in figure 1. The 

context words are represented as the encodings, and the hidden layer learns the word embeddings. The 

output layer predicts the target word probability distribution based on the context words. The word 

embeddings are updated during the training process to minimize the prediction error [22]. 

 

 

  
 

Figure 1: CBOW Architecture 

 

Skip-gram: 

In Skip-gram, given a target word, the model predicts context words. The target word is used as input, 

and the context words are the outputs. The architecture is shown in figure 2. The target word is represented 

as the encoding, and the hidden layer learns the word embeddings. During training, the model tries to 

maximize the probability of context words given the target word [22]. 

 

 

  
 

Figure 2: Skip-gram Architecture 

 

4.2.2 TF-IDF 

 

TF-IDF stands for Term Frequency-Inverse Document Frequency [23]. It is a numerical representation 

of text data that aims to highlight the importance of individual words in a collection of documents. TF-

IDF is commonly used in information retrieval and text mining tasks, such as document similarity, 

document classification, and search engines. The TF-IDF score of a word in a document is calculated as 

the product of two components: 

Term Frequency (TF): It measures how frequently a word appears in a document relative to the total 

number of words in that document. A word with a high TF score occurs more often in the document. The 

TF score is calculated as shown in equation 1. 

 

 

 

 

TF =
Number of occurrences of a word in the document

Total number of words in the document
 

(1) 

     

Inverse Document Frequency (IDF): It measures the rarity of a word across all documents in the dataset. 

Words that occur in many documents receive lower IDF scores, while words that appear in few documents 

get higher IDF scores. The IDF score is calculated as shown in equation 2. 

  

IDF = log ( 
Total number of documents

Number of documents containing the word
 ) 

 

(2) 

 

The TF-IDF score is obtained by multiplying the TF and IDF scores for each word. This score gives 

higher importance to words that are frequent within a document (high TF) but rare across all documents 

(high IDF). The idea is to emphasize the uniqueness of words in specific documents and downplay 

common words that appear in many documents. The TF-IDF representation creates a sparse vector for 

Natural Language Processing Target Word 

(Output) 

Natural Language Processing 
 

Context Words (Outputs) Target Word (Input) 

Context Words (Input) 
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each document, where each element corresponds to the TF-IDF score of a specific word in the document. 

These vectors can be used as features in machine learning algorithms or for calculating document 

similarity scores. 

Here's a simplified example of TF-IDF calculation for a single word in a document: 

Consider a document: "Machine learning is an exciting field, and machine learning techniques are widely 

used." 

Let's calculate the TF-IDF score for the word "machine" in this document: 

1. Term Frequency (TF) of "machine": TF = Number of occurrences of "machine" / Total number of 

words in the document TF = 2 / 15 ≈ 0.133 

2. Inverse Document Frequency (IDF) of "machine": Suppose there are 1,000 documents in the dataset, 

and "machine" appears in 200 of them. IDF = log(1000 / 200) ≈ 1.609 

3. TF-IDF score of "machine": TF-IDF = TF * IDF ≈ 0.133 * 1.609 ≈ 0.214 

The TF-IDF score for "machine" in this document is approximately 0.214. The process is repeated for 

all words in the document to create the TF-IDF vector. 

TF-IDF has some limitations that include: 

1. It performs a straight word-count space computation of document similarity, which might be slow 

for big vocabularies. 

2. It is predicated on the idea that word counts serve as independent proof of similarity. 

3. There is no use of word semantic similarity in it. 

 

4.3 Classifiers  

 

Assigning each data point to a predetermined label or category is the main task that classifiers are 

employed for. The term "classes" refers to the set of potential labels [24]. Here we use supervised thirteen 

classifiers: adaboost, ANN, decision trees, extra trees, K-nearest neighbors, lasso regression, logistic 

regression, MLP, naïve bayes, random forests, ride regression, support vector machines and XGB. 

 

4.3.1 AdaBoost (Adaptive Boosting): 

 

AdaBoost is an ensemble method that integrates weak learners into a strong learner. It assigns higher 

weights to incorrectly classified instances in each iteration, forcing the model to focus on those instances 

[16]. 

 

4.3.2 Artificial Neural Network (ANN): 

 

ANNs are versatile models inspired by the human brain's neural networks. They consist of input, hidden, 

and output layers, and they can learn complex patterns in data. Deep neural networks (DNNs) have many 

hidden layers and excel at feature extraction [25]. 

 

4.3.3 Decision Tree: 

 

Decision trees are tree-like structures in where a class label is indicated by each leaf node, a test result is 

indicated by each branch, and a decision or test on a characteristic is indicated by each internal node. 

They are utilized for tasks involving classification and regression. We use it in classification [16]. 

 

4.3.4 Extra Trees: 
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Extra Trees (Extremely Randomized Trees) is a type of ensemble learning. method similar to Random 

Forest, but it further randomizes the feature selection and node splitting. It can improve diversity among 

trees and potentially reduce overfitting [16]. 

 

4.3.5 K-Nearest Neighbors (KNN): 

 

KNN classifies data points based on their K nearest neighbors' majority class. It is non-parametric and 

suitable for simple classification tasks [16]. 

 

4.3.6 Lasso Regression: 

 

Lasso is a regularization technique used in linear regression. Lasso adds the absolute values of coefficients 

to the loss function, encouraging sparsity [16]. 

 

4.3.7 Logistic Regression: 

 

In spite of its name, logistic regression is a classification algorithm and not a regression algorithm. It 

models the probability of a binary outcome using the logistic function. It's simple, interpretable, and works 

well when the relationship between features and outcomes is roughly linear [16]. 

 

4.3.8 Multilayer Perceptron (MLP): 

 

A multilayer perceptron (MLP) is a type of artificial neural network with multiple layers of nodes 

(neurons)  that can learn complex relationships in data. It's often used for various tasks like classification 

and regression [16]. 

 

4.3.9 Naive Bayes: 

 

Naive Bayes is a probabilistic classifier based on Bayes' theorem. Given the class label, it presumes that 

features are conditionally independent. It's widely used for text classification and other probabilistic tasks 

[16]. 

 

4.3.10 Random Forest: 

 

Random Forest is an ensemble technique for improving accuracy and robustness by training multiple 

decision trees and combining their predictions. It reduces overfitting and generalizes well [16]. 

 

4.3.11 Ride Regression: 

 

Lasso is a regularization technique used in linear regression. Ridge adds squared coefficients, which can 

help prevent overfitting [16]. 

 

4.3.12 Support Vector Machine (SVM): 
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SVM is a powerful algorithm for both classification and regression tasks. It works by locating a 

hyperplane that best separates classes in a high-dimensional space. It's effective in high-dimensional 

spaces and can handle non-linear data with the assistance of kernel functions [16]. 

 

4.3.13 XGBoost (Extreme Gradient Boosting): 

 

XGBoost is a gradient boosting algorithm that builds an ensemble of weak learners (usually decision 

trees) sequentially, correcting the errors of previous models. It's known for its efficiency and high 

performance [16]. 

 

4.4 Performance Metric 

 

In this section, we present the evaluation metrics used to evaluate the proposed system. Namely, we 

overall accuracy, recall, precision, F1 score. 

 

• Overall Accuracy: measures how accurately a classification model predicts the appropriate class 

labels [16]. It is calculated as shown in equation 3 where TP, TN, FP, FP, and FN, respectively, stand 

for True Positives, True Negatives, False Positives, and False Negatives. 

 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑟𝑎𝑐𝑦 =  (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
) (3) 

   

• Recall: focuses on minimizing false negatives [16]. It has an inverse relationship with FN. It is 

calculated as shown in equation 4. 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  (
𝑇𝑃

𝑇𝑃+𝐹𝑁
)  (4) 

    

• Precision: focuses on minimizing false positives [16]. It has an inverse relationship with FP. It is 

calculated as shown in equation 5. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) (5) 

   

• F1 Score: provides a single score that accounts for both false positives and false negatives by taking 

the harmonic mean of precision and recall into consideration [16]. It is calculated as shown in equation 

6. 

 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) (6) 

 

5. Experimental Results 

 

In this experiment, we investigate using TF-IDF and Word2vec as two features extraction methods while 

applying the considered machine learning classifiers adaboost, ANN, decision trees, extra trees, K-nearest 

neighbors, lasso regression, logistic regression, MLP, naïve bayes, random forests, ride regression, 

support vector machines and XGB on the "Drebin" dataset. Figure 3 shows a comparison between the 
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two feature extractors using different performance metrics overall accuracy, recall, precision, f1 Score 

and the execution time. Chart (a) shows that the overall accuracy of TF-IDF is superior than Word2vec 

with all classifiers except Naive Bayes. Chart (b) shows that the recall of TF-IDF is superior to Word2vec 

with all classifiers except Naive Bayes and adaboost. Chart (c) shows that the precision of TF-IDF is 

superior to Word2vec with all classifiers except XGB and random forest. Chart (d) shows that the F1score 

of TF-IDF is superior to Word2vec with all classifiers except adaboost. Chart (e) shows that the execution 

time of SVM with Word2vec is too long 5161 seconds. The results show that TF-IDF feature extractor 

performs better on the “Drebin" dataset.  

 

 

(a) 

 

 

(b) 
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(e) 
 

Figure 3: Comparison between TF-IDF and Word2Vec 

 

6. Conclusion and Future Works 

 

Malicious software or code targeted specifically at Android-powered devices is referred to as Android 

malware. These malware versions have the potential to steal data, inflict financial losses, and violate users' 

privacy. Static analysis has shown its robustness by preventing the installation of malware apps. Machine 

learning classifiers is a fast and an accurate way to detect malware from metadata (manifest file) of mobile 

application. We used different feature extractors and classifiers in “Drebin”. We concluded that classifier 

accuracy increases with the increase of training data. Feature extractor contributes to an increase in 

accuracy. TF-IDF is the best feature extractor in “Drebin” dataset. Future work is developing an android 

antivirus based on “Drebin” dataset.  
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