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ABSTRACT

Characterizations of distributions based on recurrence relations for single and product moments of
generalized order statistics have been investigated quite extensively in the literature involving ordered
random variables. As generalized order statistics (GOS) provide a unifying approach to models of
ordered random variables, we establish here some characterizations on absolutely continuous
distributions based on GOS which contain and strengthen several known results in this regard.
Because we do not impose restrictions on the model parameters (as done in the most of previous
studies), our findings yield new results for various useful models of ordered random variables
including k-record values, sequential order statistics, and progressively Type-Il censored order
statistics with an arbitrary censoring plan.

The present paper is devoted to derive some recurrence relations for single and product moments of
generalized order statistics for Weibull - Weibull distribution (WWD). Based on these recurrence
relations, some characterizations for this distribution are discussed.

Keywords:
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1. Introduction

Characterizations of distributions based on ordered random variables have received considerable
attention in the literature. Among this, Kamps and Gather (1997), Keseling (1999), Cramer and
Kamps (2000), Ahsanullah (2000), Ahsanullah (2016), Pawlas and Szynal (2001), Ahmed (2007),
Ahmed and Fawzy (2007), Khan et al. (2007), AL-Hussaini et al. (2005) and Kumar (2011). Abdul-
Moniem (2019), Nagwa (2020), Alimohammadi (2022), some of them discussed characterizations by
conditional events of generalized order statistics.

The aim of the present article is to provide some characterizations for absolutely continuous
distributions based on recurrence relations for single and product moments of GOS. In our study, we
do not want to extend all characterization results in this regard. But, our findings and mathematical
methods not only yield new characterization results for various useful models of ordered random
variables but also could be used in different aspects of GOS.
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An interesting method of adding a new parameter to an existing G distribution has been proposed
by Bourguignon et al. (2014). The resulting distribution, known as the Weibull generated distribution,
includes the original distribution as a special case and gives more flexibility to model various types
of data.

Let G(x,¢) be a continuous baseline distribution with density g(x,£) depends on a parameter vector

& and the following cumulative distribution function (cdf) of Weibull

F(x,a,pB) =1—e‘“xﬂ; x>0,a, 3> 0.
The cdf of the Weibull- G family is given by

G(x)

LI
F(xa,5,6) = () aﬂxﬁ_le_ax dx=1-e

f

(@]

The reliability function of the Weibull— G family is given by

B
_a(g(X)J
F(x)=¢ (%) : x>0,,a>0, (1)

where a and [ are the scale and shape parameters, respectively. The probability density function (pdf)

e
f(x)=aﬂg(x)G(X)/He ( (X)J © x20,8,a>0, 2)
G(x)ﬂJrl

corresponding to F(X) is:

()

Here, G(x)is denoted as

_ 0
G(x)=e X x>0, 1,6 >0, (3)
where 6 and A are the scale and shape parameters. Substituting from Eq.(3) in Eq.(1), we get

F(x) = O x>0 4)
The pdf corresponding to F(x) will be as

0 VB
. B A1 —ale™ 1

f(X) = a@BAx" e (e“ —1) e (] © x>0, (5)
The distribution in Eq.(5), is called Weibull-Weibull distribution (WWD) as in Bourguignon et al.
(2014).
Now in view of Eq.(4) and Eq.(5), we get
f (x) i 1- B (=1)"™ (B +u) 2%
adpAl S\ u v! '
Then distributions can be obtained from Eq.(5), as showed.

Table 1: Sub Models

F(x)=

(6)

0 pdf Distribution
ax \B
1 apie™ (elX —1)57l g ") x>0 Weibull- exponential
2 NIV —a(e“z—l)ﬁ . .
afpixe™ (eiX _1) e x>0 Weibull- Rayleigh

2
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The concept of GOS was introduced by Kamps (1995). A variety of order models of random variables
is contained in this concept. Let, for simplicity F, throughout denote an absolutely continuous
distribution function with density function f.

The random variables X (1, n,m, k) peey X (n, n,m, k) are called generalized order statistics based on F,
if their joint pdf of the form

k[ﬁ’}[ﬁ ﬁ<xiﬂm‘f<xi>)[ﬁ<xn>?‘lf(xn>,
for FH0)<x <x <.<x, <F™*(1). with parameters neN, k>2 k>0,
(M m.-..m,.) €R™ M, :imwsuch that 7, =k+n-r+M, >0, forall r €{12,..,n-1}.For

v, #y; foralli, ] e(l, 2,...,n=1)the pdf of X (I’, n, m, k) is given by Cramer and Kamps (2000) in the

following way
fugenn (9 =Coaf (03 (0] F(0)]" ()

The joint pdf of X (r,n,rﬁ,k) and X (S,n,rﬁ,k), 1<r<s<n is given as

fx(r,n‘m‘k),x(syn,m,k)(x,y):csliaim(s){';g;](ia}”[ﬁ(x)]”j%, X<y, (8

i=r+l

where
9 1 .
a (r)= , 1<i <n,
:!il[ﬂ/] _7/|
j#i
and a(s)=]] , r+1<i<s<n.
j:y+17j —7i
j#i
It may be noted that for m, =m, =...=m_, =m=-1

-

= : 9)
(m+1)" (r-1)!
sif[S—r—1
(5
and al" (s)= — .
(m+1)" (s-r-1)!
(10)
Therefore pdf of X (r,n,m,k) given in Eq.(7) reduced to
Cr_ = 71 r—
s () =5l FOOL 1 g7 F (0] xenc (an
and joint pdf of X (r, n,m, k) and X (S, n,m, k),lﬁ r <s<nis given in Eq.(8) reduced to

C

eamxsnmo (6Y)= (r—l)!l“(s:—r—l)![ F()]" (05 F ()]
L FO]-n[FOI RO (), x<y. (2)

3
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where
Co=1r. 7=k+(n-i)(m+1),
i=1
m-+1
—(1-x) S
hm(X)— m+1
Iog( ! ] m=-—1
1-x
and

g, (x)=h, (x)-h, (1), x [0, 1).
We shall also take X (0,n,m,k)=0. If m = 0, k = 1, then X (r,n,m,k) reduces to the (n—r +1)th

from the sample X, X ,,..., X, and when m = -1, then X (r,n,m,k) reduces

order statistics, X .

n-r+ln

to the K’ record value (Pawlas and Szynal (2001)).
The 7" generalized TL-moments with t, smallest and t, largest trimming are defined as follows

Lo J1§4 [r 1} (X oo, )i toty=12..andr=12.., (13)

o

where E (X i ATt ) is the expected value of the (r —i +t,) ™ order statistics of the random sample

of size (r +t,+t,). The case t;, =t, =0 yields the original L-moments defined by Hosking (1990).

These relations are obtained in the following sections.

2. Recurrence relation for single Expectations of GOS
In this section, the single moments of GOS for WWD are obtained. Moments of order statistics, TL-
moments and L- moments are obtained as a special case of single moments of GOS. Recurrence

relations for single moments of GOS are also provided.

The single moments of GOS for WWD are

E[Xj(r,n,m,k)]: C_*l l]oxj[lf(x)]y'_lf(x)g{n‘l[F(x)]dx
G

_ woo\ W < 1 IE ;/,+W(m+1)d.
“(r-1 N 7, +w( m+1)]'([x [F()] ”

Using Eq.(4), we get
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jC _12( j " " 0 1/; 7 +w(m+1)
E[X(r,n,mk)]= [xi { iy )] dt. (14)

(m+1)"" (r-1)! (7, +w(m+1)]
leta=afy, +w(m+1)].

o 7e +W(m+1) " o
T { : _1)/3 ] dx = j X e_a(e _ljﬂ dx .
0 0

First, to obtain 1, the binomial expansion is employed as follows

) 65
*a’ (e“g —1) 1) a’ "

o (-1
|1:£x“;;( ) 5 jxll( —1) dx, (15)

= (-1)7@%% e P - (—1)‘s a5°° 1 amesd o\
I, = ! 1) dx=) A xR (1) dx.
1;5!£x(e)x;5!£xe(e)x
Again, the binomial expansion is employed in Eq.(14) as the following

o (_ S 5w n+o 5 .
I, = —( 1;Ia Ix"’lemxg (1—e’ﬂ ) dx = ZZ[ﬂcs] ) J'x'*l 2 iy,
0

5=0 5=0 =0

11

let y=nix’ = x=(nl)e y? = dx= (77/1)? % ygf dy,

“1)" a% EREA T a1
j—( ) | ((M)H y"j e (nd)e oy’ dy.
0

So, |, is given by

R (SR )|

From Eq.(14), The single moments of GOS for WWD will be

LS )

5=0 n=0

(16)

E[Ti(r,n,rﬁ,k)} 0(m+1) (r-1 _[;/r+W m+1)]

which is the expression of single moments of GOS from the WWD.
2.1 Moments of Upper Order Statistics

In this subsection, the single moments of GOS for WWD are obtained based on Eq.(16). Also,
numerical values of the mean and variance of upper order statistics for some choices values of

parameters are calculated.

The j" moment of upper order statistics is obtained by taking m=0, k=1 in Eq.(16) as follows

r-1 o o . —j

JH'ZZZ[ )[ j (-1)"" (77/1)?J (n-r+w)’a’

)_ W=0 5=0 7=0 F(ij
On—r)!(r-1)15(n—r+w) 0

) will be E(T,),) and takes the following form

E(T‘

n-r+ln

Or, by substituting n—r+1=r, the E (T ]

n-r+ln

5
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jnlzii(n_rmg](—n”’“"‘(m)5 (-rewe’
i — w=0 6=0 =0 s 1
E(Tm) O(n—n)(n—r)si(n—r+w) F(é’j n

Some values of mean and variance of order statistics for the WWD are calculated for some values of

parameters in Tables 2 and 3.

Table 2: Mean of order statistics for WWD

n r | @=03, =05 1=04 | a=1 =03, 1=04 | @=05 =03, 1=1 | =05 =08 A=1
1 1 38.597 279.001 71.196 1.105
2 1 15.431 27.745 13.156 0.595
2 61.762 530.258 129.235 1.615
3 1 7.992 4.787 3.741 0.392
2 30.309 73.66 31.987 1
3 77.489 758.557 177.859 1.922
4 1 4.692 1.089 1.741 0.285
2 17.891 15.88 11.04 0.714
3 42.727 131.441 52.934 1.286
4 89.076 967.596 219.5 2.135
5 1 2.977 0.296 0.52 0.219
2 11.552 4.262 4.463 0.547
3 27.4 33.308 20.906 0.965
4 52.946 196.863 74.285 1.499
5 98.109 0.00116 255.804 2.293
6 1 1.994 0.091 0.226 0.175
2 7.893 1.318 1.99 0.437
3 18.872 10.148 9.408 0.766
4 35.928 56.468 32.405 1.164
5 61.455 267.06 95.226 1.667
6 105.439 0.001339 287.92 2.419
7 1 1.391 0.031 0.105 0.144
2 5.613 0.452 0.951 0.361
3 13.592 3.484 4.587 0.63
4 25911 19.033 15.836 0.948
5 43.44 84.545 44.831 1.327
6 68.66 340.066 115.383 1.803
7 111.569 0.001505 316.676 2.521
8 1 1.002 0.012 0.051 0.121
2 4.116 0.169 0.479 0.304
3 10.105 1.303 2.366 0.53
4 19.403 7.118 8.288 0.795
5 32.42 30.948 23.384 1.101
6 50.053 116.702 57.7 1.462
7 74.864 414.52 134.611 1.917
8 116.813 0.001661 342.685 2.608
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Note that: the results in Table 2 are consistent with property of order statistics Zn:”'- g given by
i=1

David and Nagaraja (2003).

For example: based on Table 2.
i fy, =15.431+61.762 = 77.193,
and, h
2104 =2x38.597=77.193,
then 22: My, = 244, which justify this property.
i1

Table 3: Variance of order statistics for WWD

n | r |a=03 =05 1=04|a=1 =03 2=04 | a=05 =03 2=1 | a=05, =08 A=1
1 |1 0.002046 157.567 0.0002581 0.854
2 1 550.461 17.359 0.002053 0.345
2 0.002469 246.608 0.0004284 3.842
311 208.733 3.431 318.569 0.18
2 901.881 39.175 0.00499 0.428
3 0.00251 301.001 0.0005467 0.766
4 |1 93.86 0.918 68.052 0.107
2 422.695 9.805 999.091 0.26
3 0.001073 59.94 0.008104 0.432
4 0.002452 336.105 0.0006326 0.697
511 25.351 0.298 17.681 0.07
2 222.576 3.098 257.1 0.173
3 572.191 17.708 0.00195 0.286
4 0.001145 78.024 0.0001107 0.416
5 0.002371 359.681 0.0006972 0.642
6 |1 25.351 0.111 5.259 0.048
2 126.095 1.14 77.196 0.121
3 335.186 6.346 580.223 0.203
4 663.736 26.044 0.003055 0.29
5 0.00169 93.254 0.0001376 0.394
6 0.002289 375.979 0.0007472 0.597
711 14.483 0.046 1.73 0.034
2 75.278 0.469 25.821 0.089
3 207.672 2.579 196.191 0.151
4 418.478 10.295 0.00102 0.215
5 715.996 34.168 0.004221 0.284
6 0.001168 105.925 0.0001615 0.373
7 0.002213 387.481 0.0007869 0.561
8 | 1 8.655 0.021 0.615 0.025
2 46.791 0.21 9.37 0.067
3 133.841 1.149 72.504 0.116
4 276.689 4.533 380.421 0.166
5 475.551 14.601 0.001546 0.218
6 743.666 41.755 0.005385 0.275
7 0.001156 116.441 0.0001826 0.354
8 0.002144 395.708 0.0008191 0.53
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2.2 TL Moments
In this subsection, the r™ TL- moment and r'" L- moment for the WWD are obtained.

The r™ TL- moment can be obtained from Eq.(13) and Eq.(17) with j =1, n=r+t +t, and

n—r+1=r—k +t, asfollows:

n—rek-t, o w —r+k-— o
E (Tr7k+t1:r+t1+t2 ) = z Zz(n r; tlj(ﬂ j

W=0 6-07-0 n

- -1

(=1)"" (nA)e (r+t, +4,)(n—r+w)’e’ F( 1)
O(n—r+k—t)(r—k+t, 115 (n-r+w) (6)

Then, the r™ TL- moment of the WWD is obtained by substituting the previous expectation in
Eq.(13) as follows.

Furthermore, the r™ L- moments can be obtained from Eq.(17) with t, =t, =0 as follows:

k(r—1
(77/1)%1 o (ret+t)(-1) ( " J nerk—t;

L(tl,tz):
' or S (n—r+k-t)(r-k+t,-1)! 5 S

_ W+77+0 n_ S5 5
B  (-1) (r+t,+t,)(n—r+w)’«a F(lj; =12 (18)
n)(n—r+k—t)(r—k+t, -1)1s(n-r+w) \ 0
andr=12,...
Furthermore, the r'" L- moments can be obtained from Eq.(18) with t, =t, =0 as follows:
r-1
r!(—l)k( j
r-1 k n-r+k oo n_r+k
L =6"
' kz_(;(n—r+k)!(r—k—l)! % 5_0[ w j
(-1)" r1a’ [y, +w(m +1)Tﬁl L(ps+j)r(1-B9) (19)

S (n—r+k)(r-1)! r(p5+j+1)

The first four L-moments can be obtained from Eq.(17) by taking r =1,2,3 and 4 respectively.
Using  Eq.(18), some  numerical  results  for L) ) Gt) Gt
L, L, z%%, 7{v%) &%) 7 2 and 7, are obtained in Table 4.

Using Eq.(17), some numerical results for mean and variance of order statistics are obtained in Athar
and Islam (2004).
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Table 4: Some numerical results for the r"™ L- moments for different values of parameters

t.t) (1) | (22) | (01) | (0,2) | (1L0) | (2.0) | (0,0)

L(itlytz) 3031 | 274 15.43 7.99 61.76 | 77.49 38.597

[tt) | 12.42 | 8.53 11.16 6.59 23.59 | 23.174 23.166

2

a=0.3 L(stvtz) 3233 | 1.736 | 3.879 | 2424 | 7.171 | 6.539 8.287

=05 L&t) | 0.598 | 0.224 | 0.607 | 0.249 2.48 2.497 2.469

ﬂ, — 0'4 ,Z-:Etlvtz) 3213
7(e) 0.204
it 0.026

L(ltlltz) 3.569 | 2.633 | 1.562 | 0.559 | 11.679 | 15.733 6.621

(Lt | 2.074 1.23 1.505 | 0.624 | 6.082 | 6.727 5.058

a=1 Lo | 1.04 | 0521 | 0.967 | 0.429 | 3.102 | 3.097 | 3.052
—0.3 | L% [ 0441 | 0185 [ 0459 [ 0.198 | 1.542 | 1498 | 1601
104 |49 2.141
it 0.423
it 0.151

L(itl'tZ) 31.99 | 2091 | 13.16 3.74 | 129.24 | 177.86 71.19

[Wt) | 20.95 | 11.49 | 14.12 4.87 72.94 | 83.28 58.04

a=05 L(gtvtz) 12.31 5.92 10.72 4.17 41.56 | 42.71 39.21

p =03 L) | 6.06 2.51 6.11 2.48 22.80 | 22.51 23.13

l =1 z—ftlvtz) 1818
Pt 0.514
T§t1xt2) 0.218

L(ltlytz) 1 0.965 | 0.595 | 0.392 1.615 1.922 1.105

[&t) | 0.286 | 0.199 | 0.304 | 0.215 | 0.461 | 0.424 0.51

a=0.5 L(;l’tZ) 0.039 | 0.02 | 0.047 0.03 0.092 | 0.087 0.105

p=0.8 &t) | 0.008 | 0.004 | 0.006 | 0.0008 | 0.036 | 0.036 0.034

ﬂ‘ — 1 ,Z_:Etytz) 4848
T?Etl’tz) 0.101
2t 0.018
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3.Characterization based on recurrence relation for single moments of GOS

Theorem 3.1 Let X be a non-negative random variable having an absolutely continuous distribution
function F(x) with F(0) =0and 0 < F(x) <1 for all x > 0, then

E[X (r,nmk)|—E[ X! (r—1n,m k)] =—3 i(l_ﬁJ

(Z,BH]/r u,v=0 u
(1) (B+u) /lv_lE[X"g(”)(r,n,rﬁ,k)]

vl

(20)

it and only i E(y)=e "~

Proof
(i) The necessary proof
We have from Lemma 2.3 (see, Athar and Islam (2004)) that

E| (X (rnmk)}| €| {x (r-1nmk)}] =cr_zjj £ (x)gai(x)[ F(x)]" ax.
If we let &(x)=x’, then

E| X (r.nmk)| €] X (r-1nmk)] = jc, z_r xS (x L F )] ax. e
By substituting Eq.(6) in Eq.(21), we get

E[ X' (r,n,m,k)|-E[ X! (r-1n,mk)] _ G i (1_/3J(—1)u+v(,6’+u)v A

(Zﬂ@]/r u,v=0 u V'

]:ng(“)zr: a, ([ F(x) ] f(x)dx.

i=1

Which after simplification leads to Eq.(20).

(ii) The sufficient part

On the other hand if the recurrence relation in equation Eq.(20) is satisfied, then by using Eq.(13), we
have

Ir,n,m, Hr=1n,n, = (174
E[X( K)]-E[X ! (r-1n,mik)]= aﬂ@yrUZKU j

v =0

(- )u+v (,B+U) /lv_lE[X j,g(l—v)(r’n’rﬁ,k)}

v

(r_f—ll)!zxi[ﬁ(x)]”lf(x)g:nl[F :|dx— C. { ()] (x) g5 [F(x)]dx,

T i(l_ﬂj(_l)w(ﬂ_w ! CILF )] (x) g [F (x)]ax

afO(r-1)ly, S5\ u

Integrating the first term in the left hand side by parts, the expression will be
j r-1 OOXj—l F_X v Jr-l
— = g, | F(x)[dx
7/r(r 1)|.([ I: ( )] |: ( ):I
iC 2 (1=-BY(-1)"" (B+U) A e -
s S P [ )T (a2 (0 e

:a,BH(r—l)!yru,v:O u .

10



Volume ( 67 )- No. 2 - 2023

Therefore
ﬁ!xjﬂ[ﬁ(xﬂh19;‘1[F(X)]
{ﬁ -1 s £1_ﬂj(_1)”“(ﬂ+u)w-lxlg(lv)f(x)}dxzo_

u v!

(22)

Now applying a generalization of the Muntz-Szasz theorem (see, Hwang and Lin (1984)) to Eq.(22),

we get
B o (1— At Vooy-1
afl T\ U v!
Hence,
F(x) _ 1 i (1_ﬂ}(_1)u+v(:3+u)v AT o(-v) ¢ (%)
afo S5\ u v!
© (11— . e—(ﬂ+u)lx5
= -1
SN e
Therefore,

Integrating both sides from 0 to y, the equation will be as follows

j' f(x) dx = a,BQ/I_I' x? e (e“g —1)[3_1 dx..

o F(x)

This is implies that
—In [ﬁ(y)} = a(e“g —1)ﬂ ,

where If(y):em(e 73 ;y=0.
Corollary 3.2. For m; =m, =...=m__, =m = —1, the recurrence relations for single moment of GOS
for Weibull- Weibull distribution is given as

E[ X! (r,n,mk)]-E[ X! (r-Ln,mk)] :ﬁué[tﬂjwqx j""(1’”)/1”‘1(r,n,m,k)}. (23)

Proof. This can easy be deduced from Eq.(20) in view of the relation in Eq.(9).
Remark 3.1 By putting m =0, kK =1 in Theorem 2.1., the recurrence relations for single moments
of order statistics are obtained as

E(Xrln)_E(XJ J i[l_ﬁJ(_l) ) (ﬂ-ﬁ-U) E(er:(l_v)lvfl) (24)

rt"):oeﬂ49(n—r+1)u,vzo u v!
Remark 3.2 By setting m =—1, kK =1 in Theorem 2.1., the recurrence relations of upper record values
are obtained as

E[X'(r,n,—11)|-E[X’(r-1n,-11)]

_ J (-5 (_1)u+v(ﬂ+u)v i-0(1-v) 5 v-1 _
_kaﬂﬁuz‘o( y j Ui E[X A7, 1,1)] (25)

11
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4. Characterization based on recurrence relation for product moments of GOS

Theorem 4.1 Let X be a non-negative random variable having an absolutely continuous distribution
function F(x) with F(0) =0 and 0 < F(x) <1 for all xy >0, then

E[X‘(r n,m,k).X7 (s,n,m k)]—E[Xi(r,n,m,k).Xj(s—l,n,m,k)]

(17 M i ji—6(1-v)
aﬂﬁyr \,0( ] vl E[X (r,n,m,k)x (S,n,m,k)]_
A

(26)

if and only if. F(y) (

Proof
(i) The necessary part
From Lemma 3.2 (see, Athar and Islam [2004]), it can be shown that

E[g{x(r,n,m,k).x(s,n,m,k)}]—E[g{x(r,n,m,k).x(s—1,n,m,k)}]:
| PG RCIRICERLL
[hm<F<y>)—hm(F<x>)]“l[ (v)]" dydx

where £(x,y)=&(x)&(y).
Ifwelet £(X,y)=x"y’, then
EDX (im0 X (snmi]-E[X (i mig X! (-Lnimi]

G Ty [FOOT 1 0ai [ (]
[0, (F(¥)) =, (F ()] [F(v)]" dydx

On using Eq.(6) , we get
E[Xi (r,n,mk).X’ (s,n,m,k)]— E[Xi (r,n,mk).X (s—l,n,m,k)] -

C372 wo(lgﬁ]( )u+v(’8+u) ;vaw .
OB (r DT -] Hxlng "[FOT (e [F ()]

[h (F(¥)-h. (FCO) ] [F ()] £ (y)ayex.

Which after simplification leads to Eq.(26).
(ii) The sufficient part
If the recurrence relation in Eq.(26) is satisfied, then by using Eq.(12), we have

o [ TFCT 10 TR Gl na[F ()] [F (0
[ﬁ(y)]k N e ] ” Y [FOOT F(x)en*[F(x)]
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i 5 (Ao (puy 2
L [F)]-m[FOO] TR0 £ (y)dyax = uvo( j

alfy A(r-1)(s—r—1)iv!

I_Tx‘yj"g(l‘v)[lf(x)]mf(x)g;_l[F(x)]{hm[F V-h [F T )T ¢ (v)dyex.

By integrating the first term in the left hand side by parts, the expression will be

‘C - J I Xy F()]" £ (x) 95 [F ()] {h[F(y)]-h[F ()]

7/5( S r— 1
. JC—zVZi R T
R % G T ﬂxy LF)
(¥)

x) g5 [F ()] {h[F ()] -h[F (0]}

This is implies that

e [ TF T 08 (R G ()] [F (1)
[ﬁ(y)]“‘l{ﬁm—aa;v!ugo[l‘ﬂ]( 7 () 21 () 0.

u

s—r-1

27)

Now by applying a generalization of the Muntz-Szasz theorem (see, Hwang and Lin (1984)) to

Eq.(27), we get
F)-— ) (H}](_l) (Pea) 27 e (y) o

afl [ vl
Hence,
= 1 &(1-p)(-1 - A 1-6(1
(1) 2 [ JEHE ey
_ © l—ﬂ u ei(ﬂﬂl)ly‘q
_UZ_;;( u J(_l) aﬁﬂﬂyefl ( )
Therefore,

E(y)= —aﬂwfy(y Je 1) ",

Integrating both side from 0 to y, we ge

f F) g = a oA j x? e (e“" —1)&1 dx

o F (%)

This is implies that
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Remark 4.1 By putting m =0, kK =1 in Eq. (26), the recurrence relations for product moments of

order statistics are obtained as

- = (1- ) i,j-0(1-v) qv-1
(i l-ex ] o [ e ] e

n—-s+1) 5%\ u vl

Remark 4.2 By setting m = —1 in Eq. (26), the recurrence relations for product moments of k" record
values are given as

el ) oo 2

ﬁj /3+u)“ E[(X(k))i ﬂvl(xm)"‘)(“)] (29)

2 (1-
kaﬂ u,v=0 u

4. Conclusion

In this paper, we have studied the characterizations of a distribution called Weibull-Weibull
distribution based on recurrence relations for single and product moments of generalized order
statistics. These relations are useful to compute the moments for any value of the parameters. Also,
the mean and variance of order statistics for the WWD are computed for different values of
parameters.
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