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1. Introduction:

The most popular Public Key Cryptosystem (PKC) schemes are the Diffie and
Hellman (DH) key exchange scheme based on the hardness of discrete logarithm
problem, the Rivest, Shamir and Adleman (RSA) scheme based on the difficulty of
integer factorization, and the Koblitz and Miller (ECC —Elliptic Curve Cryptography)
scheme based on the discrete logarithm problem in an additive group of points
defined by dliptic curves over finite fields. There are two common characteristics of
these well known PKCs (DH, RSA and ECC) [1]:

e their speed — which frequently is a thousand times lower than the symmetric

cryptographic schemes,

e ther security — which relies on one of two hard mathematical problems:
efficient computation of discrete logarithms and factorization of integers.
Recently a new public key scheme called MQQ which is based on multivariate
guadratic polynomials and quasigroup string transformations was proposed by
Gligoroski et al., This cryptosystem is considered to be of higher potential and

expected to be as fast as block cipher [1, 2].

In this paper, a new public key cipher algorithm, based on a specific class of
guasigroups string transformations called multivariate cubic quasigroups (MCQ) is
introduced. This MCQ public key cipher algorithm is a bijective mapping and can be
used for both encryption and signature. It is faster than previous MQQ versions, and
it iswell suited for short signatures.

2. Preliminaries:

In this section quasigroup string transformations is introduced in 2.1, representation
of the quasigroups as vector valued Boolean functions in 2.2, definition and
generation of the multivariate cubic quasigroupsin 2.3, and adetailed examplein 2.4.

2.1. Quasigroup string transformations: [2]

Definition 1. A quasigroup (Q, *) isagroupoid satisfying the law
(Vu,veQ)(@X, yeQ):uxXx=V& y*u=V. (1)

It follows from (1) that for each a, b € Q thereisauniquex € Q suchthata* x=h.
Then we denote x = a \« b where \. is a binary operation in Q (called a left
parastrophe of *) and the groupoid (Q, \:) is a quasigroup too. The algebra (Q, *, \)
satisfies the identities

X\ (x*y) =y, x* (x\y)=y. (2)
Consider an alphabet (i.e., a finite set) Q, and denote by Q" the set of all nonempty
words (i.e., finite strings) formed by the elements of Q. In this paper, we will use two
notifications for the elements of Q*: aya, ... a, and (ay, ay, . . . , &,), where g, « Q.
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Let * be aquasigroup operation on the set Q. For each | ¢ Q we define two functions
e dx: Q" - Q" asfollows:

Definition 2. Leta; €« Q,M = aj;a, ... a,. Then
Ql*(M)zblbz...an
b1=|*a1,b2=b1*a2,...,bn= bn_l*an,
d«(M)=cC...Che
CGi=l*a, =ar*ay...,Ch=a-1* a,

The functions g « and d, - are called the e-transformation and the d-transformation of
Q" based on the operation * with leader | respectively.

Theorem 1. If (Q, *) is a finite quasigroup, then g - and d - are mutually inverse
permutations of Q*, i.e,

dy (&8s (M) =M=@:(dy (M)
for each leader | e Q and for every stringM ¢ Q".

2.2 Quasigroups as vector valued Boolean functions[1]
Vector vaued boolean functions (v.v.b.f.) is used to present finite quasigroups (Q, *)
of order 2 in this paper, and we choose a hijection : Q - {0,1, ..., 2%- 1} and
represent a € Q by the d-bit representation g (a). Hence, for each a € Q there are
uniquely determined bits Xg, X, . . ., X9 € {0, 1} (which depend on the choice of the
bijection g) such that a is represented by the string X%, . . . Xg. Then we identify a
and its d-bit representation and write a = X;X, . . . X4 Or, sometimes, a = (X, X, . . . ,
Xg).- Now, the binary operation * on Q can be seen as a vector valued operation
* v {0, 3% _ {0, 1}° defined as:
a*b=co*uX,X, ... X Yn Y2 -0 Ya) = (20, 2, .. ., Z),

wherex; ... Xq, V1...Ya Z1 - . . Zg &€ binary representations of a, b, ¢ respectively.

Each z depends of the bits x;, X, . . ., X4, Y1, Y2, - - ., Vg @nd is uniquely
determined by them. So, each z can be seen as a 2d-ary Boolean function
Z = fi(ke, X, - - -, X4 Y1, Yo - - -, Ya), Wheref; : {0, 1}* - {0, 1}
strictly depends on, and is uniquely determined by, *. Thus, we have the following:

Lemma 1. For every quasigroup (Q, *) of order 2 and for each bijection Q - {0, 1. .
, 2 - 1} there are a uniquely determined v.v.b.f. *,, and d uniquely determined 2d-
ary Boolean functionsfy, f,, . . ., fysuch that for eacha, b,c € Q
a*b=co*X, ..., X VY1, ---,Yd) =
(Fa(Xq, ooy Xes Vi, - oy Yd)s eoes Ta(Xty - o2y Xy Y1r - -+, Yd))-

Each k-ary Boolean function f(x,, . . ., X can be represented in a unique way by its
algebraic normal form (ANF), i.e., as asum of products
k
ANF (f)=ag+ Y aX + D a XX + Y a XXX+, 3

iNMj s
1<i< j<k 1<i< j<s<k
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where the coefficients ay, a;, &; , . . . are in the set {0,1} and the addition and
multiplication arein the field GF(2).

2.3 Multivariate Cubic Quasigroups

In this subsection a special class of quasigroups is presented, called multivariate
cubic quasigroups (MCQs) that can be of different types.

Definition 3. A quasigroup (Q, *) of order 2% is called Multivariate Cubic Quasigroup
(MCQ) of type Cub.Quad,Lin if c=d — (q + I) of the polynomials f; are of degree 3
(i.e., are cubic) and g of them are of degree 2 (i.e., are quadratic) and | of them are of
degreel (i.e., arelinear), where0 <l <g<c<d.

Definition 4. A quasigroup (Q, *) of order 2% is called Cubic_QG if it isMCQ of type
CUbdQuadoLi No.

Theorem 2. Let Ay = [fij Jaxa @nd Ay = [Gij ]axa be two d x d matrices of linear
Boolean expressions, and let b; = [u]gx1 and b, = [Vvi]gx1 be two d x 1 vectors of
linear or quadratic Boolean expressions. Let the functions fij and u; depend only on

variables xy, . . ., Xy, and let the functions g;; and v; depend only on variables Xg. 1, . . .
, Xog. If Det(A,) = Det(Ar) =1in GF(2) and if Aj-(Xge1y -« - s XZd)T + b =A(Xy, ..,
Xq)" + by, then the vector valued operation * (X4, . . . , Xoq) = A1 * (Xgets - - - , Xoa)' +b1

defines aquasigroup (Q, *) of order 2° that isMQQ [1].

By using previous theorem it concluded that the formula A - (Xgi1, . . . , X2q)' + b,
where A, b depend only on variables x,, . . . , Xg and Det(A,) = 1in GF(2), may define
a gquasigroup; Replacing the two underlined phrases by " quadratic Boolean
expressions' conclude that formula A - (X1, - . . , Xoq)' + b may define a quasigroup
that is MCQ. In this manner, to keep the possibility of generating a valid quasigroup
in a high range, the new quadratic Boolean expressions must behave like the linear
ones, i.e. they cover the set {0...2%1} when (xy, . . . , Xg) moves over the same set; for
d = 3, there are 28 quadratic Boolean expressions whose behave like the linear ones.
Table (1) illustrates these expressions.

Table (1): Quadratic Boolean expressions of 3 variables behave like the linear ones

X+ XoX3 Xot Xa+XaXo Xt XaXot XoX3 X+ Xot+ X Xot XXz

Xot XaX3 Xot Xgt+XaX3 X+ Xot Xgt+ XoX3 X+ Xot XaXot XoX3

Xgt XiXe Xt XaXot XoX3 Xit Xt Xt XiXs Xt X+ XaXot XaXs
Xp+ Xot XaX3 Xi+ XaXst XoX3 Xp+ Xot Xgt+ XaXo X1+ Xgt+ Xa Xzt XoX3
Xit Xot XoXs Xot XaXot XaX3 XiXot+ XaXst XoXs Xt Xot XoXot XiXgt+ XoXs
X+ Xg+ X1 Xo Xo XaXat XoX3 XoF Xgt+ Xa X+ XoX3 X+ Xg+ XaXot XgXa+ XoX3
Xt Xt XoXs X3t X Xot XaX3 Xt Xat Xy Xot XoXs Xt Xat XpXot XpXg+ XoX3
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For d = 3, amatrix AhasaDet(A) = 1in GF(2) if it isof forms:

d o o ¢ o o o a o ¢ o «a
caal|lapeal|leap|l|aep Bl wherea =1+a,and g = 1+3;
BPal\BPBa| \BBa)|BEBea

In Table (2) aprocedure MCQ(3) for generating a Cubic_QGs of order 2° is defined.

Table (2): Algorithm for generating MCQs of order 2°
MCQE)
Input: All expressionsin Table (1)
Output: aset of Cubic_QGs of order 2° = 8.
1. Choose randomly two different elements from Table (1) as « and g
2. Form a3 x3 matrix A such that Det(A) = 1in GF(2)
3. Find all 3 x 1 vectors B; of quadratic Boolean expressions of variables
X1, Xo, X3 SUCh that, for X, = (X4, Xs, x6)T theformulaA - X, + B givesa
valid quasigroup.
4. Set CB asthe set of al B; founded in step 3;
If CBisanempty set then GoTo 1;
Else, for each vector B; in CB compute the vector *i,, = A - X, + B;
if *iyisaCubic QG then
return *iy,;
5.if al vectorsin CB did not return any Cubic_ QG then GoTo 1,

2.4. Example:
This exampl e executes the previous agorithm step by step;
1- Choose randomly two different elements from Table (1); Let o = xpxo+ XiXa+ XoXa,
and S = Xo+ X+ Xy Xo+ XoXa.
2- Form a3 x 3 matrix A, such that Det(A) = 1in GF(2), it is obtained

X1XoF X1 X3+ XoX3 1+ XpXo+ XXt XoXz  XyXot XiXat+ XoX3
A= 1+ Xpxo+XaXa+ XoXs  XXot+ XaXs+XoXs XXot X1 X3t XoX3
XotXgtXpXotXoXs 1+ Xo+ Xa+XXotXoXz 1+ XyXot XXzt XoX3

3- Find al 3 x 1 vectors B; of quadratic Boolean expressions of variables x;, X,, X3
such that, for X, = (X4, Xs, xe)T theformulaA - X, + B; givesavalid quasigroup,
for this case, there is a 256 vectors.

4- Set CB asthe set of all B; founded in previous step;

5- Takeavector Bfrom CB (1+x;+Xo+X1X3
1+ X+ X3
1+ X+ Xa+ X1 X0+ X1 X3+ XoX3

Now compute *iy, = A - X, + B= (fy, T, f3)"
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f1 = 1+ Xg+ Xo X Xa+ XaXoXat XiXaXa+ XoXaXat X5+ X1 XoXs+ X1 XaXs+ XoXaXs+ X1 XoXe+ X1 XaXe+ XoXaXe,

fo = 14+ Xg+ Xat Xg+ X XoXat X1 XaXa+ XoXaXa+ X1 XoXs+ X1 XaXs+ XoXaXs+ X1 XoXe+ X1 XaXet XoX3Xs,

f3 = 1+ Xg+ X+ XgXot+ XgXa+ XoXa+ XoXa+ XaXat X1 XoXa+ XoXaXat X5+ XoXs+ XaXs+ X1 XoXs+ XoXaXs+ Xet+ X1 XoXe+
X1X3Xg+ X2X3X6,

Table(3): A quasigroup (Q,*) and itsleft parastrophe (Q,\) of order 2°

*10/1]2|3]4|5|6|7 \|[0|1]|2|3|/4|5|6|7
0/7|6]2]|3|5]4|0]1 0/6]7]2]|3[5]4]1]|0
1/4|5/0]1)7]6|3]|2 1/2|3|7|6/0]1|5]4
213|2]|7]|16[0]1]4]5 2/4|15/1|0|6]|7]3]|2
3/1|7[3]|5[(4|12|6]|0 3/7|0(5]2[4]|3|6]1
410|/1]|5|/4]2|3|7]|6 410/1]4|5]|3|2|7]|6
5/6|0(4|12|3|5|1]|7 5/1|6[(3|4(2|5|0]|7
6/5|/3(/6|0|1|7|2]|4 613|4(6|1[7]0]2]|5
/712|411 7]/6]0|5]3 /715|2]0]7]1]6]4]3

Theresult isavalid quasigroup, moreover it isaCubic_ QG.
The corresponding left parastrophe (Q, \) of resulting quasigroup isalso a
CUb| C_ QG \W(Xl ..... X2d) = (gl,gz,g3)T Where

O1= XpXpXg+ Xst+ 14X+ X+ X1 XaXs+ X1 Xat+ XoXaXs+ X1 XoXe+ X1 XaXet XoXaXet XoXs,

02 = Xgt 1+ X+ Xo+ XpXoXat X1 XaXs+ XoXaXs+ X1 XoXet+ X1 XaXe+ XoXaXe+ XoX3,

03 = Xat X1XaXat XoXat X1 XoF XaXat XoXa+ X1 XaX5+ XoX5+ XaXs+ Xet X1 X3;

3. Description of the algorithm:

A generic description for MCQ scheme can be expressed as a typica multivariate
cubic system: T <P"-S {0, 1}" - {0, 1}" where T and S are two nonsingular linear
transformations, and P’ is a bijective multivariate cubic mapping on {0, 1}".

First an algorithm will be presented in Table (4) to show how the mapping
P: {0,1}" - {0,1}"isdefined. Public and private keys generation processis described
in Table (5). While Table (6) illustrates the signing process al gorithm.

Table (4): Definition of the nonlinear mapping P’ : {0, 1}" - {0, 1}"

P'(n)
Input: Integer n, where n = d.k: k > 40, d=3, a vector x = (f;, ... , f,) of n linear
Boolean functions of n variables, and ad x 1 vector L = (I4, ..., lg) of d variables.
Output: d quasigroups* 4, . . ., *q and n multivariate cubic polynomials

P1(Xg, ooy Xonly, oo 1), P (X, + 2y X)), 1= 2, ..., N,

1. Represent avector x = (fy, ... , f,) of n linear Boolean functions of n variables

X1, ..., Xn, @SAString X = Xy . . . X Where X; are vectors of dimension d;
2. By calling the procedure MCQ(d) generate large set of Cubic_QG of order 2°

Then pick randomly d different Cubic QGs* 4, ..., *g;
3. Computey = Y;...Ycwhere: Y1 = L*1 Xy, Yj = X * gy moa g1 X forj=2,..,k
4. Output: d Quasigroups *;, . . ., *qand y as n multivariate cubic polynomials
P1(Xg, ooy Xon Iy o Q) Pl (X, oy X)), 1= 2, ..., 0.
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Table (5): Algorithmfor generating the public and private key for the MCQ scheme
Input: Integer n, wheren = d.k: k > 40, d=3.
Output:
Public key P: n multivariate cubic polynomials Pi(Xy, . . ., Xo, I, ..., lg),i =1, ...,
Private key: Two nonsingular Boolean matrices T and S of order n x n and d
Cubic QGs*4,. .., *qo0f order 29 and one vector L = (I, ..., 1g).
1. Generate two nonsingular n x n Boolean matrices T and S (uniformly at random).
2. Generatead x 1vector L =(ly, ..., lg) of d variables.
3. Cadll the procedure for definition of P'(n) : {0, 1}" {0, 1}" and from there also
obtain the quasigroups*4, . .., *q4.
4. Computey = T(P'(S(X))) where x = (X, . . . , Xn)-
5. Output: The public key isy as n multivariate cubic polynomials
Pi(Xg, ...y Xy 1, o lg), 1=1, ...,
and the private key isthetuple (T, S *4,..., *g, L).

Table (6): Algorithmfor decryption/signing with the privatekey (T, S, *4, ..., *q, L)

Input: avectory = (Yy,. . ., Yn)-

Output: avector X = (Xg,. . . , X,) such that P(x) =y.

1.Sety =T Ly.

2. Representy' asy' = Y; ... YcwhereY; are vectors of dimension d.

3. By using the left parastrophes\; of the quasigroups* 4, . . ., *4, obtain
X' = Xi...X Such that:
Xy =L \1Yy, and X = X1 \[g-y moaqp+1 Yi, fori=2, ..., k;

4. Computex = S.X.

The algorithm for encryption with the public key is a straightforward application of
the set of n multivariate polynomials P={P;(X, ... , Xn, |1, ..., Ig),1 =1, ..., n} overa
vector X = (Xg, ... , Xp), 1. y = P(X).

4. MCQO vs. MOQO (Operating characteristics):

Comparative study between MCQ and MQQ schemesiis presented in this section.

4.1. Speed of keys generation comparison

The agorithm for generating MCQs is highly effective and straight procedure,
especialy if it is compared with the randomly algorithm which is proposed in [1] for
generating MQQs. Figure (1) shows dlightly that difference.

In [1] the bijection of Dobbertin [4] for m = 6 is used to eliminate the linear
coordinates from MQQ scheme, namely in P'(n) procedure. This is adding an extra
timeT,,, to the consumed time for public key generating. Then T, sw = Tuoo pu — Tow -
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Figure (1): Speed of keys generation comparison

4.2. Speed of encryption and decryption comparison

MCQ scheme is time-consuming in encryption with the public key more than MQQ,
because its public key consists of cubic Boolean expressions; while it is faster in
decryption/signing in private key than MQQ, because MQQ usesthe inverse bijection

of Dobbertin, then Tyco pee_pri = Twog_pec_pri — Tpgyt 5 TO thisreason, MCQ is suitable
for signing and especially for short signature.

4.3. Size of public and private keys

Public key consists of n multivariate polynomials Pi(xy, ..., Xn, I1,..., 1g), 1 = 1...n.
rename the variables Xy, ..., Xn, l1, ..., lg by tg, ..., tothe1, ..., theg respectively, and set
m=n+d; every P; can be represented as

m m-1 m m-2 m-1 m
Pi=aigoo0t Z a0ty t Z Z i jkole- b + Z Z Z aientio bty

j=1 j=1 k=j+1 j=1 k=j+lh=k+1

o, for every P; there are:

- 1term of degree 0, - mterms of degree 1,
w terms of degree 2, . m(m- 1;(m_ 2 terms of degree 3;
Then it is needed 1+ m+ m(m—1) + m(m—1()5(m—2) bits to store every P;; so, the size of

the public key is [n(1+ m MO0, mm-em- 2))} bits.

The private key consists of:
- two n x n Boolean matrices T and Sneed 2n° bits,
- oneleader vector (I, ..., Ig)" needs d bits.
- d quasigroups, each of them consists of d multivariate polynomials fi(x, ...,
Xoq). Memory size needed for storage these quasigroupsis
47(1+ 2d + 2d(2;| -1, 2d(2d —é)(Zd - 2)) bits,

Then, the size of the private key is {2n2 +d?(1+2d +d(2d -1) + 2d(d _2(2d _1))+d} bits.




Proceedings of the 7" | CEENG Conference, 25-27 May, 2010 | EE289-9 |

Table (7) illustrates the size of public and private key of MCQ and MQQ forn>120,
where d =3
Table (7) Memory size in KBytes for public and private key

n MCQ MQQI1].
Size of the Public key | Size of the Private Key | Size of the Public key | Size of the Private Key

120 4545 4 106 9

135 7220 5 151 10
150 10932 6 207 11
165 15920 7 276 12
180 22447 8 358 13
195 30800 9 455 14

4.4. Security analysis and security level comparison:

MQQ security analysis is presented in [1] with a conjectured security level 2(n'2)

when n>140. MCQ scheme has the same strength as MQQ against the different types
of attack; Moreover MCQ scheme has an important advantage against XL attack [3]
and Grobner basis attacks, appears in that the number of variables is more than the
eguations number, where the equations number is n, and the variables number is
n+ d; Thisisrising the conjectured security level of MCQ to 2™ when n>120.

4.5. Pool size of MCQOs of order 22 and MQOs of order 2° comparison:

Size of the pool set for 8 MQQs of order 2° is at least of order 2'* [1]; For MCQ
scheme with d = 3, there are more than 2" choices for the matrix A, and for each of
them there are more than 2’ B vectors, then the size of the pool set for 3 MCQs of
order 2% is at least of order 2°.

5. Theparalldizable nature of MCQO scheme:

MCQ scheme has a highly paralelizable nature; that is slightly appears in Figure (2)
where 150-bit MCQ was implemented in C, using OpenMP 2.0 under Microsoft
Visual Studio 2008. It is clear that increasing of the number of CPU cores can speed
up MCQ agorithm amost linearly with the number of cores. Thus, MCQ is very
suitable for signing and especially for short signatures.

6. Conclusions:
The results about our PKC can be briefly summarized as:

e itisapublic key block cipher algorithm with no message expansion;
e it hasone parameter Nn>120 the bit length of the encrypted block;

e it isadeterministic one-to-one mapping;

e itsencryption speed is comparable to the speed of MQQ scheme;
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e its decryption/signature speed is more than MQQ speed, which has
decryption/signature speed as a typical symmetric block cipher (i.e., in the
range of 500-1000 times faster than the most popular public key schemes)[1];

e its performance can be increased many times if it is implemented in parallel
hardware or software environment because his nature is highly parallelizable;

150
140
130
1zo4-h
110 =
100§ - %
a0
a0 4§ - -
FOE -

Cycles

Figure (2): Software speeds (in number of cycles)by using OpenMP
e itiswell suited and suitable for short signatures;

e itsconjectured security level when n=dk:k>40,d = 3 js2™%.

References

[1] “Multivariate Quadratic Trapdoor Functions Based on Multivariate Quadratic Quasigroups”,
Proceedings of the AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH °08),
Cambridge, Massachusetts, USA, March 24-26, 2008.

[2] S. Markovski, “Quasigroup string processing and applications in cryptography”, in Proc. 1-st
Inter. Conf.Mathematics and Informatics for industry — MI1, Thessaloniki 2003, pp. 278-290, 2003.
[3] M. Sugita, M. Kawazoe and H. Imai, “Relation between the XL Algorithm and Grobner Basis
Algorithms”, I[EICE-Tran Fund Elec, Comm & Comp Sci Vol. E89-A, Number 1 pp. 11-18, 2006.
[4] H. Dobbertin, “One-to-one highly nonlinear power functions on GF(2")”, Appl. Algebra Eng.
Commun. Comput., Vol. 9(2), pp. 139-152, 1998.

APPENDI X
An example of private and public key generation with n =9 bitsand d = 3; Let X = (X1, X, . . . , Xg) bea
vector of 9 Boolean variables. The private and the public key is created by the following procedure:
1) Set

S= T=

RlRkko|o|r|k|k
ok |k[k|rk|r|o|o
o|lo|o|o|r|r|r|r|o
SRR
ook |k|o|r|r|o
~|lololo|o|r|r|r|r
RlR(k(ko|k|r|k|~
olr|r|r|o|r|r|r|k
olr|r|r|r|lo|r|o|r

Rlklo|o|o|r|r|k|-
R|klo|o|o|o|r|o|r
olr|o|r|r|r|r|o|r
o|o|r|r|o|o|o|r|o
o|lo|r|o|o|r|r|o|r
RlRro|R|kr|R|r|r|~
RlRro|R|kr|kr|r|r|lo
~|lolo|r|o|o|r|r|o
Rlo|k|r|o|r|o|o|r

where T and Sare anonsingular 9 x 9 Boolean matrices generated uniformly at random;
2) Set
* —_—
1 (Xg, ..., Xe) =
(X1 +XaHX X+ X1 Xa+XoXa X XoXa+X1XaX g XX aX g+ Xe X X5 HXoX5+X1 XX+ X1 XaX5HXoX3Xe X1 XgHXoXe +X1XoXe X1 XaXe+XoX 3K,
XXX XgtXoXatXatX1Xa+XoXa X XoX 4+ X1 XgXatXoX X4+ X X5+ XoX5+X1 XXX XgX5H XX 3X5+X1XeH XX+ X1 XoXeHX1XgXeHXoX3Xe,
Xa+X1Xo+XoXa+XiXa XXX XoXaHXe X XeHXaXe XXX+ X6+ X1 X6+ XoXe X1 XoXe+X1XaXeHXoX3Xe);
* —_—
Z(le' . 1X6)_
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(L+XgHXaFX1Xa X XaXa X XgX g XoXaX 4 Xs X1 X X5 HX1XaX5+XoXaX5HX 1 XoX 6+ X1 XaXeHX2X3Xe

1X 3 HXa XX 1 XoXa X1 X3X 4+ XXX 4 X1 XXX 1 XX 5+ XX aX5HX 1 XoXeHX 1 X3X e+ XX X6,

LHXgHXg X Xt X1 XgHXoX 3+ XoXa+XaX 4+ X1XoX 4 XoXaX 4+ X5 XoXsHXaX5 X1 XoX5HXoXaXs+ X6+ X1XoX6HX1XaXe+HX2X3Xg))
*3(X1,...,X6):

(L+XgHXaFXaXo X XaFX1Xa X XoXa XXX aH X HX X5+ X1 XX 5 XX aXs+ X1 Xg+X1XoXe+XoXaXe,

XX XgHXoXa+Xa+XpXg+XXoXaHXoX3X 4+ X X5+ X1 XoX5HXoX3X5+ X1 XgHX1XoXeTXoX3Xe,
1+X1+X3+X2X3+X2X4+X1X3X4+X2X3X4+X5+X2X5+X1X3X5+X2X3X5+X6+X1X6+X1X2X5+X2X3X5) )

3) Set alLeader L=(ey,&,63); We replace the notation L=(14, I5,13) by (e, &, €3) to make it easy to distinguish
between number 1 and letter I.

4) Thetuple (S T,*1, *2 *3, L) isthe private key;

5) Set X = S. XT = KX1+X4+X6+X7+X3+X9 ™
X1 HX3HX 4+ X5+ XgtX7+Xg
X1 HXo+X3+X g+ X5+ XgHX7+Xg+Xg
Xot+X3+X4+Xgt+X7+Xg
Xo+X3+X5+Xg
X1 HXo+X5+X7+Xgt+Xg
X1 +Xo+X4+X7+Xgt+Xg
X1 +Xg+X7+XgtXg

\ X1+ XoHt X+ X5+ XgHX7 _/

6) Represent the vector X' by chunks of 3 bits, i.e. X' = X;XoX3;
7) Compute y|:Y1Y2Y3 such that Yi=L* Xy, Yo= X1 %2 X5, Ya= X5 *¥3 Xs;
8) Computey = T.y"; Thefollowing relations will be obtained:

Y1 = € +6, 1€ 8585+ X1 +€ X161 Xg 101 X7+ XgH83XgHe1 €)X 161 €)X 4161 €)X5 1616, X 7€ €)X+ E3X3+83X5HE1 Xo+€:X ) +EXoH€)X3HEX 4 +€:X5+
EXp X7+ XgHEXgT€1€,Xo 1€ 63X) +6 83X, 1€ €3X3+€1 83X 4161 €3X51€1€3X5 161 83X 7161 €3Xg+E) €3Xg+€,63X +€,83XoH,83X3H€,83X 4 H6,83X5 T
©,83X6H 283X 71€,83XgTE,83XgH X1 X X5 XX X5 X4 X5 XoX5XeTX5XeTX1X3XgTXgXgHXeXgH X+ XsXgHX7XgH X1 X3X4H X1 X3Xe X1 X3Xgt X1 X4 X5+
X1XsXgTX1X5XgHXaXsX7HXoX5XgHX3X5XgHX3X5XgH X1 XoX 7+ Xg+ X7+ XgH X1 +XoX7HX3X5+X3Xg T XX 4 XoX5H XX 4X g XX 3X5HX3X g X7+ XgX5XgtXgX7Xg
XgXgTXoXgTXsXeX7tXsXeXgtXeXgtXoX4XgHXgXsX7HXoX7XgTXoX3X7HXoXeXgtXoXeXgtX7Xg X1 X7XgH X3XeX7H XX 7Xo,

Y2 = €11€31818,1€1 X1+ X4+ Xg 11 X7 Xg T X1 78X 1€)X HEX716,XgH€1€,X 161 €)X 4 1€1€,X5 161 €,X7181€)XgH€1 83X 161 63X4 1€ E3Xg T
€163X71€63XgT6,83X; +€,83X4+€,83XpHE,83X71€,83Xg 101 Xo+E:Xo+€1 €,XoH €1 €3XoH 883X X3Xg X1 X7+ X1 Xg X1 XoX5HXoX g X5 HXoXsXe X1 XgXg+
XgXgtXoX7+X1XgH X XeHX1X3X X1 X3X6HX1X3Xg X1 X4X5+X1 X5Xe X1 X5XgHX3X5X7+XoX5XgHX3X5XgHX3X5XgH X1 XoX4H X1 XoXeH X1 XoXgHXg+Xg+
XoX5+XoXgTXgX5HX5XeHX7XgTXoXgHX3X 4+ XoX5X gt X1 XpXg X1 X3gX5+X3X4X5 X1 XpX7+X 1 X3X7+X 1 X5X7H X1 X5XgHXoX5X7HX3X 6+ XeHX3X5Xe,

Y3 = €1€,1€,831€31€,X; 1€, X4 T Xg T X7+€XgHE3Xg1€1€:X1 +€1€:X4+€1€,Xp 61 €,X 7161 €yXgHE3X3HE3X5 01 X €)X H€)Xp X3 +E:X 4 +E X5+
€ XgT X7, Xg € XgT€16)Xo 1€, €3X1 161 83X+, €3X31€)€3X 4161 €3X5 161 €3X6 €1 €3X71€183Xg 18 E3XgH€,83X 1 +6,83X,H€,€3X3H€,83X 4 +6,83X5 T
©,83X6H 83X 71€,83XgTE,E3XgH X1 X7 X1 Xg X1 XpX5H XX 4 X5+ XoX5Xe X1 X3XgtX3X7H XX 7+ X3XgHXgXgH X1 X4H X1 XgH X1 X3X 4T X1 X3Xe X1 X3XgH
X1XgX5FX1X5Xe X1 X5XgHX3XsX7HXoX5XgHX3X5XgHX3X5X gt X1 XoX 4+ X1 XoXe T X1 X2 XgH XgH X1 XoH X1 X5H X5+ XoX5H X1 X5+ XoX 4+ XXt X7+ X7Xg T XsXgH
X2X5XgTX1XoXgtX1XaX5HX3X4X5HX1 XoX7H X1 X3X 71 X1 XsX 7+ X1 X5XgtX5XgtXoXsX7HX3X5X 6,

Y4 = €11€,831€3XgTE3X3HE3X5 X3+ )X5T€,Xg+€1€3X3 1€ €3X5+€) €3Xg+ 883X 3H€,83X5H€,83XgH X1 XoX5H XX gX5HX X5+ XXeXe T X5XgH X1 X3Xg
XgXgtXeXoTX1X3X4HX1X3XeX1X3XgHX1X4X5H X1 X5X6H X1 X5XgHX3X5X7HXoX5XgHX3X5XgHX3X5XgH X4 HXoXgH X1 Xo+XgX7HXeX7HXoX3X 4+ XoXeX 7+
XoXaXetXoXgX7H X XoX g+ X1 Xs+ 1+XeHXg+X 1 HXgHXoX7+XoX3HXaXsHXaXgHXoX 4+ XoXs+X5XgHXoXsXg X1 XaXs+X3X 4 X5+ X4 XgHXoXe+XeXgHX 1 X5 X7+
XX 4XgHX1X5XgHXoXsX7HXoXeXgHX1XoXgH X1 XaX7+X3X5Xe,

Y5 = €31€18,16,831€ X1 181 X4 €1 X6t X781 XgTE3XgH €1 €:X1 161 €,X 4181 €)X6H€1 X761 €)X 83X 3TE3X5H€1 X € X T8 XX 31X 4 T X5+
€ XgTEX7H€,XgtEXgT€18)Xo 1€, €3X1 161 83X+, €3X3+€)€3X 4161 €3X5 161 €3X6 €1 E3X 7161 €3Xg 18 €3XgH€,83X 1 +6,83X,H€,€3X3H€,83X 4 +6,83X5 T
€,83X6H 83X 71€,83XgT€,83XgH XgH X7 X1 X3HX3X7HX5X7HX3XgHXgXgtXoX gt XoXeHXoX7H XX g H X1 X4H X1 XgH X1 X3X 4T X1 X3Xe X1 X3Xgt X1 Xg X5+
X1XsXgTX1X5XgtXaXsX7HXoX5XgHX3X5XgHXoX3XgHX3X5Xg T X1 XoX 4+ X1 XoXe T X1 X2XgHX3X 4 XgH X3XgXgH X4 XgTXeXgTXoX5Xgt X1 XoXgtXoX7XgH XX gX 5+
XoXeX7HX3XeX7HXsXeX7HXeX7XgHXoX3X7HX1 X7XgHXoXaX7H XX 4 X7+ X1 X5 Xg X4 XsX7+XgX7XgHX7Xg,

Y6 = €31€,8,1€,851€,X; 161X, 1€, Xg+€1 X7+ € XgHE3XgH€1€,X1 161 €,X4+€1€,X5 1+ €,X 711 €,Xg+83X3HE3X5H€1 Xo €, X  +€XoH€X3HE:X4+E:X5+
EXp X7+ XgHEXgT€1€,Xo €1 63X +€183X, 1€ €3X3+€1 83X 4161 €3X51€1€3X51€1€3X7 161 €3Xg+E) €3Xg+€,63X +6€,83XoH€,83X3H€,83X16,83X5 T
€,63X6T€,63X7€,83XgHE,83XgH X1 XoX5 XX X5+ XoX5X6 X1 X3X gt XoH X1 X3X 4+ X1 X3XeHX1 X3XgH X1 XaX5+X1 X5XpHX1 X5XgHX3XsX7+X2XsXg+X3XsXg+
X3X5XgHX5+XgX5HX5XeHX7XgTXoXgHX1XoX7HXgHXgHXoX3+X3X5HXgX 7+ X3XgHXsX7H X1 XgHXoX4HX5XgH XX gXgHXoX3X5HX3XaX7HX 4 XsXg XX 7 Xt
XgXgTXoXgTXsXeX7tXsXeXgtXeXgtXoX4XgHX4XsX7HXoX7XgTXoX3X7HXoXeXgtXoXeXgtX7Xg X1 X7XgHX3XeX7H XX 7Xo,

Y7 = XeXgHXotXs X1 XoHX X5+ XsXeHXoXgt X1 XatX X+ 1+X3+XeHX7+XgHXoX3HXaX5HX1 X XeXg+XoXs+X 1 XoX 4+ XoX5XgH XX gXgHX 1 XaXs+
XoX3X5TX3XgX5HX3XgX7HXgX5XgHXgX7XgH X4 XgH X1 XgTX5XeX7HX5XeXgtXeXgt X1 X7H X1 X5X7H X1 XgH XX 4XgH X1 X5XgTXoX5X7HX g XsX7H X X Xg
XoX7XgHXoX3X7H X1 XoXetXoXeXgHXoXeXgH X1 XpXgH X1 X4+ X7XgH X1 XaX 7+ X1 X7XgHX3XsXeHX3XeX7H XeX7Xo,

Yg = €11 Xs+€,+81€31€31€1X) +€1X4 € XeH€1 X781 Xg+E3Xg €1 €)X €1 €,X4H€1€)X5H€1€)X71€1€,XgHE3X3+E3X5 8 XX HEXo+EX5HeX st
X5 T8 XeH X7+ XgT€,Xg €1 €,Xo+€ 63X +€83XoH€1 €3X31H€1€3X4H€1€3X51€1€3X5 161 €3X 7161 €3Xg+E) €3X gt €,63X; +6€,83X,H€,83X3H€,83X 4+
€,63X51€,63X6TE,83X71€,83XgHE,83XgHXgHX7HXgH X1 X3+ X3X7HX5X7HX3XgtXgXg XX 4HXoXeHX X7+ XoXgH X1 Xq+X 1 XgH X1 X3X X1 X3XeH X1 X3Xg
X1XaX5+X 1 X5XeHX 1 XsXgHXaXsX7+XX5XgHXaXsXgHXoXaXg+X3X5XgH X1 XoX 4+ X1 XoXe+ X1 XoXgHXaXaXgHXaXeXgHXaXgHXeXegt 1 +X3HXoXsXg X1 XoXg+
XoX7XgTXoX3X5+XoXeX7HX3XeX7H XX eX7H XX 7XgHXoXgX 7+ X1 X7XgtXoX g X7+ X3X4X7H X1 X5XgH X4 X5X7HX4X7XgHX7Xs,

Yo = €11€18,16,1€, 831,83 X X X3X4H X1 X3XeHX1X3XgH X1 X4X51 X1 X5Xg X1 X5Xg T X3X5X7H XXX g1 X3X5XgH XX 3XgHX3X5XgTX3XaXg X gXeXgH
XgX5TXgX7HX4XgtXsXetXeX7tXeXgtX7XgHXsXgHXoXgHXoX3X4HXoX3XgTX1XoX 7+ X1 XoX3H X3t Xt X7+ XXX 31 X3X5HXgXgH XX 41 XoXgTXoXsXg
XoX3X5TX3XgX7HXgX7XgHXoXeHXsXeX7HX1X7H X1 XgHXoX4XgH X1 X5XgTXgXsX7HXoX7XgH XX 3X7H XoXeXgT X1 XoXgTX7Xg+X 1 X7XgHX3XeX7HXeX7 X0,

9) Thepublickey isy, where
Vi = Pi(Xg, X2, . . ., Xo, €1, &, &), 1 = 1, ..., 9; P, are multivariate cubic polynomials of 12 Boolean variables.




