
Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١

Military Technical College

Kobry Elkobbah,
Cairo, Egypt

5th International Conference

on Electrical Engineering
ICEENG 2006

Mobility Modeling Techniques

Mahmoud Abdalla M., Ismail Abd-Elghafar, Mohamed G. and Mahmoud* Hassan

ABSTRACT

Performance is critical to the success of any software system, especially large and real
time ones. Performance for such systems should be predicted as early as in the requirements
analysis and design phases of the development process and before code implementation. This
is essential to save the investments of money and time. Several Software Performance
Engineering (SPE) approaches have been proposed to predict and validate the performance of
software systems from its architectural designs. Some of them have been applied successfully
to static (non-mobile) systems. Performance modeling and analysis of mobile systems is more
complex than non-mobile ones. Although mobile systems are gaining more and more
widespread and importance, the means for their specification are still underdeveloped. The
obstacle that faces extending static software performance prediction approaches to be applied
to mobile systems is to find a way to model the mobility behavior of software components.

In this paper, we are concerned with two performance prediction approaches that have

been provided with mobility modeling techniques. This enables us to use them for
performance validation of mobile systems. The paper’s main focus is on presenting two
mobility modeling techniques that were proposed for these two approaches in detail. Our
objective is to study, analyze and compare them. The framework of each approach is also
presented to see how both the technique and the approach fit together.

1. INTRODUCTION

Wireless networks are becoming everywhere; these networks provide mobile users
with all types of data communications while being in move and from anywhere. Performance
is critical to the success of any software system, especially large and real time ones. For
mobile software systems, performance is a necessity for reasons as follows:

 First, mobile users have different needs from PC and Web users, for example, mobile
users are more likely to be fulfilling an immediate need, not leisurely browsing for
information. In addition, mobile users are subjected to environmental distraction, not sitting in
a quiet room. Mobile applications should be of a higher standard of usability than stationary
applications. They must match the standards of successful consumer products: intuitive user
interface, instant relevance and fast response time.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٢

Second, mobile wireless applications exhibit a high degree of complexity and need a
lot of investments, the matter that imposes that their performance should be validated early
and during the architectural design phase of the development process.

In the literature, several approaches have been proposed to integrate the process of

performance modeling and analysis of non-mobile systems in the architectural design stage
[3], some of these approaches were applied successfully [9], [6]. Few of them have been
extended to address the problem of performance validation of mobile systems.

The main obstacle that faces the process of performance validation of mobile systems

is how to model mobility behavior of software components. The means for mobility
specification is still underdeveloped, there is no widely accepted standard way for expressing
mobility in the architectural specifications of UML [1] and the area of mobility modeling is an
open one [5].

 We can define mobile software architectures with various mobility styles. Physical

mobility refers to the style of moving of portable computing devices and their application.
Logical mobility refers to the style of movement of the software only leaving the device on
which it resides. Logical mobility can be distinguished into two types: Mobile components
can migrate to new location while preserving their identities (mobile agents), another type for
mobility is creation of copies of software components at the location of the component that
starts the interaction (code on demand), or at the location of the component that accept the
interaction (remote evaluation).

The problem of devising a technique that precisely models all these aspects of

mobility is seriously difficult. Few techniques have been proposed for software mobility
modeling, some of them restricted themselves to only one style of mobility, others claims that
both mobility styles are handled. Several mobility modeling techniques were proposed within
the context of complete performance prediction approaches which were previously applied to
static systems, while other techniques were presented in isolation of any approach. Our
interest is in the former ones.

The focus of the paper is on mobility modeling techniques, so we present here two of

them in detail. Performance prediction approaches including these techniques are also
introduced to show how they fit together. The paper’s objective is to study, compare and
evaluate two mobility modeling techniques.

This paper is organized as follows. In section 2 we introduce a mobility modeling

technique proposed by S. Balsamo and M. Marzolla, and the associated performance
prediction approach. In section 3 we present another technique proposed by V. Grassi and R.
Mirandola along with the approach employing that technique. Section 4 is an example for
solution of QN model using WinPEPSY tool. Section 5 is analysis and comparison between
the two techniques. Section 6 is our conclusion.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٣

2. Mobility modeling Technique No.1

We here show the technique proposed in [5] to model the mobility of software entities.
The technique depends on two factors:
• Using the UML diagrams in a devised and intelligent way, specially the Use Case and

Activity diagrams to model mobility. For example, unlike the traditional way that employs
Use Cases to model software functionalities, the technique uses them to model mobility
behaviors.

• Using standard UML SPT profile for performance annotations [4], [7].
The technique proposes a set of assumptions as follows:
• Mobile entity may be physical device moves in the real space or a software component

that migrates from one device to another.
• The mobile system is perceived as a collection of devices (processors and communication

links)
• Computations on the system are seen as a set of activities executing on devices.
• A configuration is a system state in which a set of activities (computations) are assigned

to certain devices.
• When a mobile entity travels through the system, it activates a sequence of configurations

and for each entity location, there is a specific configuration.
• Once a configuration is activated, the mobile entity starts interaction with the system,

while interacting, it can not move (i.e., system configuration can not change). A further
movement for the entity is possible only when an interaction is completed.

2.1 Steps of the technique

The proposed technique goes through three basic steps to model mobility behavior.

Step1: this step models both of the mobile entities and the possible mobility behaviors of each
entity. This is done using Use Case diagram. Actors model mobile entities, while use cases
model possible mobility behaviors. By a mobility behavior we mean a certain path in which
the mobile entity may move. For example, an entity moves from location of LAN1 to that of
LAN2 then to LAN3. In each of the three locations, there will be a certain configuration for
the system. For example, C1 is the configuration of the system when the mobile entity is in
LAN1 and likewise is C2 and C3. In each configuration, there will be a corresponding
specific scenario for the interactions of the mobile entity with the system, for example,
scenario1 then scenario2 then scenario3.

Step2: This step is a high level modeling for each mobility behavior. Each possible moving
path taken by the mobile entity (which was represented by a Use Case in step1) is expanded
to an Activity Diagram; each of its nodes represents the whole execution scenario performed
by the mobile entity for certain configuration. Activity diagrams of this step are referred to as
high-level Activity Diagrams.

Step3: this describe the interactions of each scenario, each node in the high-level Activity
Diagram is expanded into another Activity Diagram. These diagrams are called low-level
Activity Diagrams. While step1, 2 model mobility of the mobile component, this step models
the execution behavior (dynamics) of the component.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٤

2ُ.2 Example

The following example illustrates the technique.
A mobile user with a Laptop is running an
application for retrieving video from the server
connected to LAN3 in wires. LAN1, LAN2 and
LAN3 are wireless networks connected to the
Internet. We consider that three different
configurations can occur due to moving the user
as shown in Figure 1.

Figure 1a, shows configuration1, the user

is in LAN1 and communicates with the server
through the path LAN1-Internet-LAN3.

Figure 1b, shows configuration2, the user
is in LAN2 and communicate through the path
LAN2-Internet-LAN3.

Figure 1c, shows configuration3, the user
is in LAN3 and communicates with the server
directly through LAN3.
Moving the laptop in such a way represents just
one possible mobility behavior (LAN!-LAN2-
LAN3). This behavior is modeled by a Use Case
as in figure 3.

Figure 2 is the Deployment Diagram
model “DD” of the physical structure of the
system (processors and communication links and
interconnections). Each node represents a
resource. Performance annotations should be
entered on the diagram; however, we omit them
in order not to clutter the diagram. It is worth to
note that, DD is not involved in mobility
modeling process; however it is needed by the
simulator to build the simulation model.

Figure 3 shows a mobile user with two

possible mobility behaviors (B1, B2). In B1, he
moves from LAN1 to LAN2 then LAN3. In B2,
he enters LAN2 then moves to LAN1. The
probability of occuring each possibile behavior
(p1, p2), as well as the other performance
annotations should be entered on the diagram. An
actor models a class of mobile entities which
represents a specific workload type for performance model. An actor should be defined by a
stereotype “ClosedWorkload” or “OpenWorkload”, also by tagged values “PApopulation” or
“Arrivalrate” respectively. These stereotypes and tagged values are necessary for the

LAN1 LAN2 LAN3

Internet

Figure 1b (configuration2)

LAN1 LAN2 LAN3

Internet

Figure 1a (configuration1)

Figure 1c (configuration3)

Figure 1 Mobile user with mobility behavior (B1)

LAN1 LAN2 LAN3

Internet

Internet

1LAN 2LAN 3LAN

topLap Server

Figure 2 Deployment Diagram of the Mobile System

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٥

simulator to build performance model and
are considered input parameters for it. Each
Use Case models one possible mobility path.
The probability for each path should be
entered.

Figure 4 gives the complete view of
the technique, stereotypes and tagged values
are not entered in order not to clutter the
figure.
Figure 4b models the mobility behavior as
each Use Case (path of mobility) is expanded
by a complete Activity Diagram (AD). The
use case for behavior1 is expanded by a three
node AD, each node represent a whole
scenario. Scenario1 represents the
interactions made due to the execution of the
mobile entity when it is located in LAN1,
likewise scenario2 and scenario3 when the
mobile entity is at LAN2 and LAN3.This AD
models the interactions of one mobility path
in an abstracted form, so it is called “high-
level AD”. Situations of non-deterministic
interactions (i.e. an interaction that follows
by several successors) and concurrency can
be modeled here also [12].

Activity Diagrams provide Fork and
Join nodes to represent the case where the
component would copy itself then both of
them start execution at the same time.
Physical mobility is modeled at this step, this
is clear from the sequence of different
scenarios, there is one scenario for the
executions in each location. Figure 4c shows
step 3 that models the execution behavior of
the mobile component at different locations
in the system. Each scenario node in the
high-level AD is expanded by a complete
AD showing the interactions made due to the
component execution in that scenario. ADs
at this step are called low-level ADs. By
using swimlanes in this step, it can be shown
the association between the interactions and
their locations. Due to that code mobility
appears at this step as each interacting
component is shown associated with the
location of its execution. All the above
diagrams along with the performance
annotations are entered into the graphical
interface of ArgoUML tool that translates them into XMI text. The simulator is a prototype

Scenario 2 Scenario 1

(b)

(a)

Behavior 1
LAN1 > LAN2 > LAN3

Behavior 2
LAN2 > LAN1

Mobile User

Scenario 1 Scenario 2 Scenario 3

(c)

Figure 4 The three steps of Mobility Behavior
 Modeling Technique

Laptop LAN 1 Internet LAN 3 Server

P2
Mobile User

P1
Behavior 1

LAN1 > LAN2 > LAN3

Behavior 2
LAN2 > LAN1

Figure 3 Modeling of Mobility Paths

<<ClosedWorkload>>

PApopulation =1

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٦

tool specially designed to read this data and build the performance simulation model in the
form of a simulation program. Our focus is on mobility modeling, so, we did not go through
the details of building the simulation model. For such details refer to [5], [2], [3].

2.4 Simulation model-Based Performance Prediction Approach

The performance simulation model-based approach proposed in [2], [3] to integrate
performance modeling and validation of traditional non-mobile software systems into the
development process was extended in [5] to be applied to mobile systems. This approach uses
the previous technique to model mobility in the architectural designs diagrams.

The approach uses UML software specification models (Use Case, Activity and

Deployment Diagrams) annotated with tagged values and stereotypes for performance to drive
a performance model automatically by using a prototype tool, UML-Ψ (UML performance
simulator). The technique has the advantage of using the annotations of the standard UML
profile for Schedulability, Performance and Time (SPT) [4].

ArgoUML CASE Tool, freely available on the Internet is used to develop the software

design diagrams using its graphical interface. Performance annotations are added to the
diagrams as stereotypes and tagged values drawn from the profile. ArgoUML tool translates
these diagrams along with the annotations to XMI text. The XMI representation of the
diagrams is then converted to a process oriented simulation model by the prototype tool
(UML-Ψ) which executes an algorithm [2] for that purpose. The simulator implements the
model as a simulation program which is executed to evaluate the performance of the system.
Simulation results are reported back to the original UML diagrams as tagged values, so they
are available to designer and integrated in the UML specifications.

The information required for UML-Ψ to build the performance model is taken from the UML
diagrams and the added annotations as shown in figure 5. Use Case diagram will provide
information about workload; Activity diagram provides information about software behavior,
while the deployment diagram feeds the information about the hardware resources which

Use Case
Diagram

Activity Diagram

Deployment
Diagram

Performance
annotations(Tags,
Stereotypes)

Workload

Behavior
Steps

Resources

Model
Parameters

Simulation
Program

UML CASE Tool
Argo UML UML-Ψ

Software
Architecture

Results of running Simulation Program are fed back

Figure 5 Simulation-Based Performance Prediction Approach

Perf. Model

(Performance Measures)

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٧

execute the software. Tagged values will provide for the model parameters. For more detail
see [5], [2], [3].

3. Mobility Modeling Technique No.2

This technique was proposed within a framework of an approach called “PRIMAmob-
UML” [13] for performance analysis and prediction of mobile software architectures. It is
based on using both the Collaboration Diagram (CD) and the Sequence diagram (SD) to
model code mobility. This means that it is a UML based technique.

The SD describes only the sequence of exchanged messages between system software
components (interaction logic) without showing the style (mobile or static) in which these
interactions take place. SD can also be used to model execution interactions within a
component. SD is drawn using the standard UML notations without any modification. We use
timed SD where approximate occurrence time of every interaction is annotated on the leftmost
vertical axis.

The CD shows only the components that are interacting and the style they are using to

do that. CD does not show any information about the sequence of interactions, and it is drawn
using standard UML notations in addition to two new devised stereotypes that are used to
label the interactions modeled in the CD. These two stereotypes are “moveTo” and
“moveTo?”.If a stereotype “moveTo” labels an interaction in the CD, it means that the source
component will move to the location of its target before starting a sequence of consecutive
interactions with it. This style of interaction will be applied to each sequence of interactions
shown in the associated SD, between the source and the target component of the “moveTo”
message.

There is no guarantee that moving a component from one location to another (mobile
style) before interacting will realize better performance than the case when it interacts with it
from its location (static style). At architecture design stage, the designer is not certain about
which style will give better performance, so, it was decided to model this uncertainty.
Modeling of the uncertainty (possible using any of the two styles) enables including both the
two styles in the generated performance model, hence, we can choose early the style for our
design that gives better performance. The second stereotype is “moveTo?” It is proposed for
modeling uncertainty. When a message between two components in the CD is labeled
with”moveTo?”, this means that the source component “may” move to the location of its
target before starting a sequence of interactions with it.

As a result, in the CD drawn in this technique, some interactions are not labeled and
these refer to ordinary interactions without any mobility. Some are labeled with “moveTo”,
and are referring to component mobility before interaction. The interactions labeled with
“moveTo?” means that the designer is not sure about which style to choose for better
performance. It is worth to note that both interaction logic and mobility style are modeled as
separate concerns. This means that both aspects will not be modeled in the same diagram.
Each diagram models one concern only.

3.1 Example:

Consider a travel agent manager software system consists of four components (m, t,
a1, a2). The component “m” which is an instance of class “TRAVM” periodically collects
information from different nodes. It then bid on the collected resources in order to

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٨

automatically deliver a lower cost for the
travel tickets. “m” starts a component “t”
which contacts different nodes by
exchanging a number of messages (1..n)
with each node to collect the required
information. The example shows two remote
nodes only at two different locations. The
software component “t” can perform
communication in two styles, either stays at
its location and communicates remotely with
the two locations of “a1:AUCT” and
“a2:AUCT” (static), or migrates to each of
them and communication is made locally at
their locations (mobile interaction style). As
shown, at each of the two locations, “t”
communicates with an instance of class
”Auctioneer” (a1,a2) which deliver a bid for the itinerary requested by the travel manager
component.

Figure 6 shows SD that models the sequence of the interactions (interaction logic)
among the software components. SD does not give any information about their locations or
about the communication style (mobile or static components).

Figure 7 shows CD of the system, it

shows the software components along with
their locations using the tagged value
“Location”, but it does not indicate the
interactions’ sequence that was shown clearly
in the SD. According to this technique, as there
is no any notation marking the interaction
messages, we directly know that the
components have a static communication style
and are bound to their given locations.
Components “m” and “t” are at the same
location (L0), while “t” interacts remotely with
“a1” and “a2” at L1 and L2 respectively.

Figure 8 shows how the technique uses

CD to model component mobility by the
innovated stereotype “moveTo”. The outgoing
interaction arrows from Component “t” shows
that it is the only one that can move to the
locations L1, L2, L0 according to the semantic
of “moveTo” to interact locally at these
locations. The location of “t” is left unspecified
since it can dynamically change. Initial location
of “t” can be given in a separate CD diagram.

Figure 9 CD models the uncertainty

about the interaction style of “t” with a1 and a2.

*(i = 1..n)

req(r2)

Rep(R2)

*(i = 1..n)

req(r1)

Rep(R1)

m: TRAVM t:TRAVAG a1: AUCT a2: AUCT

Start(s)

end(e)

Figure 6 modeling the sequence of interactions
of the system using SD

m:TRAVMAN

location = L0

t: TRAVAGENT

Location = L0

a1: AUCTION

location = L1

a2: AUCTION

location = L2

Figure 7 Using CD to model interaction style
Without mobility (static system)

m:TRAVMAN

location = L0

t: TRAVAGENT

Location = L?

a1: AUCTION

location = L1

a2: AUCTION

location = L2

Figure 8 Using CD to model interaction style
With mobility (mobile system)

<<moveTo>>

<<moveTo>>

<<moveTo>>

m:TRAVMAN

location = L0

t: TRAVAGENT

Location = L0

a1: AUCTION

location = L1

a2: AUCTION

location = L2

Figure 9 Using CD to model uncertainty about
which style to choose, static or mobile

<<moveTo>>

<<moveTo?>>

<<moveTo?>>

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٩

The “moveTo?” that annotates the outgoing arrows from “t” to both a1 and a2 means that it
may move to any of them. It is the case the designer is uncertain about the effectiveness of
changing the location of “t” when it interacts with a1 and a2. The “moveTo” shows that “t”
moves to location of “m” (if not already there) before interacting with it.

3.2 PRIMAmob-UML Performance Prediction Approach for Mobile Systems

After we have presented our 2nd technique to model mobility, we here introduce the

approach within which the technique was presented. This would point out how both of them
fit together and gives a clear understanding about the implementation of the technique.
PRIMAmob-UML approach was derived from previous approach called PeRformance
IncreMintal vAlidation in UML (PRIMA-UML) [12], so, comes PRIMAmob-UML approach
[13] as an extension with the capability to validate performance for mobile systems. It is
worth to note that PRIMA-UML is derived from the first SPE approach of C. U. Smith
[10],[11]. The steps of PRIMAmob-UML are the same as that of PRIMA-UML with some
added ones, which are needed for mobility modeling. We will designate these added steps by
“-mob”.

3.2.1 Steps of the approach

• Step 1 Annotate the Use Case Diagram
• Step 2 For each Use Case identify and annotate the Sequence Diagrams corresponding

to the key scenarios.
• Step 2-mob for each Use Case identifies and annotates the corresponding

Collaboration Diagram.
• Step 3 process all the annotated SDs to obtain a meta-EG.
• Step 3-mob Process all the annotated CDs and the meta-EG to obtain the mob?-meta-

EG.
• Step 4 Annotate the Deployment Diagram (DD) and tailor the mob?-meta-EG to the

annotated DD to generate the mob?-EG-instance.
• Step 5 Drive an EQNM from the annotated DD.
• Step 6 Assign numerical parameters to the mob?-EG-instance.
• Step 6-mob Perform stand alone analysis on the mob?-EG-instance.
• Step 7-mob Merge the mob?-EG-instance and the EQNM into the performance model

called mob?-EQNM.
• Step 8 Solve the performance model.

3.2.2 Example:

To simplify the matters, we will use the same
example of travel management software system whose
components are shown in Figure 6 .The system’s
functionality is represented by a single Use Case, see
Figure 10. The steps stated above will be applied to the
example.

Step 1: annotate the Use Case Diagram (UCD) of the
system. Each Use Case should be annotated by the
probability of being in use, as we have only one Use Case, its probability is P=1 as shown in
Figure 10. A Use Case is an abstraction of a set of scenarios. Our Use Case is represented by

P=1 TravAg
Management

System

Figure 10 (Step 1) TravAG Software
Management System

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١٠

only one execution scenario (shown in Fig. 6), while there exist three different mobility
styles for that scenario(shown in Fig. 7, 8, 9).

Step 2: draw all SDs that represent the possible key scenarios for executing the Use
Case and find the probability of each of them. Key scenarios are those affecting performance.
In our example the only Use Case is represented by only one scenario for simplicity, so, its
probability will be one and it is the key scenario, it is shown in Figure 6.

PRIMA-UML uses timed SDs, i.e. approximate occurrence time of every interaction is
annotated on a vertical leftmost axis. Every interaction in the SD (horizontal arrow) is
annotated with its name and size of exchanged data. The SD represents a scenario made by
the interactions between the system components while they are performing the system task.
These components are drawn as rectangles on the top row of the diagram; vertical axis
represents time, while horizontal arrows represent the interactions between components.

Step2-mob: this is an added step to PRIMA-UML to model mobility. The CDs
corresponding to different mobility styles required to be modeled in our application are drown
and annotated with information about component location and mobility using tagged values
“Location” and stereotypes “moveTo” and “moveTo?”. For our example we will consider the
three CDs of Figures 7, 8, 9 because we plan to study the three cases: static, mobile and
uncertainty about mobility.

Step 3: we will process the only SD to generate the 1st version of software Execution
Graph model (meta-EG) as shown in Figure 11. This is a software model in isolation of any
hardware platform and without any mobility modeled into it. PRIMA-UML [12] provides an
algorithm to perform this transformation from SD to meta-EG. Each node in the “meta-EG”
model is annotated with a tuple in the form of (l(s),A1,A2,t). Each node models an interaction
of those modeled in the SD by horizontal arrow, i.e. a set of operations (code block) carried
out by the component (A1) that precedes the arrow before interacting with component (A2)
that follows it. The interaction is labeled by l(s), where “l” is the interaction name and “s” is
the size data sent from A1 (after finishing its operations) to A2 before interacting with it, and
“t” is interaction time. Figure 11 shows the translation of SD to meta-EG. For each scenario
(SD) we should build a ”meta-EG”, we have only one “meta-EG” in our example. To explain

nc

nc

(start(s),m,t,t0)

(req(r1),t,a1,t1)

(Rep(R1),a1,t,t2)

(Rep(R2),a2,t,t4)

(req(r2),t,a2,t3)

(end(e),t,m,t5)

Figure 11 (Step 3) Driving the meta-EG model from SD

*(i = 1..nc)

req(r2)

Rep(R2)

*(i = 1..nc)

req(r1)

Rep(R1)

m: TRAVM t:TRAVAG a1: AUCT a2: AUCT

Start(s)

end(e)

t0

t4

t5

t3

t2

t1

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١١

more, the tuple (req(r1),t,a1,t1) means that the component “t” will execute a block of
code then interacts with component “a1” by sending it a message of size ”r1” at time t1 and
the interaction name is “req”. The meta-EG extracts all the data modeled in the SD.

Step 3-mob: each one of the annotated CDs shown in Figures 7, 8, 9 are processed

along with the previously obtained meta-EG to obtain mob?-meta-EG, which is the 2nd
version of the system software model as shown in figure 12. The CD includes elements that
model mobility. The approach in [13] provides an algorithm for performing this
transformation. The obtained “mob?-meta-EG” software model adds two kinds of nodes to
the original model (meta-EG), the “mv” node which models the cost of code mobility and
“mob?” node that models the uncertainty about mobility. The “mob?” node has two different
outcomes, “Yes” and “No”, the branch following “Yes” branch models the case of component
mobility, while the branch following “No” models the case of static component, i.e. “mob?” is
a branching node.

Processing the meta-EG with the CD of figure 7 (static style) will produce the same

meta-EG without any change and this is not shown here. Figure 12 shows the processing of
the meta-EG with the CD of figure 8 where mobile style is adopted. The result is mob?-meta-
EG model at the rightmost.

Figure 12 (Step 3-mob) meta-EG model is processed with the CD that
models mobility to drive mob?-meta-EG model

nc

nc

(start(s),m,t,t0)

(req(r1),t,a1,t1)

(Rep(R1),a1,t,t2)

(Rep(R2),a2,t,t4)

(req(r2),t,a2,t3)

(end(e),t,m,t5)

t: TRAVAG

Location = L?

m:TRAVM

location = L0

a1: AUC

location = L1

a2: AUC

location = L2 <<moveTo>> <<moveTo>>

<<moveTo>>

nc

mv

nc

mv

mv

(Rep(R2),t6)

(moveTo(m),t,m,t7)

(end(e),t8)

(req(r2),t5)

(moveTo(m),t,a2,t4)

(Rep(R1),t3)

(req(r1),t2)

(moveTo(m),t,a1,t1)

(Start(s),m,t,to)

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١٢

 To explain more, consider the top “mv” node labeled (moveTo(m),t,a1,t1), this means
that a mobile code block of size m will move from location of “t” to the location of “a1” at
time t1. Figure 13 shows the processing of meta-EG with the CD of Figure 9. This gives a
complete view including four possibilities for mobility. Path (1) is the same as we got in
Figure 12, while path (4) is the case of static interaction style.

The meta-EG on the leftmost of Fig. 12 models the overhead of software execution

and components interactions when all the components are at the same location (static style).
The “mob?-meta-EG” on the rightmost models both the execution and interaction cost, and
additionally, it models the mobility as described by the accompanied CD in the form of an
overhead “mv” node. By processing the CD and the meta-EG together, the meta-EG nodes
supposed to be executed after component mobility (as shown in the CD) are mapped to
“mob?-meta-EG” as local interactions preceded by “mv” node that represent the overhead of
component mobility. Node tuple information such as names of interacting components on the
nodes of the meta-EG are omitted in mob?-meta-EG as there is no need for them after
extracting mobility information into mob?-meta-EG.

To explain more about the translation process of figure 12, take the first node in meta-

EG and the corresponding CD, we find that component “m” will execute a code block to
initialize an instance of “t” of the class TRAVAG, then “m” interacts with “t” at the same
location by sending it a message of size s bits and at time t0. This node is mapped as it is to
the right side.
For the 2nd and 3rd node in the meta-EG, it is clear from CD that component “t” will move to
location of a1 first, then, both “t” and “a1” will exchange messages in the form of requests
and replies locally. The cost of mobility of “t” is modeled by “mv” node with annotation
(moveTo(m),t,a1,t1). The “t” and “a1” of the tuple carries information about the channel on
which component “t” moves, while m is the code size of “t”.

In figure 13 we notice that in path (1) all the gray colored nodes are marked by two
entries tuples which means local interactions, while the three “mv” nodes represent the cost of
mobility of “t”. In path (4) all operational nodes are annotated with four entries tuples, hence
they represent remote interactions. For example, the tuple (req(r1),t,a1,t1) means that the node
will finish executing its code then sends a message of size r1 is sent from component “t” to
component “a1” through the channel between them at time t1. Paths 2, 3 in Figure 13 shows
the cases where partial mobility was adopted,

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١٣

 ICEENG Form - 6

 (2)

Mob?
Yes No

nc

(end(e),t,m,t5)

(req(r2),t,a2,t3)

(Rep(R2),a2,t,t4) nc

mv

mv

(end(e),t7)

(moveTo(m),t,m,t7)

(req(r2),t4)

(Rep(R2),t5)

(moveTo(m),t,a2,t3)

nc

(req(r1),t,a1,t1)

(Rep(R2),a1,t,t2)

Yes No

 (req(r2),t,a2,t4)

(Rep(R2),a2,t,t5
)

nc

mv (MoveTo(m),t,m,t6)

(end(e),t7)
mv

nc

mv

(req(r2),t5)

Rep(R2),t6)

(moveTo(m),t,m,t7)

(moveTo(m),t,a2,t4)

(end(e),t8)

Mob?

nc

mv (moveTo(m),t,a1,t1)

(req(r1),t2)

Rep(R1),t3)

Yes
No

Mob?

(start(s),m,t,t0)

(1)

(4)

(3)

Figure 13 (Step 3-mob) “mob?-meta-EG” Model

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١٤

 ICEENG Form - 6

Step 4: in this step, the Deployment Diagram (DD) of the system is drawn and
annotated. Annotations should include the speed of the connecting links between nodes (in
bits/sec). If any additional data about nodes capabilities and configurations is available, it is
preferable to put it on the DD. Figure 14 shows the annotated DD diagram of the system.

The annotated DD is used to tailor the “mob?-meta-EG” model obtained in

figure 13 to its execution environment. This requires to process both the annotated DD (in
Fig. 14) and the “mob?-meta-EG” (in Fig. 13) together to get the 3rd version of software
model, it is called a “mob?-EG-instance” model. This model includes information about
software execution, mobility behavior and hardware environment (such as channels speeds
and CPUs speeds). Tailoring an EG to a platform described by an annotated DD consists of
two steps:
First, drive the communication cost for each EG node from three data pieces.

• From EG model we pick the size of interacting data found in each EG node tuple .
• From the DD, we exploit the mapping of software components to the nodes. Links

speeds are also obtained.
• From DD, we know whether the interaction is local or remote.

 The cost of communication between two components is equal to the ratio, message size/ link
speed, and in case of local communication (i.e., both of the two communicating components
are on the same node in the DD), the cost of communication is considered zero, as it is too
small compared to with remote interaction.
Second, we derive a first estimate for computation cost for each node from:

• Name of the node
• Difference between the node time and the time of the previous node.

 We will leave that cost as a function of names and times of nodes. So, step 4 will annotate
each node in the mob?-meta-EG graph obtained in step 3-mob by a tuple of two entries only
(communication cost, computation cost). This step enables us to try different hardware
configurations with the same software system to study hardware alternatives. Figure 15 shows
mob?-EG-instance resulted from step 4.

 m

t

CPU0
X0 instr/sec

N0

a2

CPU2
X2 instr/sec

N2

a1

CPU1
X1 instr/sec

N1

V01 bit/sec
CH01

V02 bit/sec
CH02

V12 bit/sec
CH12

Figure 14 (step 4) annotated Deployment Diagram of the system

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١٥

 ICEENG Form - 6

Mob?

Yes No

nc

(0,f(end,t5))

(r2/v02,f(req,t3)
(R2/v02,f(Rep,t4)) nc

mv

mv

(0,f(end,t7)

(m/v02,0)

(0,f(rep,t4))

(0,f(Rep,t5))),t5)

(m/v02,0)

nc

(r1/v01,f(req,t1))

(R1/v01,f(Rep,t2))

Yes No

 (r2/v12,f(req,t4))

(R2/v12,f(Rep,t5))

nc

mv (m/v01,0)

(0,f(end,t7))
mv

nc

mv

(0,f(req,t5))

(0,f(Rep,t6))

(m/v02,0)

(m/v12,0)

(0,f(end,t8)

Mob?

nc

mv (m/vo1,0)

(0,f(req,t2))

(0,f(Rep,t3)

Yes
No

Mob?

(0,f(start,t0))

Figure 15 (Step 4) “mob?-EG-instance” model

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١٦

 ICEENG Form - 6

Step 5: The DD drawn in step 4 is used also to drive Extended Queuing Network
Model (EQNM) representing the hardware platform that hosts our software system (in
addition to driving the “mob?-EG-instance” in step 4). Sufficient information about internal
configuration of each node of the hardware platform must be provided to perform this step.
This information includes number of CPU’s in each node and their speeds, disks…etc. This
information allows us to assign numeric parameters to service centers of the EQNM (such as
service time). In our example, we consider that each hosting node is equipped with only one
CPU and all terminals are connected to node N0. The EQNM we got then is the first hardware
model version as it contains information about the hardware environment only. It defines the
components of the model and their connections (topology), a further step is needed to
parameterize that model and that comes later. Figure 16 shows EQNM model for the case in
which the system is completely static as in path 4. Figure 17 shows the case of complete
mobile system as in path 1.

0.5

0.5

0.5

0.5
Channel 01

M/G/1 – Process

CPU0

M/M/m - FCFS

CPU2

M/M/m - FCFS

CPU1

M/M/m - FCFS

Channel 02

M/G/1 – Process

CPU0

M/M/m - FCFS

CPU1

M/M/m - FCFS

Channel 12

M/G/1 - PS

Channel 01

M/G/1 - PS

CPU2

M/M/m - FCFS

Channel 20

M/G/1 - PS

Figure 17 (Step 5) EQNM for complete mobile style system (path 1)

 Figure 16 (Step 5) EQNM for complete static style system (path 4)

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١٧

 ICEENG Form - 6

Step 6: in the “mob?-EG-instance”, each node is annotated by a two entry tuple, the first entry
is the communication cost and it is either zero for local communications or a function of the
ratio message size/link speed which is easy to calculate. The second entry is the computation
cost of the node and it is expressed as a function of both node name and time as in Figure 15.

 In this step, due to lack of information in early design stage, we will assign numerical
values as estimates for the computation cost. We first add the estimated probability of
executing each path of the “mob?-EG” in figure 15. Second, in order to calculate
computational cost, normally a resource demand vector [9] should be associated to each
graph node.

devise Service requested
CPU 3(k instr.)
Disk 2(disk I/Os)

The vector as in figure 18 shows the node devices that contribute in executing the code block
of the node, in front of each device; there exist the amount of service requested from it to
execute the node code. For example, figure 18 shows that 3 disk I/Os and 3 k CPU
instructions are required for the node to be executed.

As it is difficult to provide such detailed information at early design stages, this step depends
on the experience of the performance analyst in determining the suitable estimates for the
values of these victors. For our example, we will assume that each EG block of code requires
one unit of CPU time (tCPU). Figure 19 shows the replacement of computation cost by tCPU.

Step 6-mob: to this end, we are able to start our first performance analysis as we have

now the 3rd version of the software model in Figure 15. This figure models three aspects of
the software system, first is the execution of the components’ code and their interactions,
different mobility behavior (strategies) are represented by the different paths of the graph and
finally, the hardware features important for software execution. Each node is labeled by a
tuple of a pair of entries (communication cost, computation cost). This pair may be expressed
in explicit numbers, symbolic expressions (as in figure 15), or as upper/lower estimated
bounds according to the quality of the information provided to the analyst then. Summing
communication and computation costs for the whole nodes of one path will give the total cost
of it which the response time of the path, see figure 19. The response times of the four paths
can be compared to choose the lowest response time mobility strategy.

Analysis example:
This example points out a type of analysis that can be done on the software model only. We
will put these assumptions which are needed due to the lack of information in the early design
stages. Consider each request message is of size r bits and each reply message of size R bits.
Consider that all the CPUs are identical. All communication links are of the same speed (v).
Applying these assumptions to Figure 15, we get Figure 19, specially drawn for this analysis.
These assumptions simplify the analysis as follows:

Figure 18 Resource Demand Vector

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١٨

 ICEENG Form - 6

Yes

(m/v02,0)

nc

mv

mv

(0, tCPU0)

(m/v,0)

(0, tCPU2)

(0,tCPU2)

Mob?

Yes No

nc

(0, tCPU0)

(r/v, tCPU0)
(R/v, tCPU2)

(r/v, tCPU0)

(R/v, tCPU1)

No

 (r/v, tCPU1)

(R/v, tCPU1)

nc

mv (m/v,0)

(0, tCPU0)

Path 1

Yes

mv

nc

mv

(0, tCPU2)

(0, tCPU2)

(m/v,0)

(m/v,0)

(0, tCPU0)

Mob?

nc

mv (m/v , 0)

(0, tCPU1)

(0, tCPU1)

No

Mob?

(0, tCPU0)

Figure 19 (Step 6) Analysis of software model
Comm. Cost = 0+ m/v +0+0+ m/v +0+0+ m/v +0 = 3m/v

Comp. cost = th+ tCPU0 + 2 ntCPU2 + 2 ntCPU1 + tCPU0

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

١٩

 ICEENG Form - 6

• Communication cost of paths 2, 3 is the same.
• Computation cost of all paths is the same and equal to [th+(2+4n)tCPU].

So, our analysis can be restricted to only three paths, 1, 2(3), 4. The analysis will be
considered for communication cost only. Summing the cost of nodes of each path as in figure
19, the result be as in the following table:

 Communication cost Computation cost
Path 1 3m/v th+2 tCPU0 +2n tCPU1 +2n tCPU2
Path 2(3) 2m/v + n(r+R)/v th+2 tCPU0 +3n tCPU1 + n tCPU2
Path 4 2n(r+R)/v th+2 tCPU0 +2n tCPU0 +n tCPU1 +n tCPU2

We can conclude the following:
Communication cost of path 1 is less than path 4 if, n>= 3m/2(r+R).
Communication cost of path 1 is less than path 2(3) if, n>= m/(r+R).
Communication cost of path 2(3) is less than path 4 if, n>= 2m/(r+R).
Consider the value of the ratio m/(r+R) = x, where m the size of the mobile component
(mobile agent) in bits and n is the loop number for requesting and replying messages, we can
conclude the order of our choice for the mobility strategy in the following table:

n<x X<n<(3x/2) (3x/2)<n<2x n>2x

Best path 4 4 1 1
Good path 2(3) 1 4 2(3)
Worst path 1 2(3) 2(3) 4

Taking the 2nd column in the table where x<n<3x/2 as an example, we find that the design of
the lowest response time is path 4, i.e. complete static system. The one that follows is path 1,
i.e. mobile style. The biggest response time is when adopting partial mobility style. The
analysis performed here is a stand alone one, i.e. it consider our software system as if it was
the only one running on the hardware platform without any contention for hardware resources
and without bottlenecks. This is the best environment we can expect for the system, so, if the
response time obtained in this analysis is unsatisfactory, we should redesign the software
architecture.

Step 7-mob: this step parameterize the EQNM that was developed in step 5. This is done by
mapping the software model (mob?-EG-instance) onto the defined EQNM. This determines
the environment based parameters of the model such as job classes, job service demands at
different centers and job routing among the network centers.

Step 8: the set of EQNM models for the different paths are solved for different configurations
and parameters. IBM/RESQ2 toll is used. The results will point out the change of response
time as we change a parameter such as the number of jobs. No more details will be given as
our interest is the mobility modeling techniques.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٢٠

 ICEENG Form - 6

4. QN Performance Model Solution

In this section we will explore solving the QN model for the example that we have
discussed earlier in 3.1. It is a mobile user that can connect wirelessly to two servers at
locations L1 and L2. The user can use two styles, static style where he exchanges a set of n
messages in the form of requests and replies with each server to satisfy the data he needs. In
the 2nd style of communication, the user can fire a mobile agent towards the first server only.
Due to the characteristics of the mobile agent, it will reach to the 1st server (CPU1) and do
what is required, it then, autonomously will move it self to the 2nd server (CPU2) and search
there about the user’s needs and at last it moves itself to the location of the user carrying the
answer to him.

 We solve the two QN models in figures 16, 17. Figure 16 represent the case of static
system and figure 17 represents the case of using the mobile agent paradigm. We use the
Internet free QN Tool called “WinPEPSY”. The assumptions that we have made are as
follow:
The mobile agent code size is 64 KB.
TCPU0 = TCPU1 = TCPU2 = 0.1 msec, this is the time needed by a CPU to execute a block of code
of one thousand machine instruction.
The value of r is 0.5 KB and R = 2.5 KB.
The wireless channel is considered a 54 Mb/sec (802.11a).
The value of “n” is taken as a parameter for the workload, it represents the number of the
exchanged messages between the client and the server to satisfy a request, it also represents
how large is the workload. We calculate the response time for both systems for two different
of n (n=10 and n=100), these two values represent light and heavy workloads. The number of
the jobs in the system is another parameter for the workload and we used it as the variation of
the x-axis. The table below is extracted from the results of the tool.

line
no. System n /

NO.Jobs 10 20 30 40 50 60 70 80 90

1 10 25.8 50 72 94 116 138 160 182 205
2

Static Sys Res.
Time (msec) 100 278 501 722 939 1262 1385 1603 1824 2042

3 10 115.6 209 304 398 493 598 683 778 872
4 100 227 424 622 823 1020 1220 1427 1622 1819
5

Mobile Sys
Res. Time

(msec) 100 225 423 621 820 1021 1217 1417 1620 1820

100 110 120 130 140 150 160 170 180
226 248 270 293 315 337 359 379 400
2267 2477 2710 2929 3149 3369 3593 3814 4031
967 1061 1158 1251 1364 1447 1535 1631 1721
2017 2220 2420 2621 2820 3010 3219 3419 3622
2026 2224 2419 2619 2823 3020 3219 3420 3609

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٢١

 ICEENG Form - 6

Chart (1)
The chart plots line 1, 2 of the table, this chart compares the value of the response time

when n changes from 10 to 100 in case of using the traditional static style for communication.
It is clear that at a transaction of 100 messages, the response time of the transaction will be
greater than that of 0nly 10 messages. It is clear that, as the number of jobs in the system
increased, response time increases also.

 Chart (2)
 Chart (2) compares the response time in case of the three cases for the mobile system.
First, if n =10 (blue), and second when n = 100 (red) and the last one when n=100 and the
mobile agent will use a wired network of speed 1000 Mb/sec to move on Channel12 (yellow).

The yellow and red curves are nearly coincident, meaning that it does not make any difference
for the channel12 to be wired or wireless. This is because the agent size is small. Also, as
before, response time for n=100 is greater than that for n=10.

Chart (1) Response Time of static sys for n=10, 100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

No. of jobs

Res Time

Static Res. Time for n=10 Static res. Time for n=100

Chart (2) Mobile sys Res Time for for three cases

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

No. of jobs

R
es

. T
im

e

mobile Res Timefor n =10
Mobile Res Time for n =100
Mobile Res Time for n=100 and CH12 is w rid

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٢٢

 ICEENG Form - 6

 Chart (3)
 This chart compares the response time of the static system with that of the mobile
system in case of n = 10. It is clear that the static system is highly better than the mobile agent
system. This is due to the small size of the exchanged data for completing a transaction
compared with the size of the mobile agent code. The time required to move the agent is
greater than that for moving the data.

Chart (4)
 Chart (4) shows the opposite of chart (3). Here, the response time of the mobile agent
is less than that of the static system. The reason, n =100 and the amount of the exchanged data
is large compared to the mobile agent code size. It is clear also that as the number of jobs in

the system increases, the response time increases also. We predict that if we take larger values
for n, the static response time curve (blue) will go higher, making the difference much larger.

Chart (3) Compare Static and mobile Res Time for n=10

0
200

400
600
800

1000

1200
1400
1600

1800
2000

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

N0. of jobs

res Time

Static Res Time for n=10 mobile Res Time for n=10

Chart (4) Compare Static and Mobile Res Time for
n=100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40 5 0 60 70 80 90 10
0

11
0

1 2
0

1 3
0

14
0

15
0

16
0

1 7
0

1 8
0

No. of jobs

Res Time

Static Res Time for n=100 Mobile Res Time for n =100

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٢٣

 ICEENG Form - 6

٥. Analysis and comparison

After presenting of two approaches for performance prediction of mobile systems and two
techniques for mobility modeling, we here give our analysis for these topics and our point of
view about certain aspects:

1. Performance prediction approaches: both of the two techniques were introduced

within the context of a specific performance prediction approach. This refers to their
limitation as they are not applicable to other approaches of performance prediction.

2. Use of UML: as all the currently proposed techniques for mobility modeling, these two
presented use UML. This means that, UML became a widely used standard
architectural description language, however, it lacks for mechanisms to model to
model mobility. Most of the mobility techniques suggest extensions to UML to model
mobility and that what the 2nd technique did.

3. UML diagrams used: the reason behind the widely acceptance of UML as a standard
modeling language is its inclusion of a set of diagrams that model the different aspects
of software. The first technique uses Use Case Diagram to model mobile entities and
possible mobility paths and Activity Diagrams to model execution interactions within
each path. The 2nd technique uses the Sequence Diagram to model execution
interactions and Collaboration Diagram to model components locations and their
movement.

4. Mobility types: software mobility can be categorized into two broad types, physical
mobility and logical mobility. It is hard to find a technique that models both types into
the software architectural design. The first technique claims it models both types,
while the second models only logical mobility (case of mobile agent).

5. Automation: the first approach uses a prototype tool specifically designed for it, hence
the tool is limited to the technique and the approach proposed. The 2nd approach does
not use any tool to automate the process except only in the last step. It uses the
IBM/RESQ2 queuing network tool for solving the QN-based performance model. The
presence of a tool is essential for the success of any approach. The only commercially
available software performance tool is SPE•ED and until now, it is limited to OO and
distributed software.

6. mobility and execution modeling separation: first technique claims it separates
between mobility modeling and execution modeling, however this is not clear. The 2nd
technique does separate between the two concerns

7. development possibility: mobility modeling technique No.1 has a little chance to be
developed and merged into a solid performance prediction approach for reasons such
as using detailed ADs that describe both code execution and mobility behavior, using
a prototype tool dedicated to that approach only. The 2nd technique has a better chance
to be evolved as it is based on a well established approach (SPE).

8. PRIMAmob-UML methodology is applicable and it is based upon the SPE approach of
C.U.Smith, what is needed is the presence of a tool to facilitate these cumbersome,
lengthy calculation and modeling steps.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٢٤

 ICEENG Form - 6

 ٦. Conclusions

As mobile devices are spreading and becoming part of our daily life in the last few
years, mobile software systems have found great interest from software companies and
engineers. Performance of such systems is critical for their success and should be predicted
during their architectural design phase. This is due to their complexity and expensive
development cost. To predict performance of mobile systems, we have to take into account
their mobility behavior. The means for mobility specifying are still under development [1]
and so far, there is no standard way for expressing mobility in UML [5]. Hence, our
conclusion is that approaches proposed for mobile systems performance prediction is still
taking the first steps in their way of maturity, however, few approaches for performance
analysis and prediction for static systems have realized considerable advance [6]. We see that
presence of a standard way for mobility modeling would encourage UML and performance
tools manufactures to include this part in their tools. The presence of tools is necessary for
developing the process of performance prediction of mobile systems.

References

[1] H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing. “ Extending Activitiy
Diagrams to model mobile systems”. In M. Aksit, M. Mezini, and R. Unland, editors,
Netobject-Days, volume 2591 of lecture notes in Computer Science. Springer, 2003. ISBN 3-
540-00737-7.

[2] S. Balsamo and M. marzola, “A simulation –Based Approach to software Performance
Modeling”, ESEC/FSE’03, Septemper 1-5, 2003, Helsinki, Finland.

[3][32] S. Balsamo and M. Marzola, “Simulation modeling of Software Architectures”, Proc.
Of European Simulation Multiconference, pages 562-567, Nottingham, June 2003b.

[4] Object Management Group. UML profile for schedulability, performance and time
specification. Final adopted specification ptc/02-03-02, OMG, March 2002.

[5] Simonetta Balsamo, Moreno Marzolla “Towards performance Evaluation of Mobile
Systems in UML”Proc. Of ESMc’03, Napoles, Italy, Oct. 27-29, 2003, pp. 61-68, EUROSIS-
ETI, ISBN 90-77381-04-x.

[6] Simonetta balsamo, Antinisca Di Marco, Paola Inverardi and Marta Simeomi , “model-
Based Performance prediction in software development: A Survey”, IEEE transactions on
Software Engineering, vol. 30, No. 5, May 2004.

[7] Murray woodside, Dorina Petriu, “Capabilities of the UML Profile for Schedulability
Performance and Time (SPT)”April 2004.

[8] Jose Merseguer, Javier Campos, ”Exploring roles for the UML Diagrams in software
Performance Engineering”. Proceedings of the International Conference on Software
Engineering Research and Practice, SERP '03, June 23 - 26, 2003, Las Vegas, Nevada, USA,
Volume 1. CSREA Press 2003, pp.43-47, ISBN 1-932415-19-X

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 10 -

٢٥

 ICEENG Form - 6

[9] Murray woodside, Dorina Petriu, “Capabilities of the UML Profile for Schedulability
Performance and Time (SPT)”April 2004.

[10] C.U. Smith and L.G. Williams, “Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software”. Addison Wesley, 2002.

[11] C.U. Smith and L.G. Williams, "Performance Engineering Evaluation of Object-
Oriented Systems with SPE.ED", Springer LNCS 1245, pp. 135-153, 1997.

[12] Vittorio Cortllessa and Raffaela Mirandola, “ PRIMA-UML: a performance validation
incremental methodology on early UML diagrams”, Science of Computer Programming 44
(2002) 101 – 129.

[13] Vincenzo Grassi, Raffaela Mirandola, " PRIMAmob-UML: a methodology for
performance analysis of mobile software architectures", Proceedings of the 3rd
international workshop on Software and performance, Rome, Italy, Pages: 262 - 274 , 2002,
ACM Press New York, NY, USA.

[14] C.U. Smith and L.G. Williams, "Performance Engineering Evaluation of Object-
Oriented Systems with SPE.ED", Springer LNCS 1245, pp. 135-153, 1997.

[15 L.G. Williams and C.U. Smith "Performance Evaluation of Software Architecture",
Proc. ACM Int'l Workshop Software and Performance, pp. 164-177, 1998.

