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Abstract 
 
A plane wave excitation of an infinitely extended conducting strip-array embedded in 
multilayered dielectric cylinder, as a shielding structure, has been studied. Based on the 
Green’s functions, the integral equation is formulated for describing the current on a 
conducting strip-array. Using Galerkin's method, the surface currents on the conducting strips 
are expanded in the form of series weighted Chebyshev polynomials of the first kind and the 
unknown coefficients are obtained by solving a resultant system of linear equations. 
The validity of the formulation and the accuracy of the numerical solution are demonstrated 
for different array geometries. The numerical results depict the penetrated (near-zone) and the 
scattered (far-zone) fields for four different array geometries. Some of these results are 
compared to the simulated results using Zeland Fidelity Workshop (ZFW), and a good 
agreement was achieved. 

 
Key word – Multilayered shielding, TM-polarized plane wave, Galarkin’s method, penetrated 
field, scattered field. 
 

I. Introduction 
 
Coupling of electromagnetic energy into electronic devices and systems can cause electrical 
overstress to their internal circuits. Modern semiconductor integrated circuits are much more 
vulnerable to damage by overstresses than earlier electronic circuits, which used vacuum 
tubes and relays. This leads to failure, permanent degradation, or temporary malfunction 
(upset) of electronic devices and systems. Electromagnetic shielding is a technique that 
reduces the coupling of undesired radiated electromagnetic energy into equipment, so as to 
enable it to operate compatibly with its electromagnetic environment. 
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The reduction of coupling can be affected by shielding sensitive components and subsystems 
with a metallic enclosure, wherever practical. Obviously, the entire system cannot be shielded 
since antennas will not perform their intended functions when completely enclosed within a 
metallic shield. Another shielding mean to reduce coupling in a specified frequency band 
without affecting the characteristics of the antennas includes the shielding by using structures 
consisting of apertures / patches that acts as a filter to electromagnetic energy at frequencies 
outside the frequency band of interest for the system.  
 
The plane wave penetration through cylindrical structures consisting of apertures has been 
investigated during the past years. The penetration of TM electromagnetic wave into a 
conducting circular cylinder shell with infinitely extended slit using E- Field integral equation 
(EFIE) has been introduced [1]. The EFIE has been solved numerically for the induced 
current on the shell using the method of moment, and hence the scattered field has been 
calculated. This method failed to accurately determine the field inside the cylinder when the 
slot is so narrow (the magnitude of the field is less than one millionth of the incident field). 
The pseudo-image method, as mentioned in [2], has been used to accurately solve such an 
extremely narrow slot problem, provided that the frequency is not close to a resonance 
frequency of the associated cavity (enclosed by complete cylindrical surface). 
 
An accurate numerical solution to the problem of circular cylindrical shell with a very narrow 
slot excited by both TM- and TE- polarizations when the frequency is close to a resonance 
frequency of the associated cavity has been given by Mutz and Harrington [2, 3]. The 
formulation is based on the generalized network formulation for aperture problem [4], that 
depend on the application of equivalence principle to separate the problem into two regions 
on each side of the aperture, whose characteristics can be expressed by aperture admittance 
matrices one for each region. The aperture coupling is the sum of these two independent 
matrices, with source terms related to the incident magnetic field and the solution is given in 
terms of method of moments. 
 
Three methods for determining the field which penetrates conducting cylinders containing 
narrow axially conducting slots for both TE- and TM- polarizations have been introduced by 
Chalmers and Butler [5, 6]. Firstly, is the scatterer method that treats the body as a scatterer 
and determines the interior field as the sum of the incident field produced by known source 
and the scattered field produced by the current in the body. Secondly, the short – circuit 
current method is based upon the field equivalence theorem, which allows one to change the 
excitation of the structure from the known source or incident field to an equivalent surface 
current placed on the aperture. The penetrated field can be determined by a procedure similar 
to that of scatterer method. Thirdly, the equivalent current method employs the equivalence 
principle to solve the equivalent magnetic currents and determine the field by knowledge of 
these currents. In all these methods integral equations are derived, that when solved by using 
method of moments yield currents from which penetrated field can be determined. 
 
On the other hand, another cylindrical structure, consisting of multiple aperture system has 
been studied by Wen-Yan Yin et al [7]. They investigate the TEz- polarized plane wave 
penetrating through multilayered cylindrical cavity-backed apertures. The mathematical 
procedure is based on the direct integral equation technique combined with Galerkin's 
procedure, that can be solved numerically for the magnetic currents on the surround multiple 
apertures. More recently, they use the same technique to describe the near – zone field 
characteristics of TMz plane wave penetrating through cylindrical multiple apertures coated 
or covered with lossy or lossless media [8]. 
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This work is devoted to the problem of TMz – polarized plane wave excitation of an infinitely 
extended conducting strip-array embedded in multilayer dielectric cylindrical structure. Based 
on the Green's functions, the integral equation is derived for describing the electric current 
distribution on the conducting strips. By using the Galerkin's procedure and taken into 
consideration the edge effect of the conducting strips, the surface currents are expanded in the 
form of series weighted Chebyshev polynomials of the first kind. The effect of the strips 
geometry on the penetrated (near-zone) and scattered (far-zone) fields is studied. Results are 
compared to the simulated results using Zeland Fidelity Workshop (ZFW). 
 

II. Formulation 
 
Figure 1 shows the cross-section of an infinitely extended conducting strip-array embedded in 
multilayer dielectric cylindrical structure at, ρ = R'3  (R2  ≤  R'3 ≤ R3).  The location of each 
strip is defined by [ψ2s-1, ψ2s], where s is the strip number (s = 1, 2…). The regions (ρ< R1) 
and (ρ > R3) are usually a free space with parameters εo and µo. 
 

 
 

 
Fig. 1 Cross-section of multilayered infinite dielectric cylinder  

with conducting strip-array embedded at ( '
3R=ρ ). 
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For TMz–polarization, the normally incident electric and magnetic field components [8] is 
expressed as:  
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where, ooo εµω=K , ooo εµη = , φin is the angle of incidence measured from the x-axis, 
)K(Jm ρo is the cylindrical Bessel function of the first kind of mth order and the prim denotes 

the derivative with respect to ρ. 
 
In the absence of the conducting strip array, the excitation field in each region can be 
described as:  
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where, iiiK εµω=  and )K(H i
)2(

m ρ  is Hankel function of second kind and order m (i=0,1 
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determined by applying the boundary conditions for tangential components of the electric and 
magnetic fields at ρ = R1 , R2 and R3 [see appendix A]. 
 
For uniform conducting strip-array in φ̂ , embedded at '

3R=ρ . The scattered fields in the five 
regions due to the induced surface current Jz on the conductor can be expressed as, 
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The continuity of the electric and magnetic fields on the inner and outer surfaces of the 
structure requires that: 
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Applying the above boundary conditions, the unknown coefficients )(

mTMA~ ν and )(
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be determined [see appendix B]. Substituting by these coefficients in eqn. (6), the scattered 
fields in the five regions can be expressed as, 
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region (ρ ≤ R1) 
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where, V1, V2, V3, V4, V5, V6, V7 and V8 are given in appendix (C). 
Boundary conditions on the surface of the conductor at '

3R=ρ  can be written as, 
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To solve the integral equation of (9). Galerkin’s moment method is applied. To begin with, 
we first expand the unknown surface current density on the conducting strips Jz in terms of 
linear combinations of known basis functions as: 
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Substitute by eqn. (10) into eqn. (9) gives: 
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III. Numerical solution: 
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Thus, eqn. (12) can be written as, 
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Jspc … is the spectral amplitudes of the current basis function. 
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Jspt… is the spatial amplitudes of the current basis function. 
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Equation. (13) can be represented in the matrix form as: 
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where, L is the number of induced current modes ( l , q = 0 : L ). 
Thus, the current amplitude coefficients can be determined as:   
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IV. Numerical results: 
 
Based on the above mathematical treatment, computer codes have been developed for 
calculating the penetrated (near-zone) field and scattered (far-zone) field components. 
Obviously, there is countless number of interesting cases that we can investigate where the 
field is function of many different factors such as operating frequency, geometrical 
dimensions and constitutive parameters of the coating layers, as well as the number of 
embedded conducting strips.  
 
For the structure depicted in Fig.1, R1=0.2m, R2=0.25m, R′

3=0.27m and R3=0.3m, while the 
constitutive parameters are εr1=1.5, εr2=2.5 and µr1=µr2=1. Consider the case of plane wave 
excitation with φin=90° and its frequency f = 100 MHz. The array geometries, embedded at 
R'3, have equal angular width of both the conductors and apertures. The array comprises one 
(half cylinder), two, four or six strips   
 
At first, the validity of the formulated and written codes including the accuracy of the 
numerical solution has been fulfilled by computing the current and field distributions on 
surface containing the conducting strips. In order to achieve high accuracy in calculating the 
penetrated (near-zone) and scattered (far-zone) field components by Galerkin’s procedure, the 
number of current modes L and field modes M (m=-M:M) should be chosen. According to 
numerical experiments and convergence study, 50 Chebyshev current modes (L=50) are 
employed for expanding the current, and M=35 is used for the field modes. 
 
Figure 2 shows the induced currents and field distributions on the cylindrical surface 
containing the conducting strips for the cases of one, two, four and six strips. It is clear that, 
there is a good symmetrical current distribution in the case of one strip-array, Fig.2(a), where 
the incident of the excitation plane wave is on the middle point of the strip, as the arrow 
indicated. Also, it shows that an accurate fulfillment of the boundary conditions was found on 
the surface of conducting strips in the four cases, where the summation of the scattered and 
incident fields equals zero.  
 
Figure 3 depicts a three dimensional patterns of the penetrated (near-zone) field (Ez-
component) for the four cases of study. Fig. 3(a), the case of one strip, shows a considerable 
high level of the penetrated fields at the center of the cylindrical structure mainly due to the 
edge diffractions. Increasing the number of conducting strips while keeping the sum of the 
conductor size equals half the cylinder circumference, we can see that the penetrated field is 
gradually decreases. The case of six strips, in Fig. 3(d), exhibits a good shielding behavior 
where the field in the middle can be neglected (penetration ratio about 4.1074 × 10-9). This 
result is further confirmed in the following by the far-zone scattered field. 
 
Figure 4 shows the normalized amplitudes of scattered (far-zone) field for the same cases. The 
calculated results (the case of infinitely extended strips) are compared with the simulated one 
(strips with length 5λ) using Zeland Fidelity Workshop (ZFW) and a good agreement was 
found. The difference between the calculated and simulated results comes from the edges of 
the finite length of the simulated cases. The figure also shows the simulation result for 
complete conducting cylinder, embedded at R′

3, as an ideal shielding case. We can see that, by 
increasing the number of embedded conducting strips, the results approach the ideal case. 
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V. Conclusion: 
 
In this paper, we have investigated the penetrated (near-zone) and the scattered (far-zone) 
fields characteristics of a TMz plane wave excitation of one, two, four and six infinitely 
extended conducting strip-arrays embedded in multilayer dielectric cylindrical structure. This 
technique, based on the Green's function combined with the Chebyshev polynomial with edge 
effect, is very flexible and efficient for such structures. Numerical results show that shielding 
performance is improved by increasing the number of conducting strips in the embedded 
array. Of course, similar procedure can be adopted for examining the field characteristics of a 
TEz plane wave excitation of infinitely extended conducting strip-array embedded in 
multilayer dielectric structure. 
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Appendix (A) 
 

In eqns. (2) – (5), the unknown coefficients are determined as: 
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Appendix (B) 
 

In eqn. (6) the unknown coefficients are determined as, 
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Appendix (C) 
 

The variables V1, V2, V3, V4, V5, V6, V7 and V8 in eqn. (8) are determined as, 
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are all given in appendix (B). 
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                                                    (a) One strip. 
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                                                          (b) Two strips. 
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                                                          (c) Four strip 
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                                                                      (d) Six strips. 

Fig. 2 The magnitude of the induced current (Jz) and the aperture field distribution |Ez|  

for the cases of (a) one strip, (b) two strips, (c) four strips and (d) six strips.  
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  (a) One strip. 

    (b) Two strips. 

    (c) Four Strips. 

    (d) Six strips. 

Fig. 3 The penetrated (near-zone) field for the cases of (a) one strip, 

 (b) two strips, (c) four strips and (d) six strips.               
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 (a) One strip.           

 (b) Two strips. 

 (c) Four strips. 

 (d) Six strips. 
 

Fig. 4 The scattered (far-zone) field for the cases of (a) one strip, 

 (b) two strips, (c) four strips and (d) six strips. 
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