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Abstract: Recently, a new distribution with bounded support called unit Gompertz has been de-
rived by taking an exponential transformation from the parent Gompertz distribution. This distribution
has right-skewed (unimodal) and reversed-J shaped density. Moreover, the hazard rate has constant,
increasing, bathtub and upside-down bathtub. In this paper, the bivariate extension for this new dis-
tribution is introduced and its properties are discussed in detail. The new bivariate model is of the
Marshall–Olkin type. The estimation problem for the model’s unknown parameters has been consid-
ered using MLE and Bayesian estimation; fortunately, the Bayes estimators are theoretically obtained
in explicit forms. Furthermore, the Bayesian estimators are computed using MCMC method. Two real
data sets have been applied to the bivariate unit Gompertz distribution. Some simulations are carried
out to see the performances of the estimators. Absolutely continuous bivariate versions of this new
distribution are obtained and some of its properties are also discussed.
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1. Introduction

If Y is a non -negative random variable following Gompertz distribution, then its pdf is given as

fG (y; α, β) = αβeα exp{βy − αeβy}

where y > 0, α > 0 and β > 0 .
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Mazucheli [10] derived the unit Gompartz (UG) distribution from the Gompartz (G) distribution
using the transformation X = e−Y .Where Y ∼ G(α, β) then, X has an UG(α, β) with cdf and pdf

FUG (x;α, β) = e−α (x−β−1),

fUG (x;α, β) = αβx−β−1e−α (x−β−1).

respectively, where 0 < x < 1 , α, β > 0.
The hazard function for UG(α, β)is given as

hUG (x;α, β) =
αβx−β−1e−α (x−β−1)

1 − e−α (x−β−1)
.

It is clear that, limx→1 hUG (x;α, β) = αβ. So, Mazucheli [10] deduced that the hazard function is
monotonically increasing for α > 0 and β ≥ 1, and it has bathtub shapes when α ≤ 0.5. So, he
concluded that the UG distribution has one of the advantages over the Gompertz distribution that the
latter cannot model phenomena showing an upside-down bathtub hazard function. Mazucheli [10]
introduced this distribution, having two shape parameters, as alternative to beta and Kumaraswamy
distributions for more details see his paper.

The study of dependent variables is influential in many practical problems. In economic studies,
for example, the relationship between years of education and personal income, personal income and
expenditure, inflation, and unemployment. In biological studies, the age at death of the parent and
child in a genetic study; blindness in the left and right eye; the relationship between a patient’s blood
pressure and body weight and the failure time of the left and right kidney. In engineering studies,
the lifetime of a twin-engine plane is examined, as are warranty policies based on failure time and
warranty servicing time. In addition, various applications such as the shock model, competing risks
model, stress model, maintenance model, and longevity model are available.

Because it considers all different cases of the random variables, the bivariate Marshall-Olkin family
of distributions is very important for understanding and analyzing the failure time of two variables in-
teracting together. There are several papers dealing with bivariate Marshall-Olkin models. Sarhan and
Balakrishnan [18] introduced a bivariate distribution based on exponential and generalized exponential
distributions, now known as Sarhan-Balakrishnan bivariate (SBBV) distribution. They derived several
interesting properties of their distribution but the marginal distributions of SBBV distribution are not
in known forms. Kundu and Gupta [5] expanded on Marshall-Olkin idea by introducing the bivariate
generalized exponential (BVGE) distribution, resulting in marginal distributions that are generalized
exponential distributions. They presented several properties of this distribution and discussed maxi-
mum likelihood estimation of unknown parameters. Sarhan [19] proposed a new bivariate distribution
known as the bivariate generalized Rayleigh (BVGR). The new distribution has generalized Rayleigh
marginal distributions. The hazard rate functions of the BVGR’s marginals can be increasing, decreas-
ing, or bathtub shaped, giving the BVGR distribution greater applicability than other distributions.
Sarhan [19] investigated several interesting properties of this distribution and used the maximum like-
lihood and Bayes methods to estimate the unknown parameters. Many authors, including El-Gohary et
al. [3], Kundu and Gupta [7] and others, discussed the Marshall-Olkin idea for various distributions.

Barreto-Souza and Lemonte [1] discussed the bounded support bivariate distribution. They pro-
posed the bivariate Kumaraswamy (BVK) distribution, whose marginals are Kumaraswamy distribu-
tions, based on Marshall and Olkin’s [9] idea. The goal of this paper is to present another bounded
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support bivariate distribution. The new distribution is introduced as a bivariate extension of the UG
distribution such that its marginals follow univariate UG distributions. The proposed bivariate models
are shown to have a singular part in their structure.

The rest of the paper is structured as follows: Section 2 introduces the BUG distribution and pro-
vides representations for the cumulative distribution function (cdf) and probability density function
(pdf). Section 3 discusses some of the basic properties of this model. In Section 4, point and interval
estimation for BUG distribution are provided. Section 5 presents two empirical applications for illus-
tration purposes. Section 6 discusses a simulation study. Section 7 introduces an absolutely continuous
BUG distribution. Section 8 provides a conclusion to the paper.

2. Model Description

The following is the definition of the Marshall-Olkin bivariate unit Gompertz distribution: Let U1,

U2 and U3 be three independent random variables such that Ui ∼ UG (αi, β) i = 1, 2, 3. Define
Xi = Max (Ui ,U3) i = 1, 2. Then, the bivariate vector (X1, X2) has BUG distribution with parameters
(α1, α2, α3, β), denoted by BUG(α1, α2, α3, β). Then, the joint cdf of (X1, X2)takes the form:

FBUG (x1, x2) = FUG (x1;α1) FUG (x2;α2) FUG (x3;α3)

FBUG (x1, x2) = Exp {−α1(x−β1 − 1) − α2(x−β2 − 1) − α3(x−β3 − 1)}

where x3 = min(x1, x2).
Proposition 1: If (X1, X2) ∼ BUG(α1, α2, α3, β). Then, the joint cdf of (X1, X2)can be written as

FBUG (x1, x2) =


FUG (x1;α13) FUG (x2;α2) , x1 < x2

FUG (x1;α1) FUG (x2;α23) , x1 > x2

FUG (x;α123) , x1 = x2

where α13 = α1 + α3 , α23 = α2 + α3 and α123 = α1 + α2 + α3.
Proposition 2: If (X1, X2) ∼ BUG(α1, α2, α3, β) Then, the joint pdf of (X1, X2) is given as

fBUG (x1, x2) =


fUG (x1;α13) fUG (x2;α2) , x1 < x2

fUG (x1;α1) fUG (x2;α23) , x1 > x2
α3
α123

f UG (x;α123) , x1 = x2 = x

The joint pdf can take various shapes depending on the parameter values. Different shapes of the
joint pdf for different sets of parameters values are provided in Figure 1.

3. Basic Properties

This section discusses some BUG distribution properties such as reliability functions, statistical
measures, marginal and conditional densities, and product moments.
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(a) Set (1): (α1, α2, α3, β) =

(0.5, 3.5, 0.5, 0. 2)
(b) Set (2): (α1, α2, α3, β) = (0.5, 3, 0.3, 0.3)

Figure 1. The joint probability density function of the BUG distribution

3.1. Reliability and Reversed Hazard Functions

The joint survival function of BUG distribution is

S BUG (x1, x2) =


FUG (x1;α13) [FUG (x2;α2) − 1] + FUG (x2;α23) , x1 < x2

FUG (x2;α23) [FUG (x1;α1) − 1] + FUG (x1;α13) , x1 > x2

FUG (x2;α123) , x1 = x2

The reversed hazard function of BUG distribution is

r (x1, x2) =


rUG (x1;α13) rUG (x2;α2) , x1 < x2

rUG (x1;α1) rUG (x2;α23) , x1 > x2

rUG (x;α3) , x1 = x2 = x

where rUG (x;α) = βαx−(β+1).

3.2. Factorization Property

The BUG distribution has an absolute continuous and a singular parts. The BUG’s joint cdf can be
factored into absolutely continuous and singular parts as shown below.

FUG (x1, x2) =
α12

α123
Fa (x1, x2) +

α3

α123
Fs(x3),

where x3 = min (x1, x2) ,
Fs (x3) = FUG (x;α123) and

Fa (x1, x2) =
α123

α12
FUG (x1;α1) FUG (x2;α2) FUG (x3;α3) −

α3

α12
FUG (x;α123) .

One can note that:Fs(., .)and Fa(., .) are the singular and the absolutely continuous part respectively.
As a result, the BUG’s pdf can be factored into absolutely continuous and singular parts, as shown

below.
fBUG (x1, x2) =

α12

α123
fa (x1, x2) +

α3

α123
fs(x3)
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where

fa (x1, x2) =
α123

α12

{
fUG (x1;α13) fUG (x2;α2) , x1 < x2

fUG (x1;α1) fUG (x2;α23) , x1 < x2

and fs (x3) = fUG (x;α123) .
Clearly, here fa(x1, x2)and fs(x3) are the absolutely continuous and singular parts respectively.

3.3. The Mode and Median

The absolute continuous BUG distribution’s median is given below.(
α123

ln2 + α123

)1/β

The absolutely continuous BUG distribution mode is as follows:
{
(
βα13
β+1

)1/β
,

(
βα2
β+1

)1/β
} and {

(
βα1
β+1

)1/β
,

(
βα23
β+1

)1/β
}.

3.4. Marginal and Conditional Densities

Proposition 3: If (X1, X2) ∼ BUG(α1, α2, α3, β). Then,

1. Xi ∼ UG (αi3) , such that αi3 = αi + α3 and i = 1, 2.
2. max (X1, X2) ∼ UG (α123) .
3. The conditional density of Xi given X j = x j, i , j is as follows:

fi/ j

(
xi/x j

)
=


f (1)
i/ j

(
xi/x j

)
, xi < x j

f (2)
i/ j

(
xi/x j

)
, xi > x j

f (3)
i (xi) , xi = x j

where
f (1)
i/ j

(
xi/x j

)
= β
α13

α123
x−(β+1)

i exp
{
α3

(
x−βj − 1

)
− α13

(
x−βi − 1

)}
f (2)
i/ j

(
xi/x j

)
= βα1x−(β+1)

i exp
{
−α1

(
x−βi − 1

)}
f (3)
i (xi) =

α3

α23
x−(β+1)

i x(β+1)
j exp

{
α23

(
x−βj − 1

)
− α123

(
x−βi − 1

)}
.

Shapes of the pdf of Xi for different values of αi3 and β are provided in Figure 2. Figure 3 shows some
plots of the conditional pdf’s of X1 given X2 = x2 for selected values of x2 (x2 = 0.2, 0.5, 0.8) and
different values of parameters.

3.5. Product Moments

According to proposition (3) the marginal distributions of the vector (X1, X2) are UG distributions,
then the moments of X1 and X2 can be obtained directly from the following marginals:

E
(
Xr

1

)
= α

r
β

13eα13Γ
(
1 − r

β
, α13

)
and E

(
Xr

2

)
= α

r
β

23eα23Γ
(
1 − r

β
, α23

)
.

Where Γ(., .) is the upper incomplete gamma function and r
β
< 1. Now the product moments of UG

distribution will be presented.
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Figure 2. The probability density function of the marginal distribution of X1
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Figure 3. The conditional probability density function of X1 given X2 = x2 at different sets
of the parameters
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Proposition 4. The rth and sth joint moments of the X1 and X2, denoted by µ′r,s is given by

E (X1
rX2

s) = eα123α
r
β

13α
s
β

2Γ

(
1 −

r
β

)
Γ

(
1 −

s
β
, α2

)
−

∞∑
k=0

(−1)kα
k+1
13 Γ

(
2 − r+s

β
+ k, α2

)
k!

(
1 − r

β
+ k

)
α

k− r+s
β

2

+eα123α
s
β

23α
r
β

1Γ

(
1 −

s
β

)
Γ

(
1 −

r
β
, α1

)
−

∞∑
k=0

(−1)kα
k+1
23 Γ

(
2 − r+s

β
+ k, α1

)
k!

(
1 − s

β
+ k

)
α

k− r+s
β

1

+eα123α3 α
r+s
β −1

123 Γ

(
1 −

r + s
β
, α123

)
,

where Γ (.) is the complete gamma function and the product moments are exist for r+s
β
< 1.

4. Estimation of BUG Distribution

The estimation of the unknown parameters for the BUG distribution using maximum likelihood and
Bayesian estimation is considered in the following two subsections.

4.1. Maximum Likelihood Estimation

Suppose {(x11, x21), . . . , (x1n, x2n)} be a random sample from BUG(α1, α2, α3, β). distribution. Con-
sider the following notations:

I1 = {i; x1i < x2i}, I2 = {i; x1i > x2i}, I3 = {x1i = x2i = xi}, I = I1

⋃
I2

⋃
I3,

|I1| = n1, |I2| = n2, |I3| = n3, and n1 + n2 + n3 = n.
The log-likelihood function of the sample of size n takes the form

L (θ) = (2n1 + 2n2 + n3) logβ + n1logα13 + n1logα2 + n2logα23 + n3logα3

−α13

n1∑
i=1

(x−β1i − 1)−α2

n1∑
i=1

(x−β2i − 1)−α1

n2∑
i=1

(x−β1i − 1)

−α23

n2∑
i=1

(x−β2i − 1)−α123

n3∑
i=1

(x−βi − 1) − (β + 1) γ (x1i, x2i, xi) .

where γ(x1i, x2i, xi) =
∑n1

i=1 logx1i + logx2i +
∑n2

i=1 logx1i + logx2i +
∑n3

i=1 logxi .
The likelihood equations are

n1

α̂13
+

n2

α̂1
−

∑
I1∪I2

A
(
x1i; β̂

)
−

∑
I3

A
(
xi; β̂

)
= 0,

n1

α̂2
+

n2

α̂23
−

∑
I1∪I2

A
(
x2i; β̂

)
−

∑
I3

A
(
xi; β̂

)
= 0,

n1

α̂13
+

n2

α̂23
+

n3

α̂3
−

∑
I1

A
(
x1i; β̂

)
−

∑
I2

A
(
x2i; β̂

)
−

∑
I3

A
(
xi; β̂

)
= 0,
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and

2n1 + 2n2 + n3

β̂
− γ (x1i, x2i, xi) + α̂13

∑
I1

B
(
x1i; β̂

)
+ α̂2

∑
I1

B
(
x2i; β̂

)
+ α̂1

∑
I2

B
(
x1i; β̂

)
+α̂23

∑
I2

B
(
x2i; β̂

)
+ α̂123

∑
I3

B
(
xi; β̂

)
= 0,

where A (x; β) = (x−β − 1 ) and B (x; β) = x−βlogx .
The numerical solutions for these equations are considered to obtain α̂1, α̂2, α̂3 and β as be shown

in section 6.
The asymptotic variance –covariance (var-cov) matrix can be written as follows

I(θ)−1 =


I11 I12 I13 I14

I21 I22 I23 I24

I31 I32 I33 I34

I41 I42 I43 I44


−1∣∣∣∣∣∣∣∣∣∣∣∣
Θ=Θ̂

where

I11 = −
∂2 ln L
∂α2

1

|Θ=Θ̂ =
n1

α̂2
13

+
n2

α̂2
1

, I22 = −
∂2 ln L
∂α2

1

|Θ=Θ̂ =
n1

α̂2
2

+
n2

α̂2
23

, I13 = −
∂2 ln L
∂α1∂α3

|Θ=Θ̂ =
n1

α̂2
13

,

I23 = −
∂2 ln L
∂α2∂α3

|Θ=Θ̂ =
n2

α̂2
23

, I33 = −
∂2 ln L
∂α2

3

|Θ=Θ̂ =
n1

α̂2
13

+
n2

α̂2
23

+
n3

α̂2
3

,

I14 = −
∂2 ln L
∂α1∂β

∣∣∣∣∣∣
Θ=Θ̂

= −
∑

I1

B(x1i, β̂) −
∑

I2

B(x1i, β̂) −
∑

I3

B(xi, β̂),

I24 = −
∂2 ln L
∂α2∂β

∣∣∣∣∣∣
Θ=Θ̂

= −
∑

I1

B(x2i, β̂) −
∑

I2

B(x2i, β̂) −
∑

I3

B(xi, β̂),

I34 = −
∂2 ln L
∂α3∂β

∣∣∣∣∣∣
Θ=Θ̂

= −
∑

I1

B(x1i, β̂) −
∑

I2

B(x2i, β̂) −
∑

I3

B(xi, β̂),

and
I44 = −

∂2 ln L
∂β2

∣∣∣∣
Θ=Θ̂
=

(2n1+2n2+n3)
β̂2 + α̂13

∑
I1

C(x1i, β̂) + α̂2
∑

I1
C(x2i, β̂)

+ α̂1
∑

I2
C(x1i, β̂) + α̂23

∑
I2

C(x2i, β̂) + α̂123
∑

I3
C(xi, β̂).

where C (x; β) = x−β[logx ]2.
Now, The asymptotic normality results will be considered to obtain the asymptotic confidence in-

tervals of α1,α2,α3and β It can be stated as follows
√

n [(α̂1 − α1), (α̂2 − α2), (α̂3 − α3), (β̂ − β)]→ N4(0 , I(Θ)−1) as n→ ∞
Where I−1(θ) is the variance-covariance matrix, Θ̂ = (α̂1, α̂2, α̂3, β). and
Θ = (α1, α2, α3, β). I−1(Θ) is estimated by I−1(Θ);
The asymptotic variance-covariance matrix that defined above and this can be used to obtain the

asymptotic confidence intervals of α1, α2, α3 andβ.
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4.2. Bayesian Estimation

The explicit Bayes estimators under the squared error loss function are obtained. When the shape
parameter β is known, we assume the same conjugate prior on α1, α2 and α3 as considered by Kundu
and Gupta [6] as follows:

Assume that α1, α2 and α3 are independent and distributed as gamma, we have

πi (αi) =
bai

Γ(ai)
αi

ai−1e−biαi , i = 1, 2, 3 , αi > 0

The joint prior density of α1, α2 and α3 is given as follows

π0 (α1, α2, α3) =
3∏

i=1

bai

Γ(ai)
αi

ai−1e−bi αi

Now, suppose {(x11, x21), . . . , (x1n, x2n)}is a random sample from BUG (α1, α2, α3, β) distribution. Con-
sider the following notations:

D = {(x11, x21), . . . , (x1n, x2n)}, Θ = (α1, α2, α3) and n = n1 + n2 + n3 .
Then the Likelihood function can be written as

L(D|Θ) = Exp(logL(D|Θ) )

L (D|Θ) = β2n1+2n2+n3αn1
13 α

n2
23 α

n1
2 α

n2
1 α

n3
3 .Exp{−α13Z1 (β) − α2Z2 (β) − α1Z3 (β)

−α23Z4 (β) − α123Z5 (β) − (β + 1)Z}.

L (D|Θ) ∝
n1∑
j=1

n2∑
k=1

(
n1

j

) (
n2

k

)
α

j+n2
1 αk+n1

2 α
n− j−k
3 Exp(−α1T1 − α2T2 − α3T3) .

where

Z1 (β) =
n1∑
i=1

(x−β1i − 1),Z2 (β) =
n1∑
i=1

(x−β2i − 1),Z3 (β) =
n2∑
i=1

(x−β1i − 1),

Z4 (β) =
n4∑
i=1

(x−β2i − 1),Z5 (β) =
n3∑
i=1

(x−βi − 1), T1 = Z1 (β) + Z3 (β) + Z5 (β)

,T2 = Z2 (β) + Z4 (β) + Z5 (β) ,T3 = Z1 (β) + Z4 (β) + Z5 (β) ,

and Z =
∑n1

i=1 logx1i + logx2i +
∑n2

i=1 logx1i + logx2i +
∑n3

i=1 logxi ,

Since f (D,Θ) = π0 (Θ) L(D|Θ) and f (D) =
∫

f (D|Θ) dΘ=
∫
π0 (Θ) L(D|Θ)dΘ

Hence the joint posterior density function of Θ = (α1, α2, α3) given the data D, denoted by π1( Θ|D)
can be written as

π1( Θ|D) =
f (D,Θ)

f (D)
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π1 ( Θ|D) ∝
n1∑
j=1

n2∑
k=1

A jk Gamma
[
α1; a1 j, b1 + T1

]
Gamma [α2; a2k, b2 + T2]

×Gamma [α3; a3 jk, b3 + T3],

where Ai j =
Ci j∑n1

j=1
∑n2

k=1 C jk
, and C jk =

(
n1

j

) (
n2

k

)
.
Γ(a1 j)

[b1+T1]a1 j .
Γ(a2 jk)

[b2+T2]a2k . Γ(a3 jk)
[b3+T3]a3 jk .

a1 j = a1 + j + n2, a2k = a2 + k + n1 and a3 jk = a3 + n + k + j.
Therefore, under the assumption of independence of α1, α2and α3 and β is assumed to be known. It

is possible to get the Bayes estimators of α1, α2and α3 explicitly under the square error loss function
as follows:

α̃1 =
1

b1 + T1

n1∑
j=1

n2∑
k=1

A jk a1 j,

α̃2 =
1

b2 + T2

n1∑
j=1

n2∑
k=1

A jk a2k,

and α̃3 =
1

b3+T3

∑n1
j=1

∑n2
k=1 A jk a3 jk.

But in the case of β is unknown, we can’t have explicit form of the Bayes estimators so we can use
one of approximation methods to obtain the Bayes estimates of the four unknown parameters for the
BUG distribution. One of these methods is called Markov Chain Monte Carlo (MCMC) that generates
random draws from the joint posterior distribution, see Gelman et al. [4]. The popular MCMC method
is Metropolis–Hasting algorithm which can be written as follows:

1. Set the number of random draws to be generated, say m.
2. Select an initial value of θ, say θ(0).
3. For i = 1, 2, ..., m, repeat the steps below:
(i) Generate θ∗ from multivariate normal with mean θ(i−1).and variance-covariance Σ.
(ii) Calculate the ratio κ = min{1, π(θ∗|data)

π(θ(i−1)|data) }.
(iii) Create a random value u on (0, 1) using a uniform distribution.
(iv) If κ ≥ u put θ(i) = θ∗ , otherwise put θ(i) = θ

(i−1) .
After removing the first m0 burn-in draws and using the remaining m−m0 as the chosen draws from

the joint posterior distribution, the Bayes estimate of θ j is

θ̂ j =

m∑
i=m0+1

θ j
(i)

m − m0
, j = 1, 2, 3, 4.

Moreover, for 0 < v < 1, the lower and upper bounds of the 100(1− v)% Bayesian probability interval
of θ j can be obtained by taking the (v /2)100th and (1 − v/2)100th percentiles of the sequence of the
m − m0 draws.

5. Data Analysis

In this section, The BUG distribution is applied to two real data sets to see how the BUG distribution
works in practice.
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5.1. Data Set 1: UEFA Champion’s League data

This data set was obtained from Meintanis [11] and is shown in Table 1. It is explained as follows:
the data represents the football (soccer) data where at least one goal scored by the home team and
at least one goal scored directly from a penalty kick, foul kick or any other direct kick (all of them
together will be called as kick goal) by any team have been considered. Here X1 represents the time
in minutes of the first kick goal scored by any team and X2 represents the first goal of any type scored
by the home team. In this case all possibilities are contained, for example X1 < X2 or X1 > X2 or
X1 = X2 = X. Many authors have reanalyzed this data such as Kundu and Gupta [5], Barreto-Souza
and Lemonte [1], Sarhan [19], Muhammed [12, 13, 15, 14], Mandouh [8] and others Here, these data
will be applied to the BUG distribution. All the data points were divided by 90 (once a professional
soccer match totals 90 min) to ensure that the data belong to the interval (0, 1), that is, we model the
proportion of time that any team and the home team scored the first kick goal.

The Kolmogorov-Smirnov distances between the fitted marginals and the empirical distribution
functions for X1 , X2 and max(X1, X2) with UG (1.133, 0.192), UG (1.897, 0.192) and UG (2.392,
0.192) are (05̇08), (0.18), and (0.282), respectively. That gives an indication that the BUG model
may be used to analyze this data set. Moreover, the Akaike information criterion (AIC), Bayesian
information criterion (BIC), the consistent Akaike information criterion (CAIC) and Hannan-Quinn
information criterion (HQIC) are calculated for BUG model to be respectively as follows: (34.084),
(39.688), (35.684), (35.877).

To test whether BUG distribution fits the data or not, one can use the two-dimensional
Kolomogorov-Sminrov test of goodness of fit (Peacock [17]. Using the computational environmen-
tal R peacock package, we obtain the value of test statistic as 0.4054 with p value 0.1. Based on this p
value, we cannot reject the null hypothesis that the data came from the BUG distribution at 0.05 level
of significance

The MLE, the length of 95% confidence intervals (CIL) and the variance covariance matrix for
α1, α2, α3 and β is calculated for this data set using BUG model as shown in Table 2.

5.2. Data Set 2: Cholesterol levels

This data set contains cholesterol levels at 5 and 25 weeks after treatment in 30 patients. Before
analyzing this data, All the data points are divided by 400 to guarantee that the data belong to the
interval (0, 1). This data set was used by Muhammed [14, 16] and it is represented in Table 3. Again,
in this case all possibilities are exist.

The Kolmogorov-Smirnov distances between the fitted marginals and the empirical distribution
functions for X1 , X2 and max(X1, X2) with UG (1.26, 1.051), UG (1.885,1.051) and UG (2.535, 1.051)
are (0.791), (1.644), and (2.727), respectively. That gives an indication that the BUG model may be
used to analyze this data set. In addition, the two-dimensional Kolomogorov-Sminrov test of goodness
of fit (Peacock [17] with test statistics 0.4 and p value 0.2213, we cannot reject the null hypothesis
that the data came from the BUG distribution at 0.05 level of significance. Moreover, AIC, BIC,
CAIC and HQIC are calculated for BUG model to be respectively as follows: (-75.938), (-70.333), (-
74.338), (-74.145). Moreover, The MLE, the length of 95% confidence intervals (CIL) and the variance
covariance matrix for α1, α2,α3 and β is calculated for this data set using BUG model as shown in Table
4.
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The Bayes estimation of the four unknown parameters for the two data sets based on gamma priors
are considered. The posterior descriptive summaries of interest, such as the posterior mean, median,
standard deviation, and 95% Bayesian credible ranges, are provided in Table 5.

6. Simulation Study

In this section, the results of a Monte Carlo simulation study were introduced for showing the
performance of MLE of the model parameters. The evaluation of the MLEs was performed based on the
following quantities for each sample size: the Average Estimates (AE), Relative Absolute Bias (RAB),
the Mean Squared Error (MS E) and Confidence Interval Length (CIL) are estimated from R = 1000
replications for for α̂1, α̂2and α̂3 and β̂ the sample size has been considered at n = 30, 50, 100, 150
and 200, and some values for the parameters α1, α2and α3 and β have been considered.

Algorithm to generate from BUG distribution
Step 1. Generate U1, U2 and U3 from Uniform(0, 1).
Step 2. Calculate Z1 =

(
α

α−logU1

)1/β
,Z2 =

(
α

α−logU2

)1/β
and Z3 =

(
α

α−logU3

)1/β
.

Step3. Obtain X1 = max(Z1,Z3) and X2 = max(Z2,Z3).
Step4. Define the indicator functions as

δ1i =

{
1 ; x1i < x1i

0; otherwise
, δ2i =

{
1 ; x1i > x1i

0; otherwise
and δ3i =

{
1 ; x1i = x1i

0; otherwise
.

Step5. The corresponding sample size n must satisfy n = n1 + n2 + n3

Such that n1 =
∑n

i=1 δ1i, n2 =
∑n

i=1 δ2i and n3 =
∑n

i=1 δ1i.

Using the MATHCAD program, a 1000 data set is generated for different choices of sample sizes
that employed to solve the nonlinear likelihood equations. It can be noted from Table 6 and Table 7
that the estimates work well and MSE and RAB decreases as the sample size increases.

In addition, using gamma priors, we compute the Bayes estimates of the unknown parameters de-
scribed in the previous section. R package is used to compute these estimates. We conduct 10000
simulations and replicate the process 1000 times for computing the average estimates (AE), RAB and
MSEs Assuming gamma priors with hyperparameters are equal 0.5 and multivariate normal as pro-
posal distribution. The average estimates (AE), RAB and MSEs are provided Tables 8-9 and one can
note that as sample size increases, RAB and MSE decrease in most cases.

7. Absolutely Continuous Bivariate Unit Gompartz model

Based on Block and Basu [2] idea, an absolutely continuous bivariate Gompartz (BUGac ) distri-
bution will be introduced by removing the singular part from the Marshall-Olkin bivariate bivariate
Gompartz and remaining only the absolutely continuous part.

A random vector (Y1,Y2) follows a BUGac distribution if its pdf is given by

fY1,Y2(y1, y2) = c.
{

fUG(y1;α13) · fUG(y2;α2) i f y1 < y2

fUG(y1;α1) · fUG(y2;α23) i f y1 > y2
,

where c = α12
α123

is normalizing constant.
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We denote (Y1,Y2) ∼ BUGac(α1, α2, α3, β) if (X1, X2) has a BUG distribution, then (X1, X2) given
X1 , X2 has a BUGac distribution.

Proposition 5. Let (Y1,Y2) ∼ BUGac(α1, α2, α3, β) , then

1. The associated failure function is

FY1,Y2 (y1, y2) =
α123

α12
F

UG
(y1;α1) FUG (y2; β2) FUG (y;α3) −

α3

α12
F

UG
(y;α123) ;

where y = min(y1, y2). Furthermore,

1. The marginal failure functions are given by

FY1 (y1) =
α123

α12
F

UG
(y1;α13) −

α3

α12
F

UG
(y1;α123)

FY2 (y2) =
α123

α12
F

UG
(y2;α23) −

α3

α12
F

UG
(y2;α123)

2. The marginal pdfs associated with the cdf function given above are as follows

fY1 (y1) = c f UG (y1;α13) − c
α3

α123
f

UG
(y1;α123) , y1 > 0

and
fY2 (y2) = c f UG (y2;α23) − c

α3

α123
f

UG
(y2;α123) , y2 > 0.

Note that: Unlike those of the BUG distribution, the marginals of the BUGac distribution are not BUG
distributions. If β3→0+, then Y1 and Y2 follow BUG distributions and in this case, Y1 and Y2 become
independent.

Proposition 6. The product moments of (Y1,Y2) ∼ BUGac(α1, α2, α3, β) are given by

E (X1
rX2

s) =ceα123α
r
β

13α
s
β

2Γ

(
1 −

r
β

)
Γ

(
1 −

s
β
, α2

)
−

∞∑
k=0

(−1)kα
k+1
13 Γ

(
2 − r+s

β
+ k, α2

)
k!

(
1 − r

β
+ k

)
α

k− r+s
β

2

+ c eα123α
s
β

23α
r
β

1Γ

(
1 −

s
β

)
Γ

(
1 −

r
β
, α1

)
−

∞∑
k=0

(−1)kα
k+1
23 Γ

(
2 − r+s

β
+ k, α1

)
k!

(
1 − s

β
+ k

)
α

k− r+s
β

1

.

Proposition 7. Let (Y1,Y2) ∼ BUGac(α1, α2, α3, β) . Then

1. The Stress- Strength parameter takes the form:

R = P (Y1 < Y2) =
α1

α12
,

2. Max (Y1,Y2) ∼ GU (α123) .
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8. Conclusion and future work

Recently, the unit-Gompertz (UG) distribution was introduced as a new transformed model which
has right-skewed (unimodal) and reversed-J shaped density. Moreover, the hazard rate has constant, in-
creasing, bathtub and upside-down bathtub. In this paper, a bivariate extension for this new distribution
called bivariate unit Gompertz (BUG) is introduced. Some of its statistical properties are discussed.
The BUG distribution is a singular distribution and it has an absolute continuous and singular parts.
This model can be used in practice for non-negative and dependent random variables since the joint
distribution and the joint density functions are in closed forms. The MLEs for the four unknown pa-
rameters and their approximate var-cov matrix have been obtained and some simulations are carried
out. Explicit Bayesian estimators are also obtained in the case of three unknown parameters of this
model. Also, the Bayesian estimators are computed using MCMC in the case of the four unknown
parameters. Two real data sets have been re-analyzed and showed that the new model proposed in this
study can provide a better fit to these data sets. Along the same line as Block and Basu [2], bivariate
exponential model, an absolute continuous version of the BUG model also obtained and several of its
properties are presented. This article focuses solely on estimating model parameters for complete data.
Because censoring is a common phenomenon in reliability and survival analysis, future work could
look into different types of censored data.

Table 1. UEFA Champion’s League data

S.N. X1 X2 S.N. X1 X2 S.N. X1 X2 S.N. X1 X2

1 26.0 20.0 11 72.0 72.0 21 53.0 39.0 31 49.0 49.0
2 63.0 18.0 12 66.0 62.0 22 54.0 7.00 32 24.0 24.0
3 19.0 19.0 13 25.0 9.00 23 51.0 28.0 33 44.0 30.0
4 66.0 85.0 14 41.0 3.00 24 76.0 64.0 34 42.0 3.00
5 4.00 4.00 15 16.0 75.0 25 64.0 15.0 35 27.0 47.0
6 49.0 49.0 16 18.0 18.0 26 26.0 48.0 36 28.0 28.0
7 8.00 8.00 17 22.0 14.0 27 16.0 16.0 37 2.00 2.00
8 69.0 71.0 18 42.0 42.0 28 44.0 6.00
9 39.0 39.0 19 36.0 52.0 29 25.0 14.0

10 82.0 48.0 20 34.0 34.0 30 55.0 11.0

Table 2. The MLE, the CIL and the Variance- Covariance matrix for BUG Model for Data
Set1

Para MLE CIL Var-Cov
α̂1 0.495 0.091 0.0160 0.0040 -0.0050 0.0004
α̂2 1.258 0.249 0.0040 0.1210 -0.0120 0.0040
α̂3 0.638 0.148 -0.0050 -0.0120 0.0430 0.0009
β̂ 0.192 0.021 0.0004 0.0040 0.0009 0.0009
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Table 3. Cholesterol levels at 5 and 25 weeks after treatment in 30 patients.

S.N. X1 X2 S.N. X1 X2 S.N. X1 X2

1 325.0 246.0 11 217.0 252.0 21 316.0 283.0
2 278.0 245.0 12 248.0 305.0 22 243.0 245.0
3 257.0 212.0 13 225.0 225.0 23 305.0 272.0
4 192.0 192.0 14 287.0 208.0 24 197.0 197.0
5 276.0 325.0 15 233.0 217.0 25 243.0 247.0
6 262.0 294.0 16 198.0 198.0 26 315.0 283.0
7 309.0 232.0 17 229.0 179.0 27 205.0 205.0
8 287.0 287.0 18 310.0 352.0 28 315.0 255.0
9 304.0 245.0 19 214.0 274.0 29 263.0 215.0

10 215.0 261.0 20 253.0 209.0 30 210.0 271.0

Table 4. The MLE, the CIL and the Variance- Covariance matrix for BUG Model for Data
Set2

Para MLE CIL Var-cov
α̂1 0.65 0.154 0.046 0.073 0.009 0.063
α̂2 1.275 0.426 0.073 0.354 0.038 0.225
α̂3 0.61 0.166 0.009 0.038 0.054 0.049
β̂ 1.051 0.323 0.063 0.225 0.049 0.203

Table 5. Summary results for the posterior parameters for the two data sets

for data set 2 (the acceptance rate is 87.99%)
95% credible intervals Standard deviation Median Mean Parameter

(1.1335, 1.8130) 0.4312 1.4548 1.4591 α1

(1.1185, 1.5341) 0.3337 1.2941 1.2918 α2

(0.7643, 1.7933) 0.6319 1.0142 1.2109 α3

(0.6245, 0.9103) 0.2109 0.7549 0.7792 β

for data set 1 (the acceptance rate is 70.58%)
95% credible intervals Standard deviation Median Mean Parameter

(1.5727, 1.8571) 0.2180 1.7342 1.6932 α1

(0.5053, 0.8320) 0.2637 0.6761 0.6933 α2

(1.4487, 1.8840) 0.2783 1.7094 1.6446 α3

(0.2137, 0.2538) 0.0312 0.2326 0.2343 β
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Table 6. The AE, MSE, RAB and CL for BUG model with Parameters true values (0.2, 0.2,
2, 1.1) using the MLE method

Sample size Parameters AE MSE RAB CL (Lower, Upper)

30

α1 0.3220 0.0150 0.6110 0.401(0.122,0.523)
α2 0.2400 0.0016 0.2020 0.339(0.071, 0.41)
α3 3.4720 2.1660 0.7360 4.414(1.264, 5.679)
β 1.4290 0.1080 0.2990 0.627(1.116, 1.724)

50

α1 0.556 0.1270 1.7790 0.406(0.353, 0.759)
α2 0.517 0.1000 1.5840 0.321(0.356, 0.677)
α3 5.759 14.1340 1.8800 3.907(3.806,7.713)
β 1.093 0.0001 0.0064 0.271(0.951, 1.229)

100

α1 0.293 0.0087 0.4660 0.094(0.246, 0.34)
α2 0.37 0.0290 0.8480 0.136(0.301, 0.438)
α3 3.969 3.8780 0.9850 1.391(3.274, 4.665)
β 1.193 0.0087 0.0850 0.158(1.115, 1.272)

150

α1 0.199 3.0E-7 0.0029 0.033(0.183, 0.216)
α2 0.213 0.0002 0.0650 0.035(0.196, 0.230)
α3 2.233 0.0540 0.1160 0.307(2.079,2.386)
β 1.24 0.0190 0.1270 0.108(1.185, 1.294)

200

α1 0.251 0.0026 0.2550 0.031(0.235, 0.267)
α2 0.219 0.0004 0.0950 0.028(0.205, 0.233)
α3 2.478 0.2280 0.2390 0.263(2.346, 2.609)
β 1.037 0.0040 0.0570 0.079(0.998, 1.076)
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Table 7. The AE, MSE, RAB and CL for BUG model with parameters true values as (1.2,
1.2, 2.1, 1.2) using the MLE method

Sample size Parameters AE MSE RAB CL (Lower, Upper)

30

α1 1.0830 0.0140 0.0970 0.646(0.760, 1.406)
α2 1.1980 3.0E-5 0.0015 0.663(0.867, 1.53)
α3 2.5960 0.24600 0.2360 1.395(1.898, 3.293)
β 2.4540 1.57300 1.0450 0.669(2.120,2.788)

50

α1 1.2560 0.0031 0.0460 0.48(1.016, 1.496)
α2 1.3250 0.0160 0.1040 0.495(1.077, 1.572)
α3 3.0380 0.8790 0.4460 1.096(2.49, 3.585)
β 1.7720 0.3270 0.4760 0.367(1.588, 1.955)

100

α1 1.1600 0.0016 0.0330 0.203(1.059, 1.262)
α2 1.2020 5.0E-6 0.0019 0.215(1.094, 1.31)
α3 2.7740 0.4540 0.3210 0.472(2.538, 3.01)
β 1.5840 0.1480 0.3200 0.181(1.494, 1.675)

150

α1 1.0930 0.0110 0.0890 0.171(1.007, 1.179)
α2 1.0980 0.0100 0.0850 0.177(1.009, 1.186)
α3 2.6800 0.3360 0.2760 0.405(2.477, 2.882)
β 1.5250 0.1060 0.2710 0.136(1.457,1.593)

200

α1 1.1980 5.0E-6 0.0019 0.182(1.107, 1.289)
α2 1.1820 0.0003187 0.0150 0.182(1.091, 1.273)
α3 2.9700 0.75700 0.4140 0.44(2.75, 3.19)
β 1.6490 0.20200 0.3750 0.096(1.601,1.698)
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Table 8. The AE, MSE, RAB and CL for BUG Model with different parameters true values
using Bayesian estimation method

Parameters true Values (1.5, 1.5, 1.5, 0.55) (0.5, 0.5, 0.5, 1.25)
Sample size Parameters AE RAB MSE AE RAB MSE

30

α1 1.7011 0.1341 0.0590 1.2913 1.5827 0.6265
α2 2.0952 0.3968 0.3682 1.5459 2.0918 1.0943
α3 1.5738 0.0492 0.0245 1.2078 1.4155 0.5013
β 0.4629 0.0743 0.0006 0.5575 0.5540 0.4796

50

α1 1.6960 0.1306 0.0407 1.2936 1.5872 0.6301
α2 2.0915 0.3943 0.3516 1.5488 2.0975 1.1003
α3 1.5799 0.0533 0.0097 1.2126 1.4252 0.5082
β 0.4629 0.1583 0.0078 0.5564 0.5549 0.4812

100

α1 1.6915 0.1277 0.0393 0.7363 0.4725 0.05585
α2 2.0887 0.3925 0.3483 0.8441 0.6882 0.1184
α3 1.5691 0.0461 0.0080 0.7029 0.4058 0.0412
β 0.4642 0.1560 0.0075 0.7897 0.3683 0.2119

150

α1 1.6996 0.1331 0.0423 0.7361 0.4721 0.0558
α2 2.0973 0.3982 0.3585 0.8442 0.6884 0.1185
α3 1.5759 0.0506 0.0089 0.7020 0.4041 0.0409
β 0.4625 0.1591 0.0078 0.7899 0.3681 0.2117

200

α1 1.6938 0.1292 0.0402 0.7356 0.4711 0.0555
α2 2.0933 0.3956 0.3539 0.8440 0.6880 0.1184
α3 1.5704 0.0496 0.0081 0.7020 0.4040 0.0408
β 0.4639 0.1566 0.0076 0.7901 0.3680 0.2116
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Table 9. The AE, MSE, RAB and CL for BUG model with different parameters true values
using Bayesian estimation method

Parameters true Values (3.0, 3.0, 3.0, 0.3) (0.3, 0.3, 0.3, 1.75)
Sample size Parameters AE RAB MSE AE RAB MSE

30

α1 2.0478 0.3174 0.9169 0.7355 1.4518 0.1897
α2 2.5667 0.1444 0.1942 0.8434 1.8115 0.2954
α3 1.8884 0.3706 1.2486 0.7016 1.3388 0.1613
β 0.4050 0.3501 0.0113 0.7903 0.5484 0.9211

50

α1 2.0506 0.3165 0.9116 0.7348 1.4493 1.8907
α2 2.5641 0.1453 0.1965 0.8432 1.8106 0.2951
α3 1.9046 0.3651 1.2129 0.7012 1.3373 0.1610
β 0.4043 0.3477 0.0111 0.7908 0.5481 0.9201

100

α1 2.0520 0.3160 0.9087 0.7354 1.4513 0.1896
α2 2.5643 0.1452 0.1959 0.8435 1.8118 0.2955
α3 1.9063 0.3646 1.2091 0.7026 1.3420 0.1621
β 0.4043 0.3475 0.0111 0.7902 0.5484 0.9212

150

α1 2.0302 0.3233 0.9504 0.7350 1.4499 0.1892
α2 2.5531 0.1490 0.2056 0.8439 1.8130 0.2959
α3 1.8914 0.3695 1.2412 0.7018 1.3393 0.1615
β 0.4063 0.3544 0.0116 0.7904 0.5483 0.9208

200

α1 2.0508 0.3164 0.9115 0.7355 1.4518 0.1897
α2 2.5643 0.1452 0.1960 0.8437 1.8122 0.2956
α3 1.9028 0.3657 1.2168 0.7016 1.3386 0.1613
β 0.4045 0.3482 0.0112 0.7905 0.5483 0.9206
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