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ABSTRACT 
 
Different kinds of functions are required for today’s Electronics and Communication 
applications with very precise characteristics like frequency, phase, magnitude and waveform 
etc. A technique for Field Programmable Gate Array (FPGA) based hardware realization has 
been developed for the design, implementation and prototyping of useful functions in digital 
form. The technique makes use of the orthogonal functions like Rademacher and the Walsh 
functions for the hardware realization. The FPGA based hardware realization of sinusoidal, 
triangular, and trapezoidal waveforms in their digital form has been demonstrated with good 
results. A comparative study of hardware realization of such functions targeted to various 
FPGAs available from Xilinx has been made. It is concluded that virtually any periodic 
function may be realized directly in its digital form (without the need of Analog to Digital 
conversion) with the help of FPGAs using orthogonal functions. 
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INTRODUCTION 
 
Due to the recent advancement in Field Programmable Gate Arrays (FPGAs) over the past 
decade or so, the logic capacity of FPGAs has been enhanced, the performance greatly 
improved and price has been drastically reduced. Today, FPGAs are large and fast enough for 
use in multimillion-gate designs running at hundreds of megahertz. FPGAs now exceed the 
capacity and speed requirements of the vast majority of ASICs [1-2]. Thus FPGAs are 
becoming more attractive in a wide range of applications [3].  
 
Different kinds of functions are required for today’s Electronics and Communication 
applications with very precise characteristics like frequency, phase, magnitude and waveform 
etc. It has been demonstrated that, in principle, any periodic function may be realized using 
orthogonal functions [4].  
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Many orthogonal functions and polynomials are being utilized for quite some time for 
scientific and engineering applications. These functions include trigonometric functions, 
Bessel functions, Hermite polynomials, Legendre polynomials etc. However, trigonometric 
functions which are inherently encountered in Fourier analysis have played a significant role 
in applications to engineering and science problems [5]. 
 
The selection and use of any orthogonal set of functions hinges primarily on the type of 
problem under study. For instance, while some sets render rather simple and useful solutions 
to a certain problem, other sets give complicated and less useful forms of solution. As an 
example, the discrete Karhunen-Loéve (KL) expansion technique may result in an efficient 
representation for discrete time random processes, but the implementation of the technique is 
usually very difficult. On the other hand, Walsh functions analysis may prove more 
advantageous from such points of view as multiplication and implementation of such 
processes [5]. 
 
The most important factor responsible for the increased use of Walsh functions is their digital 
nature. As the Walsh transform matrix is purely real, with entries {-1, 1}, fast operations 
require fewer operations than the comparable Fast Fourier transform (FFT). This in turn 
implies saving in processing time and storage allocations when using a digital computer as the 
signal processor. This advantage is particularly important to researches with limited facilities, 
a condition which is not uncommon to colleges and small-scale industries. 
 
The rest of the paper is organized as follows. In the next section we discuss the definition and 
basic properties of Rademacher and Walsh functions. The Walsh series expansion is then 
formulated and discussed briefly. We then describe the technique for the successful 
generation of sinusoidal, triangular and trapezoidal digital waves using Walsh Functions. A 
comparison is made at the end using different Xilinx FPGA families. Finally we end the paper 
with some concluding remarks. 
 
 
RADEMACHER AND WALSH FUNCTIONS 
 
Fourier theory has been widely used in applications to science and engineering problems. In 
particular, Fourier analysis is well established in the engineering sciences as a means for 
analog wave analysis where the sine-cosine system of function finds ample opportunities for 
use. With the advent of digital computers and the introduction of their use in various fields, 
the theory of discrete (trigonometric) Fourier analysis has been developed. However, it is 
found that other theories can offer equal and sometimes better means of analysis. One such 
theory is based on a set of functions due to Walsh [5]. 
 
There have been many ways of defining or generating Walsh functions. In general, these 
investigations have been motivated by either of two purposes. The first purpose seeks a 
simple and efficient method of generating Walsh functions, and employing them for 
computational purposes particularly in using digital computers. The second purpose is to 
induce a definition which allows for simple and useful analytical or mathematical 
manipulations. It is easier to generate Walsh functions using the Rademacher functions [5]. 
A Rademacher function of the nth order is defined as [5]: 
 

( ) ( ) 10                                 ,....2,1,0          , 22sinSgn,1 <≤==+ xnxxn nπφ                   (1) 
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where, ( ) 1,0 =xφ  and the signum function Sgn(y) is defined by: 
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The definition of Rademacher functions may be extended over the whole non-negative real 
line by the periodicity property [5]: 
 

( ) ( )xx ,01,0 φφ =+                             (3)
 
The Walsh functions may be derived as [5]: 
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where, ( )xn,ψ  is the set of Walsh functions defined on [0,1) and the integer n is assumed to 
have the dyadic (binary) representation given as: 
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Such a representation is imperative in considering the basic characteristics of Walsh 
functions. However, since the Rademacher functions are periodic outside the unit interval 
[0,1), it follows that Walsh functions are also periodic with the same unity period. Walsh 
functions are also taken right-continuous [5]. Fig. 1 depicts the first eight Walsh functions 
defined on the unit interval [0,1). 
 
 
WALSH SERIES EXPANSION 
 
Due to the completeness of Walsh functions, it is possible to formulate Walsh series 
expansion for suitable functions of periodic characteristics. The convergence aspect of this 
problem was studied originally by Walsh [5]. If f(x) is Lebesgue-integrable on [1,0), then it 
possesses an associated Walsh series expansion representation given by [5].  
 

( ) ( ) ( ) ( ) ...,2,1,0 210 +++≈ xAxAxAxf ψψψ             (7)
 
The expansion coefficients An are evaluated by: 
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Fig.1. First Eight Walsh functions 
 
The use of Walsh series generally serves either of the two purposes: 
 
1.  Represent a function f(x) defined on a finite interval, for that interval. 
2.  Represent a periodic function f(x) for all values of x. 
 
 

GENERATION OF DIGITAL FUNCTIONS 
 
It may be seen from above that any periodic function may be represented in the form of Walsh 
series given in Eq. 7 where the expansion coefficients may be obtained from Eq. 8. Since 
Walsh functions are of digital nature assuming values of 1 and -1, the periodic function may 
be realized in digital form. Using the above mentioned technique, we have generated three 
different functions i.e., Sinusoidal, Triangular and Trapezoidal. 
 
 
Generation of Sinusoidal Functions  
 
Considering the general sinusoidal function f(x) = α*sin (2π x), the first 64 expansion 
coefficients obtained by Eq. 8 are given below: 
 
A0 = 0, A1 = 0.6365, A2, A3, A4, A5, A6 = 0, A7 = -0.2637, A8, A9, A10 = 0, A11 = 0.1266,  
A12 = 0, A13 = -0.0525, A14, A15, A16, A17, A18 = 0, A19= -0.0627, A20 = 0, A21 = -0.0260,  
A22, A23, A24 = 0, A25= -0.0125, A26, A27, A28, A29, A30 = 0, A31 = -0.0052, A32 = 0,  
A33, A34 = 0, A35 = 0.016, A36 = 0, A37 = 0.0013, A38, A39, A40 = 0, A41 = 0.0062,  
A42, A43, A44, A45, A46 = 0, A47 = 0.0026, A48 = 0, A49 = 0.0021. 
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It is obvious that the precision of the function depends upon the number of terms used in the 
Walsh series expansion at the expense of hardware. An analysis of the waveform using 
MATLAB has been made. It is found that a reasonable accuracy may be obtained by using 
64-term approximation in the Walsh series expansion. The resulting waveform for α=1 is 
shown in Fig. 2.  
 
Very High-Speed Integrated Circuit Hardware Description Language (VHDL) codes were 
written for the realization of the sinusoidal wave. The terms for Walsh series were generated 
and added to produce the required function. The Walsh functions assume the values of +1 and 
-1 and these values are to be multiplied with appropriate coefficients generated in the previous 
sections.  
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Fig.2. MATLAB Simulation of Sinusoidal Waveform using Walsh functions 
 
It may be noted that if we assign +1 to logic ‘0’ and -1 to logic ‘1’ then multiplication is 
replaced by a simple Exclusive-OR (XOR) operation. This greatly simplifies the 
multiplication of waves.   
 
The design was targeted to Xilinx FPGAs using software packages available from Xilinx. 
VHDL was used for design entry. The design was implemented on FPGA boards and the 
implementation was thoroughly analyzed, verified and tested.  
 
The results of the functional simulation results are presented in Fig. 3. CKK is the Clock 
signal. First five Rademacher functions are represented by R1, R2, R3, R4 and R5. First eight 
Walsh functions with non-zero expansion coefficients are represented by W0, W1, W2, W3, 
W4, W5, W6 and W7. The digital sinusoidal wave is represented by the 16-bit vector P (P0 to 
P15). The use of 2’s complements is made for negative numbers. The results of timing 
simulation are presented in Fig. 4. 
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Fig.3. Functional Simulation of Rademacher, Walsh and Sinusoidal Functions 
 
 
 

 
 

Fig.4.  Timing Simulation of Rademacher, Walsh and Sinusoidal Functions 
 
 
The design was targeted and downloaded to several FPGA chips from Xilinx. A snapshot 
depicting some of the implementation results using Xilinx Spartan-3 FPGA chip with the 
ideal results superimposed are shown in Fig. 5.  
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Fig.5.  Waveforms obtained after implementation on Spartan-3 FPGA Chip 
 
A detailed analysis showed that the instantaneous values are very close to the ideal values 
calculated from sine equation. The difference is so small that it cannot be seen in the figure. It 
is to be noted that the accuracy may be further increased by taking more terms in the Walsh 
series expansion. However, the results in the present form are good enough for most of the 
digital applications of practical interest.  
 
Synthesis results generated by the Xilinx design tools are summarized as follows: 
 
Number of CLBs used in the design: 166 out of 400 (41%) 
Minimum period:  40.928 ns  
Maximum net delay:  11.143 ns 
Maximum frequency:  24.433 MHz 
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Generation of Triangular Functions 
 
A triangular waveform represented by the following equations was selected for hardware 
realization: 
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The MATLAB analysis gave the following first 32 coefficients of the Walsh series expansion: 
 
A0  = 0, A1=0.5, A2, A3, A4, A5, A6 = 0, A7 = -0.25, A8, A9, A10 = 0, A11 = -0.125, A12, A13, A14, 
A15, A16, A17, A18 = 0, A19= -0.625, A20, A21, A22, A23, A24, A25, A26, A27, A28, A29, A30, A31= 0,  
 
VHDL codes were written for the realization of the triangular wave on similar lines and the 
design was successfully implemented. Detailed reports have been generated by the design 
tools and were thoroughly examined. Some of the more useful results of design and 
implementation are given below:  
 
Total equivalent gate count for design:  1,170 
Additional JTAG gate count for IOBs:  2,592 
Peak Memory Usage:  66 MB 
Maximum delay = 10.574 ns 
 
 
Generation of Trapezoidal Functions 
 
The trapezoidal waveform represented by the following equations was selected for hardware 
realization: 
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The MATLAB analysis gave the following first 64 coefficients of the Walsh series expansion: 
 
A0 = 0.75, A1, A2, =0, A3 = -0.25, A4, =0, A5, = - 0.125, A6 = -0.125, A7, A8 =0, A9 = -0.0625, 
A10 = -0.0625, A11, A12, A13, A14, A15, A16 = 0, A17 = -0.0312, A18 = -0.0312, A19 - A32 = 0, 
A33= -0.0156, A34= -0.0156, A35 –A63= 0. 
 
VHDL codes were written for the realization of the trapezoidal wave on similar lines and the 
design was successfully implemented. Some of the useful results of design and 
implementation obtained through implementation reports are given below:  
 
Total equivalent gate count for design:  1,882 
Additional JTAG gate count for IOBs:  2,592 
Peak Memory Usage:  67 MB 
Maximum Delay = 11.572 ns 
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COMPARISON OF HARDWARE REALIZATION  
 
Our designs are largely technology independent. Thus the designs were targeted to a large 
number of FPGA chips supplied by Xilinx. A comparative study was done and the results of 
this study in case of some selected representative technologies are presented in Table 1. The 
trapezoidal waveform has been selected for demonstration of the comparison. One chip from 
each technology family has been chosen for presentation. The values of some of the useful 
parameters are tabulated. A clear pattern is seen and it is evident that speed and power are two 
main conflicting parameters. A tradeoff has to be made depending upon the actual needs and 
applications. The given table will help in the selection of a suitable FPGA chip for a particular 
application.  
 
The proposed technique provides many significant advantages over Look-up Table based 
Direct Digital Synthesis (DDS) technique. These advantages are as follows: 
 

 Simple Design 
 Low cost 
 Small Area 
 Higher flexibility 
 Versatility 

 
Walsh functions being inherently digital are most suitable for control by digital means. 
 
 
CONCLUSIONS 
 
A technique for FPGA based hardware realization has been developed for the design, 
implementation and prototyping of useful functions in digital form. The technique makes use 
of the orthogonal functions like Rademacher and the Walsh functions for the realization. Any 
periodic function can be realized in its digital form with precise requirements in terms of 
frequency, phase, amplitude and shape etc.  
 
The hardware realization of sinusoidal, triangular, and trapezoidal functions in their digital 
form has been demonstrated with good results. A comparative study of hardware realization 
of such functions with different technologies available from Xilinx has been done. It is 
concluded that virtually any periodic function may be realized directly in its digital form 
(without the need of Analog to Digital conversion) with the help of FPGAs using orthogonal 
functions. Prototypes and IP Cores for the above mentioned functions have been developed 
and are available. 
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Table 1: Comparison of Hardware Realization with Different Devices 
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  1. Average Connection Delay (ns) 1.082 1.192 1.280 0.858 1.679 0.936 0.790 0.834 1.682 1.464 

  2. Maximum Pin Delay (ns) 4.193 4.906 5.832 2.758 8.266 2.952 2.419 3.238 12.429 9.738 

  3. Worst Ave. Connection. Delay (ns) 2.682 3.684 4.320 2.035 4.765 2.225 1.400 2.014 5.912 4.585 

  4. Clock edge to Pad delay (ns) 11.72 11.57 13.23 10.29 16.90 10.15 7.581 10.835 17.002 17.516 

  5. Minimum Period (ns) 23.44 23.14 26.46 20.58 33.80 20.30 15.16 21.67 34.004 35.032 

  6. Maximum Frequency (MHz) 42.66 43.21 37.79 48.59 29.58 49.26 65.96 46.15 29.41 28.545 

  7. Number of SLICEs 79 79 79 81 79 81 81 82 79 79 

  8. Number of External IOBs 53 53 53 54 53 54 54 54 53 53 

  9. Total Equivalent Gate Count 1882 1882 1882 1879 1882 1879 1879 1906 1882 1882 

10. Estimated power consump. (mW) 13 28 34 515 32 787 1165 - 367 907 

11. Estimated junction Temp. (oC) 25 26 26 25 25 33 25 - 30 34 

12. Design Score 162 193 214 126 263 138 107 124 286 238 

Technology 
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