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ABSTRACT 

A flexibility-based reinforced concrete beam column element is developed to study the nonlinear static and dynamic 

response of reinforced concrete seismic resisting frames. To model beam to column flexible connections and rigid zones 

that formed from beam to column intersections, end springs and end offsets are included in the element formulation, 

respectively. The element flexibility matrix is formed by integration of in-span section flexibilities using conventional 

force relations using the Simpson’s method.  Each cross section in the element span is subdivided into concrete and steel 

fibers/layers with the assumption of linear strain distribution over the section depth. The effects of shear and bond slip 

are neglected in the element formulation. The formulated beam column element is implemented into a developed finite 

element program. For the sake of verification, a series of correlations studies against members and structures available 

in the literature subjected to either monotonic or cyclic loads were investigated and showed a good accuracy. The 

proposed element can be used in nonlinear static and dynamic analysis of seismic resisting systems.   

Keywords:  RC frames, static/dynamic response, flexibility method, end springs, end offsets. 

 

1. Introduction 

The nonlinear static and dynamic analyses of 

structures are used extensively in the assessment of 

existing structures in high risk zones and in the 

development of appropriate retrofit strategies. 

Modeling of structures by Finite Element Method 

(FEM) is the best compromise between simplicity and 

accuracy. The most promising elements for the 

nonlinear analysis of reinforced concrete members are, 

presently, flexibility-based fiber elements. The first 

flexibility-based fiber element was proposed by Kaba 

[1] and Filippou [2]. It follows the outline of the 

flexibility approach using the force interpolation 

functions in the determination of element flexibility 

matrix. Only uniaxial bending is taken into account. In 

the state determination phase of nonlinear analysis, the 

section deformations are computed from element 

deformations with the flexibility–dependent 

deformations shape functions. The integral over the 

element length are evaluated by subdividing the 

element into equally space segments and assuming a 

linear flexibility distribution between segments. The 

model yielded a very promising results, but 

convergence issues and lack of theoretical clarity and 

contains several inconsistences that cause numerical 

problems. 
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A beam column finite element model for the analysis 

of reinforced concrete members under cyclic loading 

conditions that induce biaxial bending and axial force 

was proposed by Taucer [3]. The formulation of the 

element is based on mixed method. A special 

flexibility-based state determination algorithm was 

proposed for the computation of the stiffness matrix 

and resisting forces of beam column element. A 

reinforced concrete beam finite element that explicitly 

accounts for the slip between the reinforcing bars and 

the surrounding concrete was proposed by Monti [4]. 

The element formulation combines the fiber-section 

model with the finite-element model of a reinforcing 

bar with continuous slip. The steel fiber strains were 

computed as the sum of two contributions, the rebar 

deformation and anchorage slip. The model was 

applied to different cross-section shapes under biaxial 

bending and both monotonic and cyclic loads.           

Strategies for equilibrium-based formulations along 

with a solution scheme based on the secant stiffness 

matrix and method of direct iteration , techniques to 

overcome the difficulty of softening in nonlinear 

analysis of reinforced concrete members, mesh 

objectivity and a simplified model for shear 

distribution over the height of a cracked section were 

investigated by Valipour [5]. 

A fiber beam column element able to reproduce the 

non-linear behavior of squat structures was formulated 

by Diotallevi [6]. Its main characteristics are 

substantially the flexibility formulation and the 

constitutive relationship characterized by a rotating 

smeared crack model. The model was able to 

reproduce flexure and shear non-linear response and 

above all, the coupling between flexure and shear in 

the non-linear range [6]. A planar frame fiber element 
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model including a fully coupled shear–bending–axial 

forces sectional response and a flexibility-based 

formulation for curved elements was proposed by 

Mohr [7]. The A flexibility-based frame element 

includes shear deformability, which is connected with 

the cross-section model. The model has shown to fit 

the experimental results with more accuracy than non-

linear solutions based on Navier-Bernouilli and 

Timoshenko theories and other formulations, which 

provide stiffer behavior than that experimentally 

observed in shear dominated specimens [7].  

A beam column model for seismic analysis of 

reinforced concrete frames was presented by El-

Heweity [8]. The model is a simplified version of the 

flexibility-based fiber models. In his model, only the 

two end sections are subdivided into fibers and uniaxial 

material models that consider the various behavioral 

characteristics of steel and concrete under cyclic 

loading conditions were assigned for the cross section 

fibers. The inelastic lengths at the ends of the model 

were divided into two inelastic zones; cracking and 

yielding. The inelastic lengths vary according to the 

loading history and were calculated in every load 

increment. The overall response of the RC member is 

estimated using preset flexibility distribution functions 

along the element length [8]. 

From the available literature, modeling of framed 

systems requires improved finite elements reducing 

number of elements and containing different modeling 

capabilities. In the present study, an improved 

formulation and state determination for general 

purpose flexibility-based reinforced concrete beam 

column element with end springs and/or end offsets 

were presented. 

2. Finite Element Formulation 

Based on the small deformation assumption, Navier-

Bernoulli theory is adopted for distribution of axial 

strain over the section where the effects of shear on 

yielding and fracture of axial fibers are neglected. 

Perfect bond is assumed between reinforcing bar and 

surrounding concrete. The procedure presented by 

Taucer [3] is used the present formulation. A cantilever 

clamped end configuration is used in the element 

formulation due its simplicity and it will produce full 

flexibility coefficients for one beam ends, Figure 1a. 

2.1 Element Level 

Three sets of equations resulting from the application 

of equilibrium, compatibility and constitutive laws are 

established based on the Newton solution schemes and 

are consistent with the tangent stiffness approach.  

Figure 1c shows a 2-node frame element with three 

degrees of freedom at each node (two translations and 

one rotation) subjected to the distributed loads w (x). 

Considering an arbitrary section located at x along the 

element, equilibrium for configuration i-s (Figure 2) 

gives [3]: 

 D(x) = b(x) Q1 + FD(x) (1) 

where, D(x) is the generalized section forces; b(x) is 

the force interpolation matrix; Q1 is a vector of end 

forces for member end (1); and FD(x) is the vector of 

sectional forces from in-span loading.  

 D(x) = [N(x) M(x)]T (2) 

 b(x) = [
−1 0 0
0 x −1

] (3) 

 Q1 = [Fx1 Fy1 Mz1]
T (4) 

 FD(x) = [0 w. x2 2⁄ ]T (5) 

For the case of two in-span loading components, as 

shown in Figure 2b, the vector of sectional forces from 

the in-span loading will be: 

 FD(x) = [−wx. x wy. x
2 2⁄ ]

T
 (6) 

If the term FD(x) from right side of Eq. (1) is removed, 

it will not violate the generality of the formulation and, 

hence, 

 D(x) = b(x) Q1 (7) 

The incremental form of Eq. (7) is 

 ∆D(x) = b(x) ∆Q1 (8) 

 

Figure 1: Cantilever clamped-end beam approach for 

flexibility formulation, (a) end forces and in-span 

loading (b) left end displacements and rotations, (c) 

end forces and end displacements. 
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(a) 

 
(b) 

Figure 2: Element loading (a) Segment free body 

diagram (i-s), (b) In-span loading. 

2.2 Section Level 

The element is subdivided into group of equally spaced 

segments forming in-span sections. Each section is 

divided into layers for the case of plane analysis of 

structures, Figure 3. If Δσ represents the stress 

increment at a transverse layer, then equilibrium of 

internal stresses and tractions gives  

 ∫ Δ𝜎 𝑑𝐴 − Δ𝑁(𝑥) = 0
Ω

 (9) 

 ∫ y Δ𝜎 𝑑𝐴 + Δ𝑀𝑧(𝑥) = 0
Ω

 (10) 

where, y is the ordinate of the layer from the section 

elastic center of gravity. Note that, in the nonlinear 

analysis, the center of gravity is changed continuously 

accordingly with updating of layer modulus of 

elasticity.  

 

 
Figure 3: Discretization of concrete sections into 

layers/fibers. 

2.3 Compatibility Equations  

For the case of perfect bond using Navier-Bernoulli 

hypothesis, the compatibility requirement of layer 

strain is obtained as  

 𝜀(𝑥) = 𝜀𝑎(𝑥) − 𝑦 𝜙𝑧(𝑥) (11) 

where, 𝜀(𝑥) the axial strain of fiber integration 

point, 𝜀𝑎(𝑥) is the normal force strain, and 𝜙𝑧(𝑥) is the 

section curvature. The incremental strain Δ𝜀(𝑥) of the 

fiber integration point can be found from, 

 Δ𝜀(𝑥) = Δ𝜀𝑎(𝑥) − 𝑦 Δ𝜙𝑧(𝑥) (12) 

If the axial stress increment Δ𝜎(𝑥) is assumed to be a 

function solely of the axial strain increment Δ𝜀(𝑥), 

then 

 Δ𝜎(𝑥) = 𝐸𝑡  Δ𝜀(𝑥) (13) 

where, Et is the material tangent modulus of elasticity. 

Regarding the material type (i.e. concrete or 

reinforcing steel); different fibers or layers (integration 

points) can have different values for Et. 

The value of Δ𝜎(𝑥) is obtained through Eqs. (12) and 

(13) and substituting the results into Eqs. (9) to (10) 

gives: 

Δ𝑁(𝑥) = ∫ 𝐸𝑡 . (Δ𝜀𝑎(𝑥) − 𝑦 Δ𝜙𝑧(𝑥)). 𝑑𝐴
Ω

 (14) 

Δ𝑀𝑧(𝑥) = −∫ 𝐸𝑡 . 𝑦. (Δ𝜀𝑎(𝑥) − 𝑦 Δ𝜙𝑧(𝑥)). 𝑑𝐴
Ω

 (15) 

The Eqs. 14 and 15 can be expressed in the form  

 ∆𝐷(𝑥) = 𝑘𝑠 (𝑥). ∆𝑑(𝑥) (16) 

  𝑘𝑠 (𝑥) =

[
 
 
 
 ∫ 𝐸𝑡 𝑑𝐴

Ω

−∫ 𝑦. 𝐸𝑡 𝑑𝐴
Ω

−∫ 𝑦. 𝐸𝑡 𝑑𝐴
Ω

∫ 𝑦2. 𝐸𝑡 𝑑𝐴
Ω ]

 
 
 
 

 ( 17) 

where, 𝑘𝑠 (𝑥) is the section stiffness matrix and ∆𝑑(𝑥) 

is the vector of section incremental 

strains {Δ𝜀𝑎(𝑥) Δ𝜙𝑧(𝑥)}𝑇 .  The flexibility matrix of 

the section which relates the section strains ∆𝑑(𝑥)  

with section forces ∆𝐷(𝑥) is obtained by inverting the 

section stiffness matrix, that is 

 ∆𝑑(𝑥) = 𝑓𝑠 (𝑥). ∆𝐷(𝑥) ( 18) 

 𝑓𝑠
𝑡(𝑥) = [𝑘𝑠 (𝑥)]

−1
 ( 19) 

Using the principle of virtual work for a cantilever 

configuration clamped at end 2 and subjected to a 

virtual load vector ∆Q1 at end 1 (Figure 1-b) gives 

 Δ𝑞1 = ∫ b𝑇(x). Δ𝑑(𝑥)
𝑙

0
dx ( 20) 

If Eqs. 3.8 and 3.18 are substituted in Eq. 3.20, then 

 Δ𝑞1 = (∫ b𝑇(x). 𝑓𝑠 (𝑥). 𝑏(𝑥) 
𝑙

0

dx) ∆𝑄1 ( 21) 

 Or   Δ𝑞1 = 𝐹11 ∆𝑄1 ( 22) 

where, Δ𝑞1 is the generalized displacement increment 

at end “1”, Then the tangent flexibility sub-matrix at 

end “1” for the beam column element can be found 

from, 

 𝐹11 = ∫ b𝑇(x). 𝑓𝑠 (𝑥). 𝑏(𝑥) 
𝑙

0

dx ( 23) 

After the tangent flexibility sub-matrix 𝐹11 at end “1” 

formulated, then the stiffness matrix of the beam 

column element can be found from,  

 [𝐾𝑒] = [
[𝐹11]

−1 [𝐹11]
−1. Γ

Γ𝑇 . [𝐹11]
−1 Γ𝑇 . [𝐹11]

−1. Γ
] ( 24) 
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where, 𝐹11is (3x3) matrix, and Γ is a transformation 

(2x3) matrix takes the form 

 Γ = [
−1 0 0
0 𝐿 −1

] ( 25) 

2.4 Flexibility-Based Beam Column Element 
with End Springs 

Typically, in modeling the response of reinforced-

concrete structures to earthquake loading, it is assumed 

that beam column joints remain rigid and elastic. 

However, laboratory testing of building subassemblage 

with design details typical of pre-1970’s construction 

shows that joints with little to no transverse 

reinforcement and relatively high shear and bond-stress 

demand exhibit severe stiffness and strength loss [9]. A 

flexibility-based beam column element with additional 

end springs shown in Figure 4. Referring to element 

formulation presented in subsection 2.1 to 2.3, the 

member end “1” vector of generalized displacement  

Δ𝑞1 is divided into two components; one due to beam 

column element stiffness for the beam column element 

between the two end springs Δ𝑞1
𝐵𝐶 , and the other due 

to rigid body translations and rotations Δ𝑞1
𝑅𝐵 from the 

attached end springs. Then, end “1” generalized 

displacements could be calculated form Eqs. 26 to 29 

as follows 

 Δ𝑞1 =  Δ𝑞1
𝐵𝐶 +  Δ𝑞1

𝑅𝐵 ( 26) 

  Δ𝑞1
𝐵𝐶 = ∫ b𝑇(x). Δ𝑑(𝑥)

𝑙

0

dx ( 27) 

  Δ𝑞1 = [𝐹11
𝐵𝐶 + 𝐹11

𝑅𝐵] ∆𝑄1 (28) 

  F11
𝐵𝐶 = ∫ b𝑇(x). Δ𝑑(𝑥)

𝑙

0

dx (29) 

  F11
𝑅𝐵 =

[
 
 
 
 
 
0 0 0

0 (
𝐿2

𝑘𝑠2

) (
−𝐿

𝑘𝑠2

)

0 (
−𝐿

𝑘𝑠2

) (
1

𝑘𝑠1

+
1

𝑘𝑠2

)
]
 
 
 
 
 

 (30) 

where, 𝑘𝑠1 and  𝑘𝑠2 are the tangent rotational 

stiffnesses for left and right end springs, respectively. 

2.5 Flexibility-Based Beam Column Element 
with End Offsets 

The structural length is measured from the center lines 

of connected elements. The effect of rigid zone at the 

intersection of columns and beams is considered as 

rigid offsets and will reduce the effective structural 

span (Figure 5). In order to take the effect of end 

offsets in the formulation, the stiffness matrix [𝐾𝑒]  for 

the beam column element is modified by means of 

multipoint constraint matrix [A]. Consider that a1 and 

a2 are the end offsets for end (1) and (2) respectively, 

the matrix [A] which includes the effect of end offsets 

is [6x6] matrix. The diagonal terms are set to unity 

while all the remaining elements are set to 0 except the 

following elements: 

 𝐴(2,3) = 𝑎1     𝑎𝑛𝑑      𝐴(5,6) = −𝑎2 (31) 

Then the modified element stiffness matrix is 

calculated from: 

 [𝐾𝑒]̅̅ ̅̅ ̅ = [𝐴]𝑇[𝐾𝑒][𝐴] (32) 

 

 

Figure 4: Rigid body deformations of beam-column 

element with end rotational springs. 

 
Figure 5: Beam column with end springs and end 

offsets. 

3. Element Resistance Determination 

The determination of beam column resistance forces 

using flexibility approach undergoes two major steps. 

The first: section state determination, in which each 

section forming the beam column element is evaluated 

to determine its resistance according to the current 

applied sectional forces, accordingly, the section 

residual forces are then determined. Then, the section 

residual strains are evaluated. The second: element 

state determination, in which and using section residual 

strains, the element residual end displacements are 

calculated by means of  integration the section residual 

strains along element length. Thereafter, element 
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residual end forces are calculated. Finally, the element 

resisting forces are calculated by subtracting the 

current element residual forces from applied element 

forces. This process is repeated until convergence is 

achieved. Consider that subscript ‘i’ denotes to the load 

step increment, and j denotes to the Newton-Raphson 

correction loop, then: 

1. Given the current incremental nodal displacements 

in element local coordinates {∆u}j
i, find the current 

element applied incremental end forces {∆Qe}j
i 

from: 

 {∆Qe}j
i = [ke]j

i{∆u}j
i (33) 

where [𝑘𝑒]𝑗
𝑖  is the element tangent stiffness matrix 

from the current load step. 

2. If j=1, then add current incremental fixed end 

forces from in-span loading  {∆fE}j
i to {∆Qe}j

i, then 

 {∆Qe}j
i = {∆Qe}j

i + {∆fE}j
i (34) 

3. For each section ‘k’ along element length, 

calculate the following: 

 Calculate section forces increment {∆D(x)}j
i 

using: 

 
{∆D(x)k}j

i = [b(x)]{∆Qe}j
i + {UD(x)k}j−1

i

+ {∆FDk}j
i 

(35) 

where {UD(x)k}j−1
i  is the unbalanced sectional 

forces from the previous iteration and 

{UD(x)k}0
i =0 for the first iteration, {∆FDk}j

i is 

section forces from in-span distributed load and 

is calculated from ={−wx. x wy. x
2}

j=1

i
 for 

the first iteration only while in the rest of 

iterations {∆FDk}j>1
i  ={0 0}j>1

i , and [b(x)] is 

the force interpolation function. 

 With the previous section flexibility 

matrix[f(x)k]j−1
i , calculate section incremental 

strains {∆d(x)k}j
i from: 

 {∆d(x)k}j
i = [f(x)k]j−1

i {∆D(x)k}j
i (36) 

 Update current section strains 

{d(x)k}j
i={d(x)k}j−1

i + {∆d(x)k}j
i, using the 

current section strains{d(x)k}j
i = {εa ∅z}j

i, 

calculate current tangent section 

flexibility[f(x)k]j
i corresponding to the layer 

tangent modulus. 

 Update concrete and steel layers strains using 

the current section strains from: 

 ε = εa − ∅zy (37) 

 Calculate the current stresses in each layer then 

calculate sectional resistance forces {DR(x)k}j
i 

from: 

 {𝐷𝑅(𝑥)𝑘}𝑗
𝑖 = {𝑁(𝑥)𝑘 =

∑ 𝜎𝑚𝑑𝐴𝑛𝑙
𝑚=1      𝑀𝑧(𝑥)𝑘 = ∑ −𝑦. 𝜎𝑚𝑑𝐴𝑛𝑙

𝑚=1 }𝑗
𝑖 

(38) 

Where nl is number of layers.  

 Calculate residual section strain vector {δ(x)k}j
i 

from: 

 
{δ(x)k}j

i = [f(x)k]j
i({D(x)k}j

i + {∆D(x)k}j
i

− {DR(x)k}j
i) 

(39) 

For the first iteration of each load step {D(x)k}j=1
i = 

previous section forces while in the rest of 

iterations {D(x)k}j>1
i = {DR(x)k}j

i. 

4. Using section residual strains {δ(x)k}j
i, calculate 

element residual displacements by integration of 

sectional residual strains: 

 {r(x)}j
i = ∫b(x)T

l

0

{δ(x)k}j
i dx (40) 

Simpson’s rule is employed for performing the 

previous integral.  

5. The element incremental resisting nodal forces is 

then calculated from: 

 {Qe}j
i = {Qe}j−1

i + {∆Qe}j
i − [ke]j

i{r(x)}j
i (41) 

where [ke]j
i is the updated element tangent stiffness 

matrix based on the updated sections flexibilities 

[f(x)]j
i, as described in Chapter (3). For the first 

iteration {Qe}0
i = 0.  

6. For each section “k” , update the unbalanced 

sectional forces from: 

 
{UD(x)k}j

i =   [b(x)]{Qe}j
i + {∆FDk}j=1

i

− {D(x)k}j
i + {D(x)k}j=1

i  
(42) 

7. Finally, the element total resisting nodal force 

vector in local coordinates {fe}j
i, which will be 

transformed to global coordinates and used to form 

the resisting nodal vector {F}i ,  is calculated 

from: 

 {fe}j
i = {fe}

i−1 + {Qe}j
i − ∑{∆FE}i

i

k=1

 (43) 

where ∑ {∆FE}ii
k=1  is the total fixed end vector 

till the current load step. Figure 6 shows a 

process flowchart describing the previous 

procedure. 

3.1 Section Centroid Update 

The participation of each layer in the section stiffness 

[k(x)] is evaluated according Eq. 17 with particular 

reference to the elastic centroid. The elastic centroid, 

Figure 7, is changed during nonlinear analysis. Fixing 

this elastic centroid will cause element to have non 

compatible axial deformations with the applied axial 

forces, i.e. the element will have some elongation or 

contraction while it is not subjected to axial forces. To 

reduce this formulation error, a solution technique is 

proposed, in which two section flexibility matrices are 

calculated. The first: the flexibility is calculated based 

on a fixed location at the section elastic centroid. This 

section flexibility matrix is used for all steps presented 

earlier through steps 2 to 7 in subsection 3. The 

second:  flexibility matrix based on a continuous 
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updating of section centroid according to the current 

layers tangent modulus. The later flexibility is used for 

calculating element stiffness matrix (Eq. 19) and for 

steps 1 and 5 in element state determination, see 

subsection 3.  

3.2 Element Resistance with End Springs 

For beam column element having two rotational 

springs attached at its ends, Figure 8, the state 

determination described in subsections 3 is modified to 

account the effect of rotational springs. The process is 

performed by updating element end forces described 

by Eq. (41)  using the following procedure: 

1. With the element incremental forces {∆Qe}j
i = 

{∆fx1 ∆fy1 ∆Mz1     ∆fx2 ∆fy2 ∆Mz2}j
iT 

which is calculated using Eq. (33), evaluate the 

current incremental spring rotations from: 

  


























22

11

2

1

sz

sz

s

si

js
kM

kM






 

(44) 

2. Update springs rotations  i

js =  i

js 1
 + 

 i

js  and calculate the current tangent spring 

stiffnesses ks1 and ks2. Then determine the current 

spring resisting moments MzR1 and MzR2. 

3. Evaluate the out of balance bending moments from 

end springs using the following equation: 

 

111

1

11 z

i

j

i

j
MMMM 





 

2212

1

22 zRz

i

j

i

j
MMMMM 





 

   22111 5.0 zRzR MMMMuM 

    11222 5.0 zRzR MMMMuM  

(45) 

 where 
1

1

i

j
M and 

1

2

i

j
M  are the beam column 

moments for ends 1 and 2  from the previous load step, 

respectively, 
i

j
M

11 
 and 

i

j
M

12 
 are the beam column 

resisting moments for ends 1 and 2 from previous 

iteration and they are the third and sixth elements of 

vector {𝑄𝑒}j
i  calculated from Eq. (41), respectively. 

1zM  and 2zM  are the current incremental end 

moments and they are the third and sixth elements of 

vector {∆𝑄𝑒}j
i, respectively. 

4. Calculate the equivalent out of balance vector 

resulting from end rotational springs out of 

balance moments: 

 
L

MM

L

MM
R zRzR 2211 5.15.11







 

   Ti

jsp uMRuMRV 21 1010 

 

(46

) 

5. Equation (41) will be replaced with the following 

  
{Qe}j

i = {Qe}j−1
i + {∆Qe}j

i − [ke]j
i{r(x)}j

i

− {Vsp}j
i
 

(47) 

where [ke]j
i is the element tangent stiffness matrix 

without the effect of end springs, i.e. [ke]j
i{r(x)}j

i is the 

residual end forces from unbalanced strains along 

beam column sections, while {Vsp}j
i
 is the residual end 

forces from unbalanced end springs moments. 

6. Then the same procedure stated in subsection 3 is 

adopted. 

 
Figure 6: Reinforced Beam Column state 

determination procedure. 

 
Figure 7: Division of section into layers 
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Figure 8: Reinforced concrete beam column element 

with end rotational springs. 

3.3 State Determination with End Offsets 

The state determination described earlier is modified to 

account the effect of rigid end offsets. The process is 

made by updating element end forces described by Eq. 

(41)  by: 

1. The third and sixth elements of the incremental 

end forces vector {∆Qe}j
i  are updated as follows: 

 
∆𝑄𝑒(3) = −𝑎1. ∆𝑄𝑒(2) + ∆𝑄𝑒(3)𝑜𝑙𝑑  

∆𝑄𝑒(6) = 𝑎2. ∆𝑄𝑒(5) + ∆𝑄𝑒(6)𝑜𝑙𝑑  
(48) 

2. Finally, third and sixth elements of the resisting 

end force vector {fe}j
i calculated using Eq. (43) is 

updated as follows: 

 
𝑓𝑒(3) = 𝑎1. 𝑓𝑒(2) + 𝑓𝑒(3)𝑜𝑙𝑑 

𝑓𝑒(6) = −𝑎2. 𝑓𝑒(5) + 𝑓𝑒(6)𝑜𝑙𝑑 
(49) 

4. Material Modeling 

The proposed beam column element is implemented 

into a developed finite element computer program 

NSDA-FS (Nonlinear Static and Dynamic Analysis of 

reinforced concrete Frames and Shear walls). The 

program is designed and developed in order to analyze 

seismic resisting systems composed from frames or 

coupled of frames and shear walls. Although the 

program is designed for 2D systems, it is also designed 

for the analysis of 3D systems by means of pseudo-3D 

technique. Different types of uniaxial stress strain 

curves are available in the finite element program 

NSDA-FS for both concrete and reinforcing steel.  

4.1 Concrete Constitutive Laws 

4.1.1 Compression 

The stress strain curve for concrete in compression by 

Kent [10] for unconfined and confined concrete is used 

in the present study. The model generalized Hognestad 

[11] equation to more completely describe the post-

peak stress-strain behavior. For unconfined concrete 

the envelope is defined by: 

 𝑓𝑐𝑖 = 𝑓𝑐′ {2 (
𝜀𝑐𝑖

𝜀𝑐𝑜

) − (
𝜀𝑐𝑖

𝜀𝑐𝑜

)
2

},   𝜀𝑐𝑖 ≤ 0.002   
 

(50) 

 𝑓𝑐𝑖 = 𝑓𝑐
′ [1 − 𝑧(𝜀𝑐𝑖 − 𝜀𝑐𝑜)]    𝜀𝑐𝑖 > 0.002      (51) 

 𝑧 =
0.5

𝜀50𝑢 − 𝜀𝑐𝑜

 (52) 

 𝜀50𝑢 =
3 + 0.29𝑓𝑐

′

145𝑓𝑐
′ − 1000

    , 𝑓𝑐
′ 𝑖𝑛 [𝑀𝑃𝑎]  (53) 

For confined concrete, Confinement only affected the 

slope of the post-peak branch and is given by 

 𝑓𝑐𝑖 = 𝑓𝑐
′ [1 − 𝑧(𝜀𝑐𝑖 − 𝜀𝑐𝑜)]     (54) 

 𝑧 =
0.5

𝜀50ℎ + 𝜀50𝑢 − 𝜀𝑐𝑜

 (55) 

 
𝜀50ℎ = 𝜀50𝑐 − 𝜀50𝑢 =

3

4
𝑝′′√

𝑏′′

𝑠
 

𝜀50𝑢 =
3 + 0.29𝑓𝑐

′

145𝑓𝑐
′ − 1000

        , 𝑓𝑐
′ 𝑖𝑛 [𝑀𝑃𝑎] 

(56) 

where 𝜀50𝑐 and 𝜀50𝑢 are the strains corresponding to 

the stress equal to 50% of the maximum concrete 

strength for confined and unconfined concrete, 

respectively. 
𝑏′′

𝑠
 is the ratio between the width of the 

concrete core and the center to center spacing of hoops, 

𝑝′′ is the volumetric ratio of confining hoops to volume 

of concrete core measured to the outside of the 

perimeter hoops and is expressed as: 

 
𝑝′′ =

2(𝑏′′ + 𝑑′′)𝐴𝑠′′

𝑏′′𝑑′′𝑠
 

(57) 

where 𝑏′′ and 𝑑′′ are the width and depth of the 

confined core respectively, 𝐴𝑠′′ is the cross-sectional 

area of the hoop bar and  𝑠 is the center to center 

spacing of the hoops. 

4.1.2 Tension 

Early models for concrete in tension were based on a 

single parameter that tensile strength (cracking stress) 

of concrete. This simple representation is not supported 

by test results and when used in finite element codes is 

gives inconsistent results depending on mesh size. 

Recently, several attempts have been made to propose 

an idealized tensile softening model, in which a 

concrete exhibits a gradual decrease in stress with 

increasing crack opening. Some of common types of 

tension softening models were shown in Figure 10. In 

the present paper linear and the exponential softening 

patterns are used [12]. The exponential function for 

concrete response in tension after cracking involving 

limiting value of ultimate tensile strain based on crack 

facture energy.  

 

𝑓𝑡

= {

𝐸𝑐𝜀

𝑓𝑐𝑟 𝑒𝑥𝑝 (−
𝜀 − 𝜀𝑐𝑟

𝜀𝑡𝑢 − 𝜀𝑐𝑟

)

0

}

 𝜀 ≤  𝜀𝑐𝑟

   𝜀𝑐𝑟 < 𝜀 <  𝜀𝑡𝑢

 𝜀 >  𝜀𝑡𝑢

 
(58) 
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where, 𝜀𝑡𝑢 is the ultimate tensile strain which is 

determined from the tensile fracture energy Gf  and 

determined from 

 𝜀𝑡𝑢 =
𝐺𝑓

ℎ𝑓𝑐𝑟
+ 0.5𝜀𝑐𝑟 (59) 

where h is the crack band width and related to the area 

of the finite element, A, by the following relation 

 ℎ = 𝛼√𝐴 (60) 

where 𝛼 = √2 is factor with a suggested value [12]. 

 

Figure 9: Stress-strain model for confined and 

unconfined concrete [10]. 

 
Figure 10: Common types of tension stiffening models 

[12]. 

4.2 Reinforcing Steel Constitutive Laws 

The first idealization neglects the strength increase due 

to strain hardening and the reinforcing steel is modeled 

as a linear, perfectly plastic material, as shown in 

(Figure 11-a). More accurate idealizations which 

account for the strain hardening effect are required, as 

shown in Figure 11-b. The parameters of these models 

are the stress and strain at the onset of yielding (fy ,εy), 

the strain at the onset of strain hardening and the stress 

and strain at ultimate (fmax, εu). These parameters can 

be derived from experimentally obtained stress-strain 

relations. 

 𝑓𝑠 = {

𝐸𝑆  𝜀 

𝑓𝑦 + 𝑏𝐸𝑆( 𝜀 − 𝜀𝑦)

0

}   

 𝜀 ≤ 𝜀𝑦

𝜀𝑦 < 𝜀 ≤ 𝜀𝑢

𝜀 > 𝜀𝑢

 (61) 

where 𝐸𝑆 is the initial tangent modulus for steel 

material,  𝑓𝑦 is the yield strength for reinforcement 

steel, b is the hardening tangent modulus ratio, and 𝜀𝑢 

is the ultimate strain of reinforcement steel. 

 
(a) elastic-perfect plastic model 

 
(b) elastoplastic with strain hardening ratio 

Figure 11: Idealized steel stress-strain relation [2] 

4.3 Concrete Hysteric Model 

Different models for concrete hysteretic behavior were 

presented and discussed in the literature. In the present 

research some simplifications for the model presented 

by He [12] were made. A linear loading/reloading 

paths from tension or compression domains were 

assumed, Figure 12-a. The plastic compressive and 

tensile strains are calculated from: 

𝜀𝑐
𝑝𝑙

= 𝜀𝑐
𝑚𝑖𝑛 −

20

7
[1 − 𝑒𝑥𝑝 (−0.35

𝜀𝑐
𝑚𝑖𝑛

𝜀𝑐
𝑜

)] 𝜀𝑐
𝑜 (62) 
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(63) 

where 𝜀𝑐
𝑚𝑖𝑛 and 𝜀𝑐

𝑜 are the maximum experienced 

compressive strain and strain corresponding to peak 

stress on the compression envelope curve. 
m ax

t and 

cr

t are the maximum experienced tensile strain and 
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cracking strain of concrete. Under reversed cyclic 

loading, concrete may repeatedly experience crack 

closing and reopening. Hence, we need to define a path 

for the process. The stress required to cause crack close 

can be expressed as follows: 

 𝜎𝑐𝑟𝑎𝑐𝑘
𝑐𝑙𝑜𝑠𝑒 = −𝑓𝑡 (0.05 +

0.03𝜀𝑡
𝑚𝑎𝑥

𝜀𝑡
𝑐𝑟

) (64) 

The path of the crack closing is illustrated by a straight 

line that connects points TE and TU, as shown in 

Figure 12-b.  

 
(a) Linear unloading/reloading paths 

 
(b) transition from compression to tension 

Figure 12:  Proposed modification for concrete 

hysteretic behavior on He model [12]. 

4.4 Reinforcing Steel Hysteric Model 

Previous research shows that the Menegotto-Pinto 

equation represents well the unloading and reloading 

response of reinforcing steel subjected to cyclic 

loading. The model as presented in Menegotto [13]  is 

used in the present work as follows: 

 𝑓∗ = 𝑏. 𝜀∗ +
(1 − 𝑏). 𝜀∗

(1 + 𝜀∗𝑅)1/𝑅
 (65) 

 𝜀∗ =
𝜀 − 𝜀𝑟

𝜀𝑜 − 𝜀𝑟

 (66) 

 𝑓∗ =
𝑓 − 𝑓𝑟
𝑓𝑜 − 𝑓𝑟

 (67) 

Eq. (65) represents a curved transition from a straight 

line asymptote with slope E0 to another asymptote with 

slope E1 (lines (a) and (b), respectively, in Figure 13-

a), and εo are the stress and strain at the point where the 

two asymptotes of the branch under consideration meet 

(point B in Figure 13-a); similarly, σr and εr are the 

stress and strain at the point where the last strain 

reversal with stress of equal sign took place (point A in 

Figure 13-a); b is the strain hardening ratio, that is the 

ratio between slope E1 and E0 and R is a parameter that 

influences the shape of the transition curve and allows 

a good representation of the Bauschinger effect.  

 
(a) transition from linear-elastic to plastic after yield  

 
(b) definition of parameter ”R” 

Figure 13: Menegotto-Pinto steel model [13]. 

As indicated in Figure 13-a, (εo , σo ) and (εr , σr ) are 

updated after each strain reversal. R is considered 

dependent on the strain difference between the current 

asymptote intersection point (point A in Figure 13-b) 
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and the previous load reversal point with maximum or 

minimum strain depending on whether the 

corresponding steel stress is positive or negative (point 

B in Figure 13-b). The expression for R takes the form  

 
𝑅(𝜉) = 𝑅𝑜 − 

𝑎1𝜉

𝑎2 + 𝜉
 [13] 

(68) 

where ξ is updated following a strain reversal. Ro is the 

value of the parameter R during first loading and a1, a2 

are experimentally determined parameters to be 

defined together with Ro. The definition of ξ remains 

valid in case that reloading occurs after partial 

unloading and calculated from  

         

0d        

0d        

0

min
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max
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(69) 

In the present research the parameter values are taken 

as follows: R0 20, a1 18.5, a2 0.15. 

5. Model Verification 

For the sake of verification, the predicated results using 

the developed element were compared against those 

theoretical and experimental published results available 

in the literature. 

5.1 Monotonic Moment Curvature Response  

The modified compression field theory (MCFT) was 

used to calculate the behavior of reinforced concrete 

sections under monotonic and uniaxial bending, 

normal and shear forces and it was implemented in a 

computer program called Response-2000 [14]. The 

first comparison is made on a beam has a breadth of 

300 mm and a height 0f 300 mm, it is reinforced by 12 

bars with diameter 12mm, distributed evenly al 

around the section Figure 14-a. The moment-curvature 

relationship comparison between present study and 

Response-2000 is shown in Figure 14-b. A very good 

agreement is realized. 

5.2 Cyclic Moment Curvature Response 

The cantilever beam tested by Kent and subjected to 

cyclic end point load (displacement) is studied [15]. 

The geometry of the beam and cross section are found 

Kent [15]. The material properties for the beam are 

shown in Figure 15-a. In this example the tensile 

strength of concrete and tension stiffening are 

considered. The beam was modeled with a single 

element using the modified flexibility formulation 

developed in this study. A Simpson’s integration 

scheme was used with 8 integration points along the 

element. In the transverse direction, integration was 

calculated by 60 layers over the section depth. The 

moment-curvature diagram of the fixed end section 

obtained from the tangent stiffness formulations is 

shown in Figure 15-b. Figure 15-b shows a good 

correlation against the experimental test results [15] 

and the theoretical results obtained by Valipour [5]. It 

addition, the tensile strength of concrete and the 

tension stiffening model has a limited effect on the 

shape of cyclic moment-curvature relation after the 

first cycle. Moreover, the shape of the moment-

curvature is affected considerably by the hysteric 

properties of reinforcing steel. 

 
(a) 

 
(b) 

Figure 14: (a) Beam x-section details and material 

properties [14], (b) moment-curvature relationship 

comparison between present study and Response-2000 

 
(a) 
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(b) 

Figure 15: (a) Cantilever beam x-section details and 

material properties [15], (b) Moment curvature 

relationship for section at the fixed end. 

5.3 Cyclically Loaded Beam to Column Joint  

The beam column subassemblage designed and tested 

by Soleimani [16] was a half scale model of a 

cruciform shaped portion from the third story of a 

twenty story, four bay ductile moment-resisting frame. 

In the original report [16], it is designated as specimen 

BC3. The design was based on the strong column-weak 

girder design philosophy and the joint was designed so 

as to minimize the effects of shear transfer. The 

specimen geometry and reinforcement layout are 

shown in Figure 16. The subassemblage was subjected 

to constant gravity load and cyclic lateral displacement 

of gradually increasing magnitude. The scheme of load 

application is shown in Figure 16. The concentrated 

rotations which take place at the beam column 

interface due to slippage of the reinforcing bars 

anchored in the joint were measured with eight 

precision linear potentiometers, more details for 

method of measurement for fixed end rotations could 

be found in Soleimani [16]. 

 

Figure 16: Beam column joint test specimen [16] 

The model used in the current analytical investigation 

consists of two beam elements and two column 

elements. The beam elements are each made up of 

flexibility- based beam column, rotational spring, and 

rigid zones (end offset), Figure 17a. The material 

properties for both concrete and reinforcement used in 

the current joint are summarized in Table 1. The 

properties of the rotational springs are determined 

using the joint model by Filippou [2], Figure 17b. 

Using test measurements at beam column interface by 

soleimani [16], the bilinear moment-rotation relation at 

the beam column joint interface of specimen BC3 

which is evaluated by Filippou [2] is summarized in 

Table 2. 

 
(a) 
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(b) 

Figure 17: (a) Finite element modeling of joint test 

specimen, (b) Moment rotation model for rotation end 

spring [2]. 

While the joint specimen is tested experimentally by 

applying horizontal cyclic displacement, the finite 

element model shown in Figure 17 is analyzed by 

applying cyclic load history, Figure 18. 

Table 1: Material properties and stress strain curves for 

joint specimen [16]. 

Material Material Modeling 

Concrete Compression:  Kent and Park [10] 

model, Ec = 28.5 GPa, fc’ =fco= 36 

MPa 

Tension: Linear softening εtu = 0.001,  

ft = 3.0 MPa 

Hysteretic Model: Simplified He [12] 

(subsection 4.3) 

Reinforcement Bilinear with 3.4% strain hardening 

ratio, Fy = 450 MPa, Es = 200 GPa 

Hysteretic Model: Menegotto-Pinto 

[13] (subsection 4.4) 

 

Table 2: Moment rotation relation at the beam column 

interface by Filippou [2]. 

Direction Moment rotation 

relation-ship. 

Positive moment (tension 

at beam bottom fiber, 

low reinforcement) 

Bilinear with 5% strain 

hardening ratio 

My+ = 99 kN.m, initial 

stiffness= 46210 kN.m/rad.  

Positive moment (tension 

at beam top fiber, high 

reinforcement) 

Bilinear with 3.4% strain 

hardening ratio 

My- = 177 kN.m, initial 

stiffness= 82254 kN.m/rad. 

 
Figure 18: Analytical loading history for the 

investigated joint specimen. 

 
Figure 19: Experimental load-displacement 

relationship [16]. 

The analytical predictions of the frame model 

described in Figure 17-a subjected to the load history 

illustrated in Figure 18 are shown in Figures 19 and 20. 

Figure 20 shows the load-displacement relationship 

measured at the bottom of the column in Figure 16. 

Even though the experiment was conducted under 

displacement controlled conditions, the analysis was 

performed by specifying the magnitude of the lateral 

load measured at the moment of load reversal and then 

subdividing this load into a number of increments. The 

predicted results from the present study show a very 

good correlation with the experimental investigation.  
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Figure 20: Predicted load-displacement relationship 

for the joint specimen.  

5.4 Effect of Section Centroid Update 

To illustrate the effect of the original formulation by 

Taucer [3] and the revised procedure in the present 

study, a 6.0 ms spanned reinforced concrete simple 

beam with 300x500 mm2 cross section, Figure 21, is 

analyzed. The beam is provided with 5Φ18 mm as 

tension steel and 2Φ16 mm compression steel. The 

beam was nonlinearly analyzed under monotonic 

increasing mid-span load up to failure.    

 

Figure 21: Reinforced concrete beam elevation, cross-

section, and material properties 

According to loading configurations shown in Figure 

21, there will be no horizontal displacement at the 

roller end whereas the beam is modeled using line 

element. From Figure 22, the proposed formulation 

reduced the analysis error significantly specially after 

cracking and prior to failure. The analyses errors 

produced from formulation assumptions could be 

reduced much more if section center of gravity is 

updated continuously while performing Newton 

Raphson correction process.  In the present work, the 

center of gravity updating scheme was performed only 

at the beginning of each loading step due to 

convergence issues. 

 
Figure 22: Horizontal displacement at the roller end 

using the proposed formulation. 

6. Conclusions 

Based on proposed formulation and analysis, the 

following conclusions could be drawn: 

 A flexibility-based beam column element, with 

extended features as end springs to account for semi-

rigid connections and end offsets, is presented. A 

revised solution procedure is proposed to minimize 

analysis errors from the continuously changing 

neutral axis location during the analysis. The element 

state determination, with/without end springs or end 

offsets, is presented. The element is implemented into 

a finite element computer program in order to study 

nonlinear static and dynamic analysis of reinforced 

concrete frames. The correlation analysis showed a 

good agreement with theoretical/experimental 

published studies for both monotonic and cyclic 

loading conditions. 

 A simplified hysteretic model for concrete is 

proposed with crack closing and opening effects. 

 Steel reinforcing bars have a significant influence on 

the hysteretic behavior of RC structures, such as 

pinching effect, Figure 15-b. Hence, the bond-slip 

and the buckling of steel reinforcement should be 

modeled in the future.    
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