
Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 1

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt

7th International Conference
on Electrical Engineering

ICEENG 2010

A Public Key Cipher Algorithm Based on Multivariate Cubic
Quasigroups (MCQ)

By

M. Fawaz* H. Zorkta** S. Alnazer***

Abstract:

A new public key cipher algorithm is introduced in this article. This proposal is based
on a specific class of quasigroups string transformations called multivariate cubic
quasigroups (MCQ).
MCQ public key cipher algorithm is a public key block cipher algorithm, it is a
bijective mapping; it does not perform message expansions and can be used for both
encryption and signature. MCQ public key cipher algorithm consists of n
multivariate cubic polynomials with dn variables where 3,40:.  dkkdn .
A particular characteristic of this proposal is that it is more secure and faster than
previous MQQ version in decryption, its encryption speed is comparable to the speed
of previous MQQ version, it is highly parallelizable, and it is well suited for short
signatures.

Keywords:

Public Key Cryptosystems, Quasigroup String Transformations, Fast signature
generation, Multivariate non Linear Polynomials, Multivariate Quadratic Quasigroup,
Multivariate Cubic Quasigroup

* M. Fawaz : Master Candidate at Informatics College- Aleppo University- Syria
** H. Zorkta: Asst. Prof. at Network Dept.- Informatics College- Aleppo Unv. Syria
*** S. Alnazer: Head of research Dept. Informatics College- Aleppo Unv. Syria

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 2

1. Introduction:

The most popular Public Key Cryptosystem (PKC) schemes are the Diffie and
Hellman (DH) key exchange scheme based on the hardness of discrete logarithm
problem, the Rivest, Shamir and Adleman (RSA) scheme based on the difficulty of
integer factorization, and the Koblitz and Miller (ECC –Elliptic Curve Cryptography)
scheme based on the discrete logarithm problem in an additive group of points
defined by elliptic curves over finite fields. There are two common characteristics of
these well known PKCs (DH, RSA and ECC) [1]:
 their speed – which frequently is a thousand times lower than the symmetric

cryptographic schemes,
 their security – which relies on one of two hard mathematical problems:

efficient computation of discrete logarithms and factorization of integers.
Recently a new public key scheme called MQQ which is based on multivariate
quadratic polynomials and quasigroup string transformations was proposed by
Gligoroski et al., This cryptosystem is considered to be of higher potential and
expected to be as fast as block cipher [1, 2].

In this paper, a new public key cipher algorithm, based on a specific class of
quasigroups string transformations called multivariate cubic quasigroups (MCQ) is
introduced. This MCQ public key cipher algorithm is a bijective mapping and can be
used for both encryption and signature. It is faster than previous MQQ versions, and
it is well suited for short signatures.

2. Preliminaries:

In this section quasigroup string transformations is introduced in 2.1, representation
of the quasigroups as vector valued Boolean functions in 2.2, definition and
generation of the multivariate cubic quasigroups in 2.3, and a detailed example in 2.4.

2.1. Quasigroup string transformations: [2]

Definition 1. A quasigroup (Q, *) is a groupoid satisfying the law
.&:),!)(,(vuyvxuQyxQvu  (1)

It follows from (1) that for each a, b  Q there is a unique x  Q such that a * x = b.
Then we denote x = a * b where * is a binary operation in Q (called a left
parastrophe of *) and the groupoid (Q, *) is a quasigroup too. The algebra (Q, *, *)
satisfies the identities

x * (x * y) = y, x * (x * y) = y. (2)
Consider an alphabet (i.e., a finite set) Q, and denote by Q+ the set of all nonempty
words (i.e., finite strings) formed by the elements of Q. In this paper, we will use two
notifications for the elements of Q+: a1a2 . . . an and (a1, a2, . . . , an), where ai  Q.

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 3

Let * be a quasigroup operation on the set Q. For each l  Q we define two functions
el,*, dl,* : Q+ → Q+ as follows:

Definition 2. Let ai  Q, M = a1a2 . . . an. Then
el,*(M) = b1b2 . . . bn 

b1 = l * a1, b2 = b1 * a2, . . . , bn = bn−1 * an,
dl,*(M) = c1c2 . . . cn 

c1 = l * a1, c2 = a1 * a2, . . . , cn = an−1 * an,

The functions el,* and dl,* are called the e–transformation and the d–transformation of
Q+ based on the operation * with leader l respectively.

Theorem 1. If (Q, *) is a finite quasigroup, then el,* and dl,* are mutually inverse
permutations of Q+, i.e.,

dl,* (el,* (M)) = M = el,* (dl,* (M)
for each leader l  Q and for every string M  Q+.

2.2 Quasigroups as vector valued Boolean functions [1]
Vector valued boolean functions (v.v.b.f.) is used to present finite quasigroups (Q, *)
of order 2d in this paper, and we choose a bijection  : Q → {0, 1, . . . , 2d - 1} and
represent a  Q by the d-bit representation  (a). Hence, for each a  Q there are
uniquely determined bits x1, x2, . . . , xd  {0, 1} (which depend on the choice of the
bijection ) such that a is represented by the string x1x2 . . . xd. Then we identify a
and its d-bit representation and write a = x1x2 . . . xd or, sometimes, a = (x1, x2, . . . ,
xd). Now, the binary operation * on Q can be seen as a vector valued operation
*vv : {0, 1}2d → {0, 1}d defined as:

a * b = c  *vv(x1, x2, . . . , xd, y1, y2, . . . , yd) = (z1, z2, . . . , zd),
where x1 . . . xd, y1 . . . yd, z1 . . . zd are binary representations of a, b, c respectively.

Each zi depends of the bits x1, x2, . . . , xd, y1, y2, . . . , yd and is uniquely
determined by them. So, each zi can be seen as a 2d-ary Boolean function
zi = fi(x1, x2, . . . , xd, y1, y2, . . . , yd), where fi : {0, 1}2d → {0, 1}
strictly depends on, and is uniquely determined by, *. Thus, we have the following:

Lemma 1. For every quasigroup (Q, *) of order 2d and for each bijection Q → {0, 1 . .
. , 2d - 1} there are a uniquely determined v.v.b.f. *vv and d uniquely determined 2d-
ary Boolean functions f1, f2, . . . , fd such that for each a, b, c  Q

a * b = c  *vv(x1, . . . , xd, y1, . . . , yd) =
(f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd)).

Each k-ary Boolean function f(x1, . . . , xk) can be represented in a unique way by its
algebraic normal form (ANF), i.e., as a sum of products

...)(
1

,,
1

,
1

0  
 ksji

sjisji
kji

jiji

k

i
ii xxxaxxaxaafANF , (3)

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 4

where the coefficients a0, ai, ai,j , . . . are in the set {0,1} and the addition and
multiplication are in the field GF(2).

2.3 Multivariate Cubic Quasigroups

In this subsection a special class of quasigroups is presented, called multivariate
cubic quasigroups (MCQs) that can be of different types.

Definition 3. A quasigroup (Q, *) of order 2d is called Multivariate Cubic Quasigroup
(MCQ) of type CubcQuadqLinl if c=d − (q + l) of the polynomials fi are of degree 3
(i.e., are cubic) and q of them are of degree 2 (i.e., are quadratic) and l of them are of
degree 1 (i.e., are linear), where 0 ≤ l ≤ q < c ≤ d.

Definition 4. A quasigroup (Q, *) of order 2d is called Cubic_QG if it is MCQ of type
CubdQuad0Lin0.

Theorem 2. Let A1 = [fij]d×d and A2 = [gij]d×d be two d × d matrices of linear
Boolean expressions, and let b1 = [ui]d×1 and b2 = [vi]d×1 be two d × 1 vectors of
linear or quadratic Boolean expressions. Let the functions fij and ui depend only on
variables x1, . . . , xd, and let the functions gij and vi depend only on variables xd+1, . . .
, x2d. If Det(A1) = Det(A2) =1 in GF(2) and if A1·(xd+1, . . . , x2d)

T + b1 ≡ A2·(x1, . . . ,
xd)

T + b2, then the vector valued operation *vv(x1, . . . , x2d) = A1 · (xd+1, . . . , x2d)
T +b1

defines a quasigroup (Q, *) of order 2d that is MQQ [1].

By using previous theorem it concluded that the formula A · (xd+1, . . . , x2d)
T + b,

where A, b depend only on variables x1, . . . , xd and Det(A1) = 1 in GF(2), may define
a quasigroup; Replacing the two underlined phrases by " quadratic Boolean
expressions" conclude that formula A · (xd+1, . . . , x2d)

T + b may define a quasigroup
that is MCQ. In this manner, to keep the possibility of generating a valid quasigroup
in a high range, the new quadratic Boolean expressions must behave like the linear
ones, i.e. they cover the set {0…2d-1} when (x1, . . . , xd) moves over the same set; for
d = 3, there are 28 quadratic Boolean expressions whose behave like the linear ones.
Table (1) illustrates these expressions.

Table (1): Quadratic Boolean expressions of 3 variables behave like the linear ones

x1+x2x3 x2+x3+x1x2 x3+x1x2+x2x3 x1+x2+x1x2+x1x3

x2+x1x3 x2+x3+x1x3 x1+x2+x3+x2x3 x1+x2+x1x2+x2x3

x3+x1x2 x1+x1x2+x2x3 x1+x2+x3+x1x3 x1+x3+x1x2+x1x3

x1+x2+x1x3 x1+x1x3+x2x3 x1+x2+x3+x1x2 x1+x3+x1x3+x2x3

x1+x2+x2x3 x2+x1x2+x1x3 x1x2+x1x3+x2x3 x1+x2+x1x2+x1x3+x2x3

x1+x3+x1x2 x2+x1x3+x2x3 x2+x3+x1x3+x2x3 x1+x3+x1x2+x1x3+x2x3

x1+x3+x2x3 x3+x1x2+x1x3 x2+x3+x1x2+x2x3 x2+x3+x1x2+x1x3+x2x3

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 5

For d = 3, a matrix A has a Det(A) = 1 in GF(2) if it is of forms:

where  = 1 , and  = 1 ;

In Table (2) a procedure MCQ(3) for generating a Cubic_QGs of order 23 is defined.

Table (2): Algorithm for generating MCQs of order 23

MCQ(3)
Input: All expressions in Table (1)
Output: a set of Cubic_QGs of order 23 = 8.
1. Choose randomly two different elements from Table (1) as  and 
2. Form a 3 ×3 matrix A such that Det(A) = 1 in GF(2)
3. Find all 3 × 1 vectors Bi of quadratic Boolean expressions of variables
x1, x2, x3 such that, for X2 = (x4, x5, x6)

T the formula A · X2 + Bi gives a
valid quasigroup.
4. Set CB as the set of all Bi founded in step 3;
If CB is an empty set then GoTo 1;
Else, for each vector Bi in CB compute the vector *ivv = A · X2 + Bi

if *ivv is a Cubic_ QG then
return *ivv;

5. if all vectors in CB did not return any Cubic_ QG then GoTo 1;

2.4. Example:
This example executes the previous algorithm step by step;

1- Choose randomly two different elements from Table (1); Let  = x1x2+x1x3+x2x3,
and  = x2+x3+x1x2+x2x3.

2- Form a 3 × 3 matrix A, such that Det(A) = 1 in GF(2), it is obtained

 A=

3- Find all 3 × 1 vectors Bi of quadratic Boolean expressions of variables x1, x2, x3

such that, for X2 = (x4, x5, x6)
T the formula A · X2 + Bi gives a valid quasigroup,

for this case, there is a 256 vectors.
4- Set CB as the set of all Bi founded in previous step;
5- Take a vector B from CB 1+x1+x2+x1x3

1+x1+x3

1+x1+x3+x1x2+x1x3+x2x3

Now compute *ivv = A · X2 + B = (f1, f2, f3)
T

x1x2+x1x3+x2x3 1+ x1x2+x1x3+x2x3 x1x2+x1x3+x2x3

1+ x1x2+x1x3+x2x3 x1x2+x1x3+x2x3 x1x2+x1x3+x2x3

x2+x3+x1x2+x2x3 1+ x2+x3+x1x2+x2x3 1+ x1x2+x1x3+x2x3

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 6

f1 = 1+x1+x2+x1x3+x1x2x4+x1x3x4+x2x3x4+x5+x1x2x5+x1x3x5+x2x3x5+x1x2x6+x1x3x6+x2x3x6,
f2 = 1+x1+x3+x4+x1x2x4+x1x3x4+x2x3x4+x1x2x5+x1x3x5+x2x3x5+x1x2x6+x1x3x6+x2x3x6,
f3 = 1+x1+x3+x1x2+x1x3+x2x3+x2x4+x3x4+x1x2x4+x2x3x4+x5+x2x5+x3x5+x1x2x5+x2x3x5+x6+x1x2x6+
x1x3x6+x2x3x6;

Table(3): A quasigroup (Q,*) and its left parastrophe (Q,\) of order 23

The result is a valid quasigroup, moreover it is a Cubic_ QG.
The corresponding left parastrophe (Q, \) of resulting quasigroup is also a
Cubic_ QG: \vv(x1, . . . , x2d) = (g1,g2,g3)

T where
g1= x1x2x4+x5+1+x1+x3+x1x3x5+x1x3+x2x3x5+x1x2x6+x1x3x6+x2x3x6+x2x3,
g2 = x4+1+x1+x2+x1x2x4+x1x3x5+x2x3x5+x1x2x6+x1x3x6+x2x3x6+x2x3,
g3 = x4+x1x3x4+x2x4+x1x2+x3x4+x2x3+x1x3x5+x2x5+x3x5+x6+x1x3;

3. Description of the algorithm:

A generic description for MCQ scheme can be expressed as a typical multivariate
cubic system: T ◦P′◦S: {0, 1}n → {0, 1}n where T and S are two nonsingular linear
transformations, and P′ is a bijective multivariate cubic mapping on {0, 1}n.
First an algorithm will be presented in Table (4) to show how the mapping
P′: {0,1}n → {0,1}n is defined. Public and private keys generation process is described
in Table (5). While Table (6) illustrates the signing process algorithm.

Table (4): Definition of the nonlinear mapping P′ : {0, 1}n → {0, 1}n

P'(n)
Input: Integer n, where n = d.k: k  40, d=3, a vector x = (f1, … , fn) of n linear
Boolean functions of n variables, and a d × 1 vector L = (l1, …, ld) of d variables.
Output: d quasigroups *1, . . . , *d and n multivariate cubic polynomials
 P'1 (x1, . . . , xn,l1, …, ld), P'i (x1, . . . , xn), i = 2, . . . , n.
1. Represent a vector x = (f1, … , fn) of n linear Boolean functions of n variables

x1, . . . , xn, as a string x = X1 . . .Xk where Xi are vectors of dimension d;
2. By calling the procedure MCQ(d) generate large set of Cubic_QG of order 2d;

Then pick randomly d different Cubic_QGs *1, . . . , *d;
3. Compute y = Y1 . . . Yk where: Y1 = L *1 X1, Yj = Xj-1 *[(j-1) mod d]+1 Xj, for j = 2, . . , k;
4. Output: d Quasigroups *1, . . . , *d and y as n multivariate cubic polynomials
P'1 (x1, . . . , xn, l1, …, ld), P'i (x1, . . . , xn), i = 2, . . . , n.

* 0 1 2 3 4 5 6 7
0 7 6 2 3 5 4 0 1
1 4 5 0 1 7 6 3 2
2 3 2 7 6 0 1 4 5
3 1 7 3 5 4 2 6 0
4 0 1 5 4 2 3 7 6
5 6 0 4 2 3 5 1 7
6 5 3 6 0 1 7 2 4
7 2 4 1 7 6 0 5 3

\ 0 1 2 3 4 5 6 7
0 6 7 2 3 5 4 1 0
1 2 3 7 6 0 1 5 4
2 4 5 1 0 6 7 3 2
3 7 0 5 2 4 3 6 1
4 0 1 4 5 3 2 7 6
5 1 6 3 4 2 5 0 7
6 3 4 6 1 7 0 2 5
7 5 2 0 7 1 6 4 3

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 7

Table (5): Algorithm for generating the public and private key for the MCQ scheme
Input: Integer n, where n = d.k: k  40, d=3.
Output:
Public key P: n multivariate cubic polynomials Pi(x1, . . . , xn, l1, …, ld),i = 1, . . . , n;
Private key: Two nonsingular Boolean matrices T and S of order n × n and d
Cubic_QGs *1, . . . , *d of order 2d and one vector L = (l1, …, ld).
1. Generate two nonsingular n × n Boolean matrices T and S (uniformly at random).
2. Generate a d × 1 vector L = (l1, …, ld) of d variables.
3. Call the procedure for definition of P′(n) : {0, 1}n {0, 1}n and from there also
obtain the quasigroups *1, . . . , *d .
4. Compute y = T(P′(S(x))) where x = (x1, . . . , xn).
5. Output: The public key is y as n multivariate cubic polynomials

Pi(x1, . . . , xn, l1, …, ld), i = 1, . . . , n,
and the private key is the tuple (T, S, *1, . . . , *d, L).

Table (6): Algorithm for decryption/signing with the private key (T, S, *1, … , *d, L)

Input: a vector y = (y1,. . . , yn).
Output: a vector x = (x1,. . . , xn) such that P(x) = y.
1. Set y′ = T−1.y.
2. Represent y′ as y′ = Y1 . . . Yk where Yi are vectors of dimension d.
3. By using the left parastrophes \i of the quasigroups *1, . . . , *d, obtain

x′ = X1 . . .Xk, such that:
X1 = L \1Y1, and Xi = Xi−1 \[(i-1) mod d]+1 Yi, for i = 2, . . . , k;

4. Compute x = S−1.x′.

The algorithm for encryption with the public key is a straightforward application of
the set of n multivariate polynomials P={Pi(x1, … , xn, l1, …, ld), i = 1, . . . , n} over a
vector x = (x1, … , xn), i.e. y = P(x).

4. MCQ vs. MQQ (Operating characteristics):

Comparative study between MCQ and MQQ schemes is presented in this section.

4.1. Speed of keys generation comparison

The algorithm for generating MCQs is highly effective and straight procedure,
especially if it is compared with the randomly algorithm which is proposed in [1] for
generating MQQs. Figure (1) shows slightly that difference.
In [1] the bijection of Dobbertin [4] for m = 6 is used to eliminate the linear
coordinates from MQQ scheme, namely in P'(n) procedure. This is adding an extra
time DobT to the consumed time for public key generating. Then DobPubMQQPubMCQ TTT  __ .

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 8

Figure (1): Speed of keys generation comparison

4.2. Speed of encryption and decryption comparison

MCQ scheme is time-consuming in encryption with the public key more than MQQ,
because its public key consists of cubic Boolean expressions; while it is faster in
decryption/signing in private key than MQQ, because MQQ uses the inverse bijection
of Dobbertin, then 1Pr__Pr__ 

DobiDecMQQiDecMCQ TTT ; for this reason, MCQ is suitable

for signing and especially for short signature.

4.3. Size of public and private keys

Public key consists of n multivariate polynomials Pi(x1, ..., xn, l1,…, ld), i = 1…n.
rename the variables x1, …, xn, l1, …, ld by t1, …, tn,tn+1, …, tn+d respectively, and set
m=n+d; every Pi can be represented as

h

m

j

m

jk

m

kh
kjkhkji

m

j

m

jk
kjkkji

m

j
jjiii tttattataaP    







 




 





2

1

1

1 1
,,,

1

1 1
0,,,

1
0,0,,0,0,0,

So, for every Pi there are:
- 1 term of degree 0, - m terms of degree 1,

-
2

)1(mm terms of degree 2, -
6

)2)(1( mmm terms of degree 3;

Then it is needed
6

)2)(1(

2

)1(
1







mmmmm
m bits to store every Pi; so, the size of

the public key is 



 




)
6

)2)(1(

2

)1(
1(

mmmmm
mn bits.

The private key consists of:
- two n × n Boolean matrices T and S need 2n2 bits,
- one leader vector (l1, …, ld)

T needs d bits.
- d quasigroups, each of them consists of d multivariate polynomials fi(x1, …,

x2d). Memory size needed for storage these quasigroups is

)
6

)22)(12(2

2

)12(2
21(2 





ddddd

dd bits,

Then, the size of the private key is 



 


 d

ddd
ddddn)

3

)12)(1(2
)12(21(2 22 bits.

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 9

Table (7) illustrates the size of public and private key of MCQ and MQQ for 120n ,
where 3d

Table (7) Memory size in KBytes for public and private key
MCQ MQQ[1].n

Size of the Public key Size of the Private Key Size of the Public key Size of the Private Key
120 4545 4 106 9
135 7220 5 151 10
150 10932 6 207 11
165 15920 7 276 12
180 22447 8 358 13
195 30800 9 455 14

4.4. Security analysis and security level comparison:

MQQ security analysis is presented in [1] with a conjectured security level  2/2 n

when 140n . MCQ scheme has the same strength as MQQ against the different types
of attack; Moreover MCQ scheme has an important advantage against XL attack [3]
and Grobner basis attacks, appears in that the number of variables is more than the
equations number, where the equations number is n, and the variables number is
n + d; This is rising the conjectured security level of MCQ to 2n+d when 120n .

4.5. Pool size of MCQs of order 23 and MQQs of order 25 comparison:

Size of the pool set for 8 MQQs of order 25 is at least of order 2149 [1]; For MCQ
scheme with d = 3, there are more than 211 choices for the matrix A, and for each of
them there are more than 27 B vectors, then the size of the pool set for 3 MCQs of
order 23 is at least of order 257.

5. The parallelizable nature of MCQ scheme:

MCQ scheme has a highly parallelizable nature; that is slightly appears in Figure (2)
where 150-bit MCQ was implemented in C, using OpenMP 2.0 under Microsoft
Visual Studio 2008. It is clear that increasing of the number of CPU cores can speed
up MCQ algorithm almost linearly with the number of cores. Thus, MCQ is very
suitable for signing and especially for short signatures.

6. Conclusions:
The results about our PKC can be briefly summarized as:
 it is a public key block cipher algorithm with no message expansion;
 it has one parameter 120n the bit length of the encrypted block;
 it is a deterministic one-to-one mapping;
 its encryption speed is comparable to the speed of MQQ scheme;

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 10

 its decryption/signature speed is more than MQQ speed, which has
decryption/signature speed as a typical symmetric block cipher (i.e., in the
range of 500–1000 times faster than the most popular public key schemes)[1];

 its performance can be increased many times if it is implemented in parallel
hardware or software environment because his nature is highly parallelizable;

Figure (2): Software speeds (in number of cycles)by using OpenMP
 it is well suited and suitable for short signatures;

 its conjectured security level when 3,40:.  dkkdn is)(2 dn .

References
[1] “Multivariate Quadratic Trapdoor Functions Based on Multivariate Quadratic Quasigroups”,
Proceedings of the AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH ’08),
Cambridge, Massachusetts, USA, March 24-26, 2008.
[2] S. Markovski, “Quasigroup string processing and applications in cryptography”, in Proc. 1-st
Inter. Conf.Mathematics and Informatics for industry – MII, Thessaloniki 2003, pp. 278–290, 2003.
[3] M. Sugita, M. Kawazoe and H. Imai, “Relation between the XL Algorithm and Grobner Basis
Algorithms”, IEICE-Tran Fund Elec, Comm & Comp Sci Vol. E89-A, Number 1 pp. 11–18, 2006.
[4] H. Dobbertin, “One-to-one highly nonlinear power functions on GF(2n)”, Appl. Algebra Eng.
Commun. Comput., Vol. 9(2), pp. 139-152, 1998.

APPENDIX
An example of private and public key generation with n = 9 bits and d = 3; Let x = (x1, x2, . . . , x9) be a
vector of 9 Boolean variables. The private and the public key is created by the following procedure:
1) Set

S = T =

where T and S are a nonsingular 9 × 9 Boolean matrices generated uniformly at random;

2) Set
*1 (x1, . . . , x6) =
(1+x1+x3+x1x2+x1x4+x2x4+x1x2x4+x1x3x4+x2x3x4+x5+x1x5+x2x5+x1x2x5+x1x3x5+x2x3x5+x1x6+x2x6+x1x2x6+x1x3x6+x2x3x6,
x2+x3+x1x3+x2x3+x4+x1x4+x2x4+x1x2x4+x1x3x4+x2x3x4+x1x5+x2x5+x1x2x5+x1x3x5+x2x3x5+x1x6+x2x6+x1x2x6+x1x3x6+x2x3x6,
x3+x1x2+x2x3+x1x4+x3x4+x1x2x4+x5+x1x5+x3x5+x1x2x5+x6+x1x6+x2x6+x1x2x6+x1x3x6+x2x3x6);
*2 (x1, . . . , x6) =

1 1 1 0 1 1 0 0 1
1 0 0 1 0 1 1 1 0
1 1 1 0 1 1 1 1 0
1 0 1 0 1 1 1 0 1
0 0 1 0 0 1 1 0 0
0 0 1 1 0 1 1 1 1
0 0 0 1 1 0 0 0 1
1 1 1 0 0 1 1 0 0
1 1 0 0 0 1 1 1 1

1 0 0 1 0 1 1 1 1
1 0 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 0
0 1 1 0 1 0 0 0 1
1 1 0 0 1 0 1 1 1
1 1 0 1 0 0 1 1 1
1 0 0 1 0 0 1 1 1
1 1 0 1 1 1 1 0 0

Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE289 - 11

(1+x1+x2+x1x3+x1x2x4+x1x3x4+x2x3x4+x5+x1x2x5+x1x3x5+x2x3x5+x1x2x6+x1x3x6+x2x3x6,
1+x1+x3+x4+x1x2x4+x1x3x4+x2x3x4+x1x2x5+x1x3x5+x2x3x5+x1x2x6+x1x3x6+x2x3x6,
1+x1+x3+x1x2+x1x3+x2x3+x2x4+x3x4+x1x2x4+x2x3x4+x5+x2x5+x3x5+x1x2x5+x2x3x5+x6+x1x2x6+x1x3x6+x2x3x6);
*3 (x1, . . . , x6) =
(1+x1+x2+x1x2+x1x3+x1x4+x1x2x4+x2x3x4+x5+x1x5+x1x2x5+x2x3x5+x1x6+x1x2x6+x2x3x6,
x2+x1x3+x2x3+x4+x1x4+x1x2x4+x2x3x4+x1x5+x1x2x5+x2x3x5+x1x6+x1x2x6+x2x3x6,
1+x1+x3+x2x3+x2x4+x1x3x4+x2x3x4+x5+x2x5+x1x3x5+x2x3x5+x6+x1x6+x1x2x6+x2x3x6);

3) Set a Leader L=(e1,e2,e3); we replace the notation L=(l1, l2,l3) by (e1, e2, e3) to make it easy to distinguish
between number 1 and letter l.

4) The tuple (S, T, *1, *2, *3, L) is the private key;

5) Set x' = S . xT = x1+x4+x6+x7+x8+x9

x1+x3+x4+x5+x6+x7+x8

x1+x2+x3+x4+x5+x6+x7+x8+x9

x2+x3+x4+x6+x7+x8

x2+x3+x5+x9

x1+x2+x5+x7+x8+x9

x1+x2+x4+x7+x8+x9

x1+x4+x7+x8+x9

x1+x2+x4+x5+x6+x7

6) Represent the vector x' by chunks of 3 bits, i.e. x′ = X1X2X3;

7) Compute y'=Y1Y2Y3 such that Y1 = L *1 X1, Y2 = X1 *2 X2, Y3 = X2 *3 X3;
8) Compute y = T . y'T; The following relations will be obtained:
y1 = e1+e2+e1e3+e3+e1x1+e1x4+e1x6+e1x7+e1x8+e3x9+e1e2x1+e1e2x4+e1e2x6+e1e2x7+e1e2x8+e3x3+e3x5+e1x2+e2x1+e2x2+e2x3+e2x4+e2x5+
e2x6+e2x7+e2x8+e2x9+e1e2x2+e1e3x1+e1e3x2+e1e3x3+e1e3x4+e1e3x5+e1e3x6+e1e3x7+e1e3x8+e1e3x9+e2e3x1+e2e3x2+e2e3x3+e2e3x4+e2e3x5+
e2e3x6+e2e3x7+e2e3x8+e2e3x9+x1x2x5+x2x4x5+x4x5+x2x5x6+x5x6+x1x3x9+x4x9+x6x9+x4+x5x8+x7x9+x1x3x4+x1x3x6+x1x3x8+x1x4x5+
x1x5x6+x1x5x8+x3x5x7+x2x5x8+x3x5x8+x3x5x9+x1x2x7+x3+x7+x8+x1+x2x7+x3x5+x3x9+x2x4+x2x5+x2x4x9+x2x3x5+x3x4x7+x4x5x9+x4x7x9+
x4x8+x2x6+x5x6x7+x5x6x9+x6x8+x2x4x8+x4x5x7+x2x7x9+x2x3x7+x2x6x8+x2x6x9+x7x8+x1x7x9+x3x6x7+x6x7x9,
y2 = e1+e3+e1e2+e1x1+e1x4+e1x6+e1x7+e1x8+e2x1+e2x4+e2x6+e2x7+e2x8+e1e2x1+e1e2x4+e1e2x6+e1e2x7+e1e2x8+e1e3x1+e1e3x4+e1e3x6+
e1e3x7+e1e3x8+e2e3x1+e2e3x4+e2e3x6+e2e3x7+e2e3x8+e1x2+e2x2+e1e2x2+e1e3x2+e2e3x2+x3x9+x1x7+x1x8+x1x2x5+x2x4x5+x2x5x6+x1x3x9+
x8x9+x2x7+x1x4+x1x6+x1x3x4+x1x3x6+x1x3x8+x1x4x5+x1x5x6+x1x5x8+x3x5x7+x2x5x8+x3x5x8+x3x5x9+x1x2x4+x1x2x6+x1x2x8+x4+x9+
x2x5+x2x9+x4x5+x5x6+x7x9+x2x8+x3x4+x2x5x9+x1x2x9+x1x3x5+x3x4x5+x1x2x7+x1x3x7+x1x5x7+x1x5x9+x2x5x7+x3x6+x6+x3x5x6,
y3 = e1+e2+e1e3+e3+e1x1+e1x4+e1x6+e1x7+e1x8+e3x9+e1e2x1+e1e2x4+e1e2x6+e1e2x7+e1e2x8+e3x3+e3x5+e1x2+e2x1+e2x2+e2x3+e2x4+e2x5+
e2x6+e2x7+e2x8+e2x9+e1e2x2+e1e3x1+e1e3x2+e1e3x3+e1e3x4+e1e3x5+e1e3x6+e1e3x7+e1e3x8+e1e3x9+e2e3x1+e2e3x2+e2e3x3+e2e3x4+e2e3x5+
e2e3x6+e2e3x7+e2e3x8+e2e3x9+x1x7+x1x8+x1x2x5+x2x4x5+x2x5x6+x1x3x9+x3x7+x5x7+x3x8+x8x9+x1x4+x1x6+x1x3x4+x1x3x6+x1x3x8+
x1x4x5+x1x5x6+x1x5x8+x3x5x7+x2x5x8+x3x5x8+x3x5x9+x1x2x4+x1x2x6+x1x2x8+x8+x1x2+x1x5+x5+x2x5+x1x3+x2x4+x2x6+x7+x7x9+x5x8+
x2x5x9+x1x2x9+x1x3x5+x3x4x5+x1x2x7+x1x3x7+x1x5x7+x1x5x9+x5x9+x2x5x7+x3x5x6,
y4 = e1+e2e3+e3x9+e3x3+e3x5+e2x3+e2x5+e2x9+e1e3x3+e1e3x5+e1e3x9+e2e3x3+e2e3x5+e2e3x9+x1x2x5+x2x4x5+x4x5+x2x5x6+x5x6+x1x3x9+
x4x9+x6x9+x1x3x4+x1x3x6+x1x3x8+x1x4x5+x1x5x6+x1x5x8+x3x5x7+x2x5x8+x3x5x8+x3x5x9+x4+x2x8+x1x2+x4x7+x6x7+x2x3x4+x2x6x7+
x2x3x6+x2x4x7+x1x2x3+x1x5+1+x6+x8+x1+x9+x2x7+x2x3+x3x5+x3x9+x2x4+x2x5+x5x9+x2x5x9+x1x3x5+x3x4x5+x4x8+x2x6+x6x8+x1x5x7+
x2x4x8+x1x5x9+x2x5x7+x2x6x8+x1x2x9+x1x3x7+x3x5x6,
y5 = e3+e1e2+e2e3+e1x1+e1x4+e1x6+e1x7+e1x8+e3x9+e1e2x1+e1e2x4+e1e2x6+e1e2x7+e1e2x8+e3x3+e3x5+e1x2+e2x1+e2x2+e2x3+e2x4+e2x5+
e2x6+e2x7+e2x8+e2x9+e1e2x2+e1e3x1+e1e3x2+e1e3x3+e1e3x4+e1e3x5+e1e3x6+e1e3x7+e1e3x8+e1e3x9+e2e3x1+e2e3x2+e2e3x3+e2e3x4+e2e3x5+
e2e3x6+e2e3x7+e2e3x8+e2e3x9+x6+x7+x1x3+x3x7+x5x7+x3x8+x8x9+x2x4+x2x6+x2x7+x2x9+x1x4+x1x6+x1x3x4+x1x3x6+x1x3x8+x1x4x5+
x1x5x6+x1x5x8+x3x5x7+x2x5x8+x3x5x8+x2x3x9+x3x5x9+x1x2x4+x1x2x6+x1x2x8+x3x4x9+x3x6x9+x4x8+x6x8+x2x5x9+x1x2x9+x2x7x9+x2x3x5+
x2x6x7+x3x6x7+x5x6x7+x6x7x9+x2x3x7+x1x7x9+x2x4x7+x3x4x7+x1x5x9+x4x5x7+x4x7x9+x7x8,
y6 = e3+e1e2+e2e3+e1x1+e1x4+e1x6+e1x7+e1x8+e3x9+e1e2x1+e1e2x4+e1e2x6+e1e2x7+e1e2x8+e3x3+e3x5+e1x2+e2x1+e2x2+e2x3+e2x4+e2x5+
e2x6+e2x7+e2x8+e2x9+e1e2x2+e1e3x1+e1e3x2+e1e3x3+e1e3x4+e1e3x5+e1e3x6+e1e3x7+e1e3x8+e1e3x9+e2e3x1+e2e3x2+e2e3x3+e2e3x4+e2e3x5+
e2e3x6+e2e3x7+e2e3x8+e2e3x9+x1x2x5+x2x4x5+x2x5x6+x1x3x9+x2+x1x3x4+x1x3x6+x1x3x8+x1x4x5+x1x5x6+x1x5x8+x3x5x7+x2x5x8+x3x5x8+
x3x5x9+x5+x4x5+x5x6+x7x9+x2x8+x1x2x7+x6+x9+x2x3+x3x5+x3x7+x3x8+x5x7+x1x9+x2x4+x5x9+x2x4x9+x2x3x5+x3x4x7+x4x5x9+x4x7x9+
x4x8+x2x6+x5x6x7+x5x6x9+x6x8+x2x4x8+x4x5x7+x2x7x9+x2x3x7+x2x6x8+x2x6x9+x7x8+x1x7x9+x3x6x7+x6x7x9,
y7 = x5x8+x2+x5+x1x2+x4x5+x5x6+x2x8+x1x3+x1x5+1+x3+x6+x7+x8+x2x3+x3x5+x1x9+x8x9+x2x5+x1x2x4+x2x5x9+x2x4x9+x1x3x5+
x2x3x5+x3x4x5+x3x4x7+x4x5x9+x4x7x9+x4x8+x1x6+x5x6x7+x5x6x9+x6x8+x1x7+x1x5x7+x1x8+x2x4x8+x1x5x9+x2x5x7+x4x5x7+x1x2x8+
x2x7x9+x2x3x7+x1x2x6+x2x6x8+x2x6x9+x1x2x9+x1x4+x7x8+x1x3x7+x1x7x9+x3x5x6+x3x6x7+x6x7x9,
y8 = e1+x5+e2+e1e3+e3+e1x1+e1x4+e1x6+e1x7+e1x8+e3x9+e1e2x1+e1e2x4+e1e2x6+e1e2x7+e1e2x8+e3x3+e3x5+e1x2+e2x1+e2x2+e2x3+e2x4+
e2x5+e2x6+e2x7+e2x8+e2x9+e1e2x2+e1e3x1+e1e3x2+e1e3x3+e1e3x4+e1e3x5+e1e3x6+e1e3x7+e1e3x8+e1e3x9+e2e3x1+e2e3x2+e2e3x3+e2e3x4+
e2e3x5+e2e3x6+e2e3x7+e2e3x8+e2e3x9+x6+x7+x9+x1x3+x3x7+x5x7+x3x8+x8x9+x2x4+x2x6+x2x7+x2x9+x1x4+x1x6+x1x3x4+x1x3x6+x1x3x8+
x1x4x5+x1x5x6+x1x5x8+x3x5x7+x2x5x8+x3x5x8+x2x3x9+x3x5x9+x1x2x4+x1x2x6+x1x2x8+x3x4x9+x3x6x9+x4x8+x6x8+1+x3+x2x5x9+x1x2x9+
x2x7x9+x2x3x5+x2x6x7+x3x6x7+x5x6x7+x6x7x9+x2x3x7+x1x7x9+x2x4x7+x3x4x7+x1x5x9+x4x5x7+x4x7x9+x7x8,
y9 = e1+e1e2+e2+e1e3+e2e3+x2+x1x3x4+x1x3x6+x1x3x8+x1x4x5+x1x5x6+x1x5x8+x3x5x7+x2x5x8+x3x5x8+x2x3x9+x3x5x9+x3x4x9+x3x6x9+
x4x5+x4x7+x4x9+x5x6+x6x7+x6x9+x7x9+x5x8+x2x8+x2x3x4+x2x3x6+x1x2x7+x1x2x3+x3+x6+x7+x8+x2x3+x3x5+x3x9+x2x4+x2x9+x2x5x9+
x2x3x5+x3x4x7+x4x7x9+x2x6+x5x6x7+x1x7+x1x8+x2x4x8+x1x5x9+x4x5x7+x2x7x9+x2x3x7+x2x6x8+x1x2x9+x7x8+x1x7x9+x3x6x7+x6x7x9;

9) The public key is y, where
yi = Pi(x1, x2, . . . , x9, e1, e2, e3), i = 1, ..., 9; Pi are multivariate cubic polynomials of 12 Boolean variables.

