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 Investigating the nonlinear behavior of reinforced concrete (RC) elements was the objective of many 

experimental and numerical studies. This work briefly presents the previous work done in support of 

modeling reinforced concrete (RC) elements to evaluate their structural behavior. Modeling RC 

elements requires reliable nonlinear models for their inelastic positions under high loading. These 

positions are conformed as concentrated plasticity. For simulating RC frames, the concentrated 

plasticity was used in many studies to provide simple modeling with low computation cost. The 

concentrated plasticity is modeled using lumped plastic hinges (PH). Four PH types (flexural, shear, 

torsion, and beam–column joint) are defined based on the loading type subjected to the frame element. 

Consequently, it reviews the previous studies that modeling procedures for the nonlinear behavior of 

four PH types. The flexural PH, Shear PH, torsional PH, and beam-column joints could be defined, 

respectively, using empirical length, the approach of Watanabe & Lee (1998), rigid–element, and 

bilinear torsion–rotation behavior. 
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1. Introduction 

Reinforced Concrete (RC) Elements are commonly used in 

construction due to their strength and durability. In the field of 

structural engineering, accurately modeling the behavior of RC 

elements is crucial for evaluating their structural performance. 

This involves understanding the inelastic response of RC elements 

under high loading conditions. The nonlinearity in RC elements 

could be simulated using macro-model approach (concentrated 

plasticity or distributed plasticity) or micro-model approach (full 

finite element modeling) depending on the desired accuracy and 

computation cost. 

Concentrated plasticity is commonly modeled using lumped 

plastic hinges (PH), which are defined based on the type of loading 

experienced by the frame element. There are four types of plastic 

hinges: flexural, shear, torsion, and beam-column joint, each 

corresponding to a specific loading condition. 

To develop reliable nonlinear models for RC elements, it is 

essential to have a thorough understanding of the behavior of these 

plastic hinges. This requires a comprehensive review of previous 

studies that have focused on the modeling procedures for the 

nonlinear behavior of these four types of plastic hinges. 

The purpose of this work is to present a brief overview of the 

previous research conducted in support of modeling RC elements 

and evaluating their structural behavior. Specifically, this review 

focuses on the development of empirical equations for estimating 

the length of the flexural plastic hinge (lp) in RC frames under 

lateral load. 

The plastic hinges (PH)used to model RC element located 

usually at the ends of its each clear length. Four PH types (flexural, 

shear, torsion, and beam–column joint) are defined based on the 

loading type (moment, shear or torsion) subjected to frame element. 
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2. Flexural PH 

The major role in determining the response of RC buildings is 

played by the nonlinear behavior of flexural PH. (Sunil & 

Kamatchi 2022, Inel & Ozmen 2006). Where, the behavior of 

beam and column members could be represented using the flexural 

PH. There are different types from flexural plastic hinges (fiber 

PHs and moment–rotation PHs). The modeling of flexural PH 

depends on the ultimate curvature of element section and plastic 

hinge length (lp).  

The length of the flexural plastic hinge (PH) is an essential factor 

to consider for reinforced concrete (RC) elements under lateral 

load. The equivalent flexural plastic hinge length could be 

estimated based on integration of the plastic curvature distribution 

for typical members. To make straightforward the calculations, an 

equivalent flexural plastic hinge length, 𝑙𝑃, could be defined over 

which the plastic curvature, ∅𝑝 , is suggested to be equal to the 

difference between the maximum curvature (∅𝑢 ) and the yield 

curvature (∅𝑦). The PH length lp is calculated so as to the plastic 

displacement, ∆𝑝 ,  at the free end of the cantilever RC element 

obtained from an experiment or from a displacement design 

method is almost equal to the value obtained from the existent 

curvature spreading (Firat 2010). The lumped plastic rotation, 𝜃𝑃, 

for along way the flexural PH length is subsequently calculated as 

Eq. (1)  

𝜃𝑃 = ∅𝑃𝑙𝑃 = (∅𝑢 − ∅𝑦)𝑙𝑃 (1) 

The plastic rotation derived using Eq. (1) can be used to determine 

the displacement capacity of a section that experiences inelastic 

deformations. If the plastic rotation (flexural PH) is assumed to be 

concentrated at the beginning of plasticity, the plastic displacement 

(∆𝑃) at the top of the cantilever column then becomes Eq. (2): 

∆𝑃= 𝜃𝑃𝐻 = (∅𝑢 − ∅𝑦)𝑙𝑃𝐻 (2) 

where H is the column height. From the plastic displacement, ∆𝑝, 

the maximum nonlinear drift is obtained. Thus, the stander 

prediction of a flexural PH length is required to study the 

theoretical drift of multistory building. The PH length suggests the 

default length of concentric damage for the RC element (Firat 

2010). It was shown that the equivalent lp and the plastic region 

wherever reinforcing detailing is needed to be described separately 

because it has major effect on plastic rotation capacity. Several 

equations for estimating lp were developed by various researchers 

for various types of RC elements. 

2.1. Chan (1955)  

Chan (1955) proposed Eq. (3) as a means to calculate the 

length of flexural plastic hinges (PH) after conducting tests on 

three different types of specimens. These included nine members 

with transverse steel reinforcements, seven members with spiral 

transverse steel reinforcements, and seven members with welded 

transverse steel reinforcements. 

𝑙𝑃 = 𝐿𝑠(1 − 𝑀𝑦/𝑀𝑢)                              (3) 

where, 𝐿𝑠 is the shear length (moment to shear ratio), and 

𝑀𝑦 , 𝑀𝑢 are the yield and ultimate moment, respectively. 

2.2. Baker (1956)   

Baker (1956) proposed Eq. (4) as a method to calculate the 

length of flexural plastic hinges (PH) after conducting tests on 

three different types of specimens. These specimens included 32 

members with cold work steel, 30 members with mild steel, and 32 

members subjected to both bending moment and axial load, 

consisting of mild steel and cold work steel. 

𝑙𝑃 = 𝑔1𝑔2𝑔3𝐿𝑠
0.25𝑑0.75                              (4) 

where, d is effective depth and the factors were defined 

using concrete compressive strength (𝑓𝑐), the initial axial load 

(F1), and the capacity axial load (Fo) as following: 

𝑔1=0.9 for cold work steel or 0.7 for mild steel  

𝑔2=1+0.5(F1/Fo) 

𝑔3 =0.9 –0.0128(𝑓𝑐–11.7) if 11.7˂𝑓𝑐˂32.2 MPa 

2.3. Cohn & Petcu (1963)   

Cohn & Petcu (1963) conducted tests on ten continuous RC 

beams with two spans, which were divided into two groups. Each 

group consisted of five beams, and they were loaded with a 

concentrated load at a specific distance from the central support 

until failure. One group had a distance of 40 cm, while the other 

group had a distance of 60 cm. The results obtained for these ten 

beams, which varied from 0.3D to 0.9D (where D represents the 

effective depth of the beam), were recorded almost the same 

lengths obtained from the equation proposed by Chan (1955). 

2.4. Baker & Amarakone (1964)     

Baker & Amarakone (1964) investigated the inelastic 

deformations of RC frames. It was indicated that the PH length 

between 0.5h to h is a safe estimation in columns, where h is the 

element depth.   

2.5. Corley (1966)  

Corley (1966) suggested Eq. (5) to calculate the flexural PH 

length. Corley conducted tests on 40 simply supported beams, 

which were loaded with a concentrated load at midspan. The 

results obtained for these 40 beams were analyzed using Eq. (5).  

𝑙𝑃 = 0.032 𝐿𝑠 √𝐷⁄ + 0.5 𝐷                              (5) 

2.6. Mattock (1967)  

Mattock (1967) suggested Eq. (6) to determine flexural PH 

length based on his tested for three types of specimens: 32 

members with cold work steel, 30 members with mild steel, and 32 

members (with mild steel and with cold work steel) subjected to 

bending moment and axial load.  

𝑙𝑃 = 0.032 𝐿𝑠 √𝐷⁄ + 0.5 𝐷                              (6) 
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2.7. Zahn et al.  (1986)  

Zahn et al.  (1986) made tests for fourteen RC columns (with 

different cross-sections) subjected to combined bending moment 

and axial load. Based on their tests, Eq. (7) was suggested to 

determine flexural PH length. The 14 RC columns comprised four 

types of section shapes: four square sections with diagonal loading, 

two square sections with face loading, two octangular sections, and 

six circular sections with hollow.  

𝑙𝑃 = 0.08𝐿𝑠 + 6∅𝑏 (0.5 + 1.67
𝐹1

𝑓𝑐𝐴𝑔
)       for 

𝐹1

𝑓𝑐𝐴𝑔
< 0.3 

𝑙𝑃 = 0.08𝐿𝑠 + 6∅𝑏                                        for 
𝐹1

𝑓𝑐𝐴𝑔
≥ 0.3       (7) 

where, ∅𝑏 , Ag and F1 are diameter of longitudinal steel 

reinforcement, section gross area, and initial axial load, 

respectively. 

Table 1 summarizes the studies previously done on flexural 

PH length presented in this section, including the type of 

members studied and the parameters that the authors considered 

to develop their models. 

Table 1 

 Summary of mentioned previous research done on flexural PH length.  

Researchers 

reference 
Members studied Parameters considered 

Chan (1955) columns span and strain hardening 

Baker (1956) 
beams and 

columns 
depth 

Cohn & Petcu 

(1963) 
beams depth and strain hardening 

Baker & 

Amarakone 
(1964) 

beams and 

columns 

depth, span, reinforcement properties 

and axial load ratio 

Corley (1966) beams depth and span 

Mattock (1967) beams depth and span 

Zahn et al.  

(1986) 
columns 

span, reinforcement properties and 

axial load ratio 

 

3. Shear PH 

The determination of the shear resistance is more complicated 

compared with flexural PH. The behavior of RC element (column 

or beam) at shear failure is clearly different from its behavior in 

flexural failure. In shear failure, the RC element fails suddenly 

without sufficient advanced warning and the diagonal cracks are 

developed wider considerably than the flexural cracks. Therefore, 

adequate amount of shear reinforcement is generally provided to 

avoid an abrupt shear failure. 

For modeling shear failure, it required to define shear PH hinge 

to RC elements with shear–deformation curve. Shear PH hinge is 

modeled to account for behavior of inelastic shear. Several 

capacity models have been developed for RC elements. One such 

model related the shear demand to the drift at shear failure were 

introduced by Elwood & Moehle (2005) based on the transverse 

reinforcement and axial load ratios. Elwood & Moehle (2005) 

conducted 50 specimens tests on RC columns with failure in 

flexural yielding before shear failure. The model introduced by 

Elwood & Moehle (2005) defines the drift at shear failure as the 

drift at which the shear capacity has degraded to 80% of the 

maximum measured shear. According to the model, the shear 

failure is determined by the intersection of an idealized bilinear 

force–deformation curve for the column where, the limit surface 

was defined by the drift capacity model. Watanabe & Lee (1998) 

introduced an incremental analytical approach to predict the shear 

force-deformation characteristics. Based on the truss mechanism, 

the strain of stirrup is gradually increased for each step with a very 

small increment. Besides, the demand shear is calculated at each 

increment in the analysis. This approach of Watanabe & Lee 

(1998) was explained step by step in Sayed (2023). 

4. Torsional PH 

The torsional shear stresses are always present on the cross-

section of a frame member subjected to a torsional moment. The 

determination of torsional stresses and their combination with 

stresses due to bending and axial load is very difficult to determine 

for frame element sections. The torsional effects are mostly 

obvious in the elastic range and early stages of plastic behaviour. 

The torsional effects decrease with an increase in the plastic 

deformations. A simple approach was developed based on space 

truss analogy to determine the torsional PH characteristics of the 

RC element section (Park & Paulay 1975). They suggested 

simple equation to determine the cracking torsion, the ultimate 

torsional resistance, and the cracked stiffness.  

Bilinear torsion–rotation behavior was defined as adopted by 

Sharma et al. (2013). The cracking torsion, ultimate torsion and 

stiffness after cracking are estimated as functions in the section 

geometry, concrete strength and transverse reinforcement 

properties to determine the torsion–rotation relationship (Park & 

Paulay 1975).  The torsional PH characteristics of the section can 

be calculated based on space truss analogy as the following steps.  

a) the cracking torsion, Tcr is calculated as  

𝑇𝑐𝑟 = 0.33√𝑓𝑐
′(𝐴𝑔

  2/𝑃𝑐) 
 

Where,𝑓𝑐
′ is the compressive strength of concrete; 𝐴𝑔is gross 

area of concrete section (mm2); 𝑃𝑐 is perimeter of concrete section 

(mm) 

b) the ultimate torsional resistance, 𝑇𝑢, is calculated as 

𝑇𝑢 = 2𝐴0𝐴𝑠𝜈𝑓𝑠𝜈/𝑆𝜈  

Where, 𝐴0  0 represents the gross area within the shear flow 

path, which is assumed to be 85% of the zone enclosed by 

centerline of the outermost closed transverse reinforcement; 𝐴𝑠𝜈 is 

the area of one leg of transverse reinforcement;  𝑓𝑠𝜈  is 

yield/ultimate stress of transverse reinforcement(𝑓𝑦𝑠 𝑓𝑢𝑠⁄ ); 𝑆𝜈  is 

the distance between  center to center of transverse reinforcement. 

c) the cracked stiffness of the section, 𝑘𝑡,𝑐𝑟  is determined as  
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𝑘𝑡,𝑐𝑟 = 𝐴𝑆𝜈𝐸𝑆(𝐵0𝐷0)2 √𝑚𝑡/((𝐵0 + 𝐷0)𝑆𝜈𝐿)  

Where, 𝐵0 is the shorter dimension of transverse reinforcement; 

𝐷0 is longer dimension of transverse reinforcement; 𝐸𝑆 is elasticity 

modulus of transverse reinforcing steel; 𝑚𝑡  is ratio of yield stress 

of transverse reinforcement to that of longitudinal reinforcement 

=𝑓𝑦𝑙 𝑓𝑦𝑠⁄ , and 𝐿 is clear length of the element 

Though, these three equations are simplified and able to 

generally sufficient to model the torsional PH of  RC element.  

5. Beam–column joint PH  

In RC moment frames, beam-column connections are designed 

for capacity and are not expected to be the main failure mode under 

seismic loading. However, the finite sizes of beam-column joints 

could impact the frame response and may be considered using rigid 

end offsets. Furthermore, bar slip at the beam-column joint 

interface plays a significant role in accurately capturing the 

stiffness behavior. The beam–column joint used in RC frames 

could be categorized according to detailing aspects (seismically 

detailed structures or non-seismically detailed joints; Sharma 

2013).  Biddah & Ghobarah (1999) used separate rotational 

springs to model the shear and bar slip deformations in the beam-

column joint. The shear stress-strain relationship was simulated 

using a tri-linear idealization based on a truss model, while the 

bond-slip deformation was simulated using a bilinear model. This 

joint element was utilized in performing dynamic analyses of 

three- story and nine-story RC buildings which were designed 

under gravity load. The study compared the dynamic response of 

three and nine-story frames, which were modeled with joint 

elements, to the response of similar frames with rigid joints under 

the same motion records. These comparisons exposed that method 

of accounting for bar-slip deformations and joint shear in results 

with substantially larger drifts, especially for the higher frame. 

Sharma (2013) developed a practical model for non-seismically 

deigned RC frame structures to simulate the plastic behavior of 

beam-column joints. The joint element models follow lumped 

plasticity models with finite element simulations. Sharma et al.  

(2011) and Sharma et al.  (2013) revealed the important of 

introducing shear PH (Watanabe & Lee 1998), torsional PH 

(Park & Paulay 1975), and beam–column joint PH (Sharma et 

al.  2011, Pan et al.  2017, and Yu 2006) for considering different 

types of deformation in special frames. 

Sharma et al. (2011) tested a 3D RC frame structure with 

three-story three bays under monotonically increasing lateral 

pushover load till failure. It was found that the major failure modes 

were observed as flexural failure of beams and columns, torsional 

failure for transverse beams only, and shear failure for joints 

(beam–column connection). In additionally, it was modeled this 

structure with lumped plasticity using SAP2000 software (CSI 

2020) considering all these failure modes. Sharma et al.  (2013) 

made an experimental test for RC structure (four-story three bays) 

with a full-scale under monotonic lateral loading. Then, this 

structure were modeled and analyzed under pushover loading 

using SAP2000 software. The beam-column connection of the 

structure was constructed as non-seismic detailing. The foundation 

was built with rock anchors to constrain the base supports during 

the test. It was found that the major failure modes were observed 

as flexural failure of beams and columns, torsional failure for 

transverse beams only, and shear failure for joints (beam–column 

connection). Furthermore, it was modeled this non-seismically 

detailed RC structure with lumped plasticity. 

6. Conclusion  

The review of literature shows that significant experimental 

and analytical research related to RC elements in the last 50 years 

was done. Despite research efforts and nonlinear behavior of 

reinforced concrete elements in an earthquake still remains a major 

controversy among structural engineers and researchers today. 

Numerical RC elements models were developed to gain an in-

depth understanding of the behavior of concrete frame buildings 

subjected to extreme loading conditions. The nonlinearity in RC 

frames could be simulated using the concentrated plasticity 

method with acceptable accuracy and low computation cost.  

The concentrated plasticity is modeled using lumped plastic 

hinges (PH) located usually at the ends of each clear length of 

frame element. Four PH types (flexural, shear, torsion, and beam–

column joint) are defined based on the loading type subjected to 

frame element. The flexural PH often is set at ends of each frame 

elements with empirical length (Equations 3-7). sheer PH could be 

defined using straight forward approach of Watanabe & Lee 

(1998). The seismic detailed beam-column connection could be 

modeled by rigid–element. For torsion PH, bilinear torsion–

rotation behavior was defined as adopted by Sharma et al. (2013). 
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