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Review of Classical Methods and Variables Selection in Case 
of Multicollinearity: A Case Study with Real-Data 

Abstract 
 
The addition of excessive variables to a model can lead to severe 
consequences. When a model contains numerous variables, it is likely 
that some of them will exhibit strong correlations. However, explanatory 
variables should ideally not possess strong relationships among 
themselves. This issue, known as multicollinearity, can significantly 
impact the interpretation of results by causing notable variations between 
models. Variable selection further compounds this problem by 
introducing uncertainty as to which subset of potential explanatory 
variables or predictors should be used. This paper presents a succinct 
overeview of ten traditional methods for tackling multicollinearity and 
variable selection in linear regression models. These methods were 
assessed using a real-life dataset across various sample sizes. The 
findings suggest that modified group lasso, group lasso, and adaptive 
group lasso exhibit particular efficacy in estimating variable selection 
and addressing collinearity issues in this model. 
 
Keywords: Tolerance, Over fitting, Condition number, Correlation 
coefficient, Variance inflation factor, Condition index. 
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1. Introduction: 
As for regression problems, the identification  
of important explanatory factors for predicting the response variable is 
of great interest. Each explanatory factor may be represented by a group 
of derived input variables. A common example is the multifactor 
analysis-of-variance (ANOVA) problem. The objective of ANOVA is 
typically to select significant main effects and interactions to ensure 
accurate prediction, which involves selecting groups of derived input 
variables. In this paper, we propose and investigate several methods that 
achieve accurate prediction while simultaneously selecting a subset of 
important factors. (Liu and Li, 2016),(El Sheikh, et al,2021). 
Multicollinearity, or near-linear dependence  
among the explanatory variables in a regression model, is a significant 
challenge in practical applications. Multicollinearity has severe 
implications for the ordinary least squares (OLS) estimates of the regression 
coefficients. If multicollinearity exists, in the method of least squares, the 
estimates of parameters will be generally poor, the variance of the regression 
coefficients may be inflated, the absolute values of the estimates will be too 
large and they will be unstable(Duzan and Shariff, 2015). 
Multicolinerity, is widely recognized as one of the most critical issues in 
linear regression models, introducing various risks to the underlying 
assumptions (Duzan and Shariff, 2015). these risks include the following 
mentioned: 
1. Difficulty in estimating the population parameters in the multiple 

linear regression model.  
2. Increased variance of the population estimator in multiple linear 

regression.  
3. Reduced quality of estimating the ordinary least squares parameters 

of the population in multiple linear regression. 
4. Impact on the determination of the true linear model's quality. 
This multicollinearity may be total, linked with two variables or more from 
explanatory variables in the model, and maybe partially linked with only one 
variable of the explanatory variables. There are different measures to check 
multicollinearity in multiple linear regression: 
1. Difficulty in the signs of population parameter which expresses the relation 

between the explanatory variables and the dependent variable in multiple 
linear regression of its true value in the economic theory. 
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2. Increasing the coefficient value of determining when most of the 
variables of the explanatory variables.  

3. The difference between the F test model and from T test model 
(Duzan and Shariff, 2015).                            

In social in social science studies, the variables  
of interest are often categorical, such as race, gender, and  nationality. 
However, it is often difficult to fit a linear model on such data, especially 
when some or all of the explanatory variables are categorical, we need to 
overcome the defects of ordinary least squares. However, when the 
covariates are also categorical, corresponding variables are coded using 
dummy variables into the design matrix. In this approach, the data matrix 
becomes sparse; the column dimension increases, and columns might be 
highly correlated. This might result in a singular data matrix making 
coefficients of Linear Square Estimation (LSE) impossible. For the 
purpose of avoiding this pitfall, researchers used the methods to handle 
the problems of multicollinearity and variable selection (Streib and 
Dehmer, 2019), (El Sheikh, et al., 2021). The paper is organized as 
follows: Section two introduces general linear regression, while section 
three focuses on model selection. In section four, the concept of 
multicollinearity is discussed. Section five explores classical methods for 
handling variable selection and multicollinearity, including techniques 
such as lasso, adaptive lasso, adaptive group lasso, modified group lasso, 
group lasso, elastic net estimator, ridge regression, principle component 
regression, and partial least squares. Moving on to section six, real data 
examples are presented to illustrate the application of these methods. 
Finally, section seven offers concluding remarks to summarize the key 
findings and implications of the study. 
2. Estimation of General Linear Regression Model: 

A model-fitting procedure yields a vector of  

coefficients, such as the ordinary least squares (OLS) estimates achieved 

by minimizing the residual sum of squares (RSS). The criteria for 

assessing the quality of a model vary depending on the context, but 

typically two aspects are of particular importance: 
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 Accuracy of prediction on future data: A model that exhibits poor 
predictive performance is difficult to justify and defend . 

 Interpretability of the model: Scientists and researchers often prefer simpler 
models as they shed more light on the relationship between the response 
variable and the covariates. Parsimony is especially an important issue 
when the number of predictors is large (Dunn, et al.,2018). 

Consider the following general linear regression model: 

                     (1)                p1,2,....,j                                       

n1,2,...,i               



 ijiji xy 
 

Where ijx  is pn  matrix of non-stochastic predetermined variables 

standardized, so that ijij xx  is nonsingular correlation matrix, iy  is a vector 

of observations the dependent variable, measured in terms of deviations 
from sample means, j is a vector of p  parameter and i  is a vector of 

disturbances, with expectation 0)( iE   and variance -covariance matrix 

ni I2ˆ)var(   . 

3. Model Selection: 
  Model selection is often purely based on the  
evidence provided by the data, for example by applying a variable 
selection algorithm, Model selection can also be achieved by applying 
least angle selection and shrinkage operator (LASSO) penalties, which 
are based on subtracting a multiple (𝜆) of the absolute sum of regression 
coefficients from the log likelihood and thus setting some regression 
coefficients to zero (Heinze, 2018). 
3.1. Variable selection algorithms: 
A variable selection algorithm has one or  
several tuning parameters that can be fixed to a prespecified value or 
estimated, for example, by cross-validation or AIC optimization. Note 
that tenfold cross-validation and selection by AIC are asymptotically 
equivalent (Heinze,2018).   
3.2. Check of Variables Selection:  
         Choosing the right sensors can hugely affect the outcome of any 
modeling. For instance, the interest in process analytical technology has led to 
a number of investigations where near-infrared spectroscopy was chosen for 
modeling certain properties. We introduced the measurements, which check 
the issues variables selection (Andersen and Bro, 2010). 
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Overfitting 
        If there are many more variables than samples, it is possible, by 
chance and over fitting, to find a certain number of variables that 
correlate to the property to be predicted. If such variables are chosen and 
the model is applied to new samples, Then, the predictions may be very 
poor, or there may be no relationship at all. Therefore, validation is 
fundamental (Andersen and Bro, 2010).  
Outliers 
          It is well known that proper handling of outliers is essential in data 
analysis. This is even more so in variable selection. Many variable 
selection methods are based on assessing minor differences in model 
quality or even in assessing statistics such as significance calculated from 
model parameters. Therefore, the result of variable selection is even more 
sensitive to outliers than the actual model fit. For this reason, every result 
during the process of variable selection should therefore be complemented 
by careful outlier detection. This may be difficult in practice, but at the very 
least, the resulting model obtained after variable selection should be carefully 
assessed, and the variable selection may be re-run upon handling new outliers 
to verify the result (Andersen and Bro, 2010). 
Redundancy: 
           Two or more variables can exhibit a certain degree of similarity. 
A sound model's loading plot will display these variables clustered 
closely together. When aiming for a streamlined model, it becomes 
feasible to eliminate redundant variables. The predictions will probably 
not improve, but the model will be based on fewer variables, each with a 
unique appearance, and it may therefore be easier to understand and 
interpret (Andersen and Bro,2010).              
Effect of Variables Selection: 
1. Having fewer variables in the model means less computational time 

and complexity. 
2.  Simple models with fewer variables are preferred over complex 

models with many variables. 
3.  Many variables in the model make the model more dependent on 

the observed data. 
4. Simple models are easier to interpret. 
5.  Important variables are not excluded from the simple model 

(Chowdhury and Turin, 2022).   
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4. Multicollinearity: 
           Multicollinearity is another significant problem that arises when 
the explanatory variables are correlated with each other. In such cases, 
the ridge regression method is utilized to address this issue. 
Multicollinearity can cause serious problem in estimation and prediction, 
increasing the variance of least squares of the regression coefficients and 
tending to produce least squares estimates that are too large in absolute 
value (Shrestha,2020).                    
 4.1. The Effect of Multicollinearity: - 
The effects of multicollinearity can be used to detect  multicollinearity 
problems in multiple regression. However, many other measures can also 
be used to detect multicollinearity. One commonly used method is to 
examine the correlation matrix of independent variables. High 
correlation values in the matrix may indicate multicollinearity. However, 
multicollinearity can still exist even when all correlations are low. The 
determinant and eigenvalues of the correlation matrix can be used as 
simple measures for detecting multicollinearity. If the determinant and 
the smallest eigenvalue are close to zero, multicollinearity may be 
present. Moreover, other common and useful diagnostics for 
multicollinearity include variance inflation factors (VIF) and condition number 
(Adeboye,et al, 2014; Shrestha, 2020). When the determinant and the smallest 
eigenvalue is closed to zero, then multicollinearity can exist. Furthermore, 
some other most common and useful diagnostics of multicollinearity such as 
variance inflation factors (VIF) and condition number (Adeboye, et al, 2014 
;Shrestha, 2020).   
The Tolerance Level: 
  In multiple regressions, tolerance is used as an indicator of 
multicollinearity. Tolerance is estimated by )1( 2R , where R2 is 
calculated by regressing the independent variables of interest unto the 
remaining independent variables included in the multiple regression 
analyses. Researchers desire more levels of tolerance, as low levels are 
known to adversely affect the result associated with a multiple regression 
analysis (Adeboye, et al ,2014). The tolerance is calculated as follows:   
                                                                    )1( 2R    
Variance Inflation Factor (VIF): 
  Variance inflation factor is a very popular diagnostic for detecting 
multicollinearity. VIF is the diagonal elements of the inverse of 1)(  ijij xx  
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matrix when the variables are standardized (Shrestha,2020). Otherwise it 
can be formulate as mentioned below:      

                                                   )1( 12  RVIF  

Where 2R  is defined as in Tolerance level.      
Condition Index: 
 Another diagnostic for multicollinearity is condition number or 
condition index, which is derived from the eigenvalues of correlation 
matrix. The condition number ( IC ) is defined as the ratio of the largest 
eigenvalue to the smallest eigenvalue (Shrestha,2020). Thus, it can be 
formulated as mentioned: 

     
                                                                      

min

max




IC
 

If IC  < 10, there is little multicollinearity and a serious problem cannot 
be observed. Multicollinearity is Medium-leveled in 10 < IC  < 30, while 
30 < IC indicates severe multicollinearity and more than one 
multicollinearity must be assumed.       
Simple Correlation Coefficient: 
 Another diagnostic for multicollinearity is simple correlation 
coefficient, when 5.0r  that mean high correlation between 
independent variables (Shrestha ,2020). 

5. Methods for Handling Multicollinearity and Variables Selection: 

  5.1. Least Absolute Shrinkage and Selection Operator (LASSO): 
Least absolute shrinkage and selection operator  
 (LASSO) regression methods are widely used in domains with massive 

datasets, such as genomics, where efficient and fast algorithms are 
essential. The LASSO is, however, not robust to high correlations 
among predictors and will arbitrarily choose one and ignore the others, 
potentially leading to breakdowns when all predictors are identical. The 
LASSO penalty expects many coefficients to be close to zero, with only 
a small subset being larger (and nonzero). The LASSO estimator uses 
the penalized least squares criterion to obtain a sparse solution to the 
following optimization problem (El Sheikh, et al,2021). The LASSO 
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technique is inspired by ridge regression, a standard technique for 
shrinking coefficients. However, contrarily to the latter, LASSO can set 
some coefficients to zero, resulting in an easily interpretable model 
(Epprecht, 2017). The lasso estimator is given by:  

     (2)            
2

1
1

2

2
1 j

p

j

p

j jiji xy   
   

Where iy  and ijx  are defined as equation (1), ijij xx  is defined as equation

)1( , p is the number of explanatory variables, is the number of 
observation, j is tuning parameter determination from the analysis 

data, dependent on cross validation and Bayesian data, dependent on 
cross validation and Bayesian information computation.     

5.2. Adaptive Lasso: 
         Adaptive lasso improves their performance as sample size increases and 
the number of relevant and candidate variables decreases. Regarding parameter 
estimation, Auto metrics present the lowest absolute average bias and variance, 
as expected by the definition of OLS estimation when the correct model is 
selected, Bias of LASSO estimators tends to be larger in absolute value than 
the bias of adaptive LASSO estimators, which are expected to be close to the 
ones produced by OLS. The weighting strategy of adaptive LASSO makes the 
penalty term small for the relevant variables (Epprecht, 2017). This estimator 
can be defined as below:  

          
(3)                  

2

1 2

2
1 jj

p

j jiji xy     
             

 
 

 Where iy  and ijx  are defined as equation (1), j is defined as an equation )1( , 

),( np  defined as an equation (2), 
j  is a vector )1( p  tuning parameter 

determination from the analysis data dependent on cross validation and 

Bayesian information computation . 
5.3. Adaptive Group Lasso:  
        Adaptive group lasso is an attractive method that enjoys the oracle 
property, and it is a convex penalty method, the adaptive group Lasso can be 
extended to some high-dimensional semiparametric models (Wang and Tian, 

2017).           (4)             
2

1 2

2
1 jj

p

j jiji nxy   
 

Where iy and ijx  are defined as an equation j  is defined as an equation )1( , 

),( np  is defined as an equation )2( , j is defined as equation )3(  .                    


)(n
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5.4. Modified Group Lasso: 
Modified grouped lasso is used in high dimensional. It reduces the biased 
and the variance and is used in large sample size, this method improves 
the quality of the model, it is used to handle the case of multicollinearity 
and variable selection. We can use it in categorical data. Its estimators 
are symbiotic. We cannot use it in polynomial regression. Modified 
group lasso is especial case of group lasso (El Sheikh, et al,2021), This 
estimator can be defined as:  

     (5)              
2

1
2

2

2
1 jj

p

j jiji xy   
    

Where iy  and ijx  are defined as equation )1(  j  is defined as equation

)1(  , p  and n  are defined as equation )2( , j is defined as an equation
)3( .  

5.5. Group Lasso: 
         The last modern regression model we are discussing is the group 
LASSO. The group LASSO is different to the other regression models 
because it focuses on groups of variables instead of individual variables. 
The reason for this is that there are many real-world application problems 
related to, e.g., pathways of genes, portfolios of stocks, or substage 
disorders of patients, which have substructures, whereas a set of 
predictors forms a group that either should have nonzero or zero 
coefficients simultaneously. The various forms of group lasso penalty are 
designed for such situations (Streib and Dehmer, 2019). This estimator 
can be defined as: 

     (6)              
2

1
2

2

2
1 jj

p

j jiji pxy   
    

Where: iy  and ijx  are defined as equation )1(  j  is defined as equation

)1(  , p  and n  are defined as equation )2( j is defined as equation )3(  .  

5.6. Elastic Net: 

Elastic Net simultaneously does automatic variable selection and 
continuous shrinkage, and it can select groups of correlated variables. 
Elastic Net shrinks the regression coefficients by combining L1-norm 
penalty (lasso) and L2-norm penalty (ridge) together, The L1-norm part 
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of the penalty generates a sparse model by shrinking some regression 
coefficients exactly to zero. The L2-norm part of the penalty removes 
the limitation on the number of selected variables (Liu and Li,2016), 
the elastic net method overcomes the limitations of the LASSO method 
which uses a penalty function based on:- 

       
                                                  

11 


p

i i  

 The use of this penalty function has several limitations. For instance, in 
the "large p, small n" case the LASSO selects at most P variables before 
it saturates. Also, if there is a group of highly correlated variables, then 
the LASSO tends to select one variable from a group and ignore the 
others. To overcome these limitations, the elastic net adds a quadratic 
part to the penalty 2

B , which is used alone in ridge regression. Its 

estimators are consistency and efficient. It's used in large sample. Its 
estimators are stable. It is used in high dimensional, polynomial 
regression, multiple regression and categorical data see 6. It increases the 
flexibility of the model (El Sheikh, et al, 2021). It can be defined as:     

  
(7)           

2

1 2

1

2

2
1

kxy jj

p

j

p

j jiji    
 

Where: iy  and ijx  are defined as equation )1( , j  is defined as equation 

)1( , 
OLSOLS BB

p
k

ˆˆ
ˆ 2





, 

2 is the variance covariance matrix of estimator 

ordinary least square, p , n  and ,   are defined as equation )2( . 
5.7. Ridge Regression: 

           Ridge regression is motivation for improving OLS is the fact that the 
estimates from such models have often a low bias but a large variance, this is 
related to the prediction accuracy of a model because it is known that either by 
shrinking the values of regression coefficients or by setting coefficients to zero 
the accuracy of a prediction can be improved (Streib and Dehmer, 2019),(El 
Sheikh, et al ,2021). The ridge regression is defined as follows:  

(8)          )(ˆ 1
iijijijRidge yxkxx    

where k  is defined as equation )7( . iy
 
and ijx  are defined as equation )1( , 

)( ijij xx  is defined as equation )1(  .  
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5.8. Principle Component Regression: 
            Principal component regression is the method which includes 
ordinary least square and ordinal principal component. It is used to 
handle correlation when multicollinearity is minimum, median and 
maximum. It reduces variance inflation factor. It isn't used in the case of 
outliers (Abdel Salam, 2014), Principal component analysis transforms a 
data-set of original variables into a new a dataset of uncorrelated derived 
variables. These new derived variables are called principal components 
(PCs), which are the results of linear functions of the original variables 
(Haque, et al,2018). It isn't used in large sample It can be used as: 

 (9)                    ,)(ˆ 1 yxTxTxTTB rrrrr    

Where  rr ttttT ,......,,, 321  is the remaining columns of T  having been 

deleted (p − r ) columns where r ≤ p. iy  and ijx  are defined as equation 

)1(  )( ijij xx   is defined as equation )1( .      
5.9. Stepwise Method: 
The stepwise selection method combines certain  
aspects of forward selection and backward elimination methods. Like the 
forward selection method, it starts with no variable in the model, and 
variables are added one by one to the model by fulfilling the p criteria (p 
< 0.1). After a variable is added in the model, the stepwise selection 
method examines all the variables in the model and deletes any variable 
that show a p-value greater than the critical value. The next variable is 
added in the model only after checking the model and deleting any 
variables if necessary. This process continues till none of the variables 
outside the model have a p-value less than the critical value and every 
single variable in the model satisfies the p criteria (Haque, et al, 2018), 
This method like the forward selection except that at each step we 
consider dropping variables in backward elimination. It improves the 
accuracy of the model. It isn't used to handle outliers. It isn't used in the 
case of large samples. Convergence is generated if 21   ff   . The following 
steps will show the alliteration of the stepwise method in general point 
of view (El Sheikh, et al, 2021). The above mentioned steps are:  
1. Start with no input's variables in model. 
2.  Select (add) one significant variable ix  , compare the criterion value 

of all models with one variable.  
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3. Select one more significant variables ix , selection method compare 

criterion value of all models that include the first ix and one additional 

ijx  if the model with the additional ijx gives the best criterion value when 

the first ix  are already in the model. If there is no selection go to step (4).  

4. Delete (remove) one insignificant variable jix . Deletion method 

compare the criterion value of all models that include the ix ,s without 

one ix , delete ix  if the model removing jx  gives the best criterion 

value. If there is no deletion or no more deletion, go to step (3). 
Otherwise go to step (5). 

5.  Stop the stepwise method for variable selection. The different 
stepwise methods for variable selection are different in their 
criterion used in selection of step (2). Selection method and deletion 
method of other steps. So, without loss of generality, we compare 
the criterion of different stepwise  
5.10. Partial Least Square Regression:  

           Partial least square with regression coefficients named PLS-
BETA directly utilizes the regression coefficients estimated by partial 
least square. The significant variables are selected according to the 
magnitude of the absolute values of regression coefficients (Liu and 
Li,2016). Partial least square is a reasonably alternative method 
developed by Helland (1990) as method for constructing predictive 
models when the explanatory variables are many and highly collinear. 
It may be used with any number of explanatory variables, even for 
more than the number of observations (Abdel Salam,2014).                                  

6. Real-Data: 
            To compare the performance of the proposed methods, a real 
data is used about marketing since 2020(1. january_30. November), real 
data is daily time series, it attached from Central Agency for Public 
Mobilization and Statistics in Egypt, In marketing data, the predictors 
are week )( 1x , week ID )( 2x , month )( 3x , month ID )( 4x , year )( 5x , Day-

Name )( 6x , visitors )( 7x , revenue )( 8x  and marketing-spend )( 9x . The 

response is promo variable )(y  and the data set has 183 observations. 
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The standard deviation (STD) values of the predictor variables of the 
data set are (18.3, 7.8, 4.2, 1.7, 0.4, 503.5, 6297.6,691.8) which show 
high outlier and null values among the predictor variables. The data 
from outlier and null values is cleaned. The level of collinearity among 
the predictor variables is examined. The collinearity between visitors' 
variables and revenue variable is equal (-1). The collinearity between 
marketing- spend variable and visitors variable is equal (0.56). The 
collinearity between revenue variable and marketing- spend variable is 
equal (-0.49). This data is used to examine the performance of lasso, 
group lasso, adaptive lasso, adaptive group lasso, modified group lasso, 
ridge, elastic net, step wise, principle component and partial least 
square. The data set is attached with python program. The 
measurements: mean square error (MSE), coefficient of determination 
(R square) and variance inflation factor (VIF) are used to fit the model.   

 

 

Fig. 1:  Coefficient value of determination. 
           In figure (1), it shows that coefficient of determination for partial 
least squares (67.1) is more than the coefficient of determination for 
principle component regression 65.5). On the other hand, the coefficient 
of determination for lasso and ridge regression (81.9) is more than the 
coefficient of determination for partial least squares (67.1). On the other 
hand, coefficient of determination for elastic net (82.3) is more than the 
coefficient of determination for lasso and ridge regression (81.9). On 
the other hand, the coefficient of determination for adaptive lasso and 
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adaptive group lasso (96.582) is more than the coefficient of 
determination for elastic net (82.3). On the other hand, the coefficient 
determination for group lasso and modified group lasso (96.586) are 
more than coefficient of determination for adaptive lasso and adaptive 
group lasso (96.582), Modified group lasso and group lasso are better 
than all other estimator, so the modified group lasso and group lasso are 
the best method. 

 

Fig. 2: Presentation coefficient of determination. 

           In figure (2), it shows that the presentation coefficient of 
determination for partial least square is  more than the presentation 
coefficient of determination for principle component regression, the 
presentation  coefficient of determination for lasso and ridge regression 
are  more than the presentation coefficient of determination for partial 
least square , the presentation  coefficient of determination for elastic net 
is  more than the presentation  coefficient of determination for lasso and 
ridge regression, the presentation coefficient of determination for 
adaptive lasso and adaptive group lasso are  more than the presentation  
coefficient of determination for elastic net. The presentation coefficient 
of determination for group lasso and modified group lasso are more than 
the presentation coefficient of determination for adaptive lasso and 
adaptive group lasso, modified group lasso and group lasso are better 
than all other estimator, so the modified group lasso and group lasso are 
the best method. 
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Fig3: the values of variance inflation factors. 

          In figure (3), it shows that the variance inflation factor of partial 
least squares (3.6) is less than the variance inflation factor of principle 
component regression (3.9). On the other hand, the variance inflation 
factors of lasso and ridge regression (1.22) are less than the variance 
inflation factor of partial least squares s(3.6), On the other hand, the 
variance inflation factor of elastic net (1.213) is less than the variance 
inflation factor of lasso and ridge regression (1.22). On the other hand, 
the variance inflation factor of adaptive lasso and adaptive group lasso 
(1.03533) are less than the variance inflation factors of elastic net 
(1.213). On the other hand, the variance inflation factor of group lasso 
and modified group lasso (1.03533) are less than the variance inflation 
factor of adaptive lasso and adaptive group lasso (1.03532). Modified 
group lasso and group lasso are better than all other estimator, so the 
modified group lasso and group lasso are the best method. 
 

 

Fig.4 : Presentation of variance inflation factors. 
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In figure (4), it shows that the presentation of variance inflation factor 
for partial least squares is less than the presentation of the variance 
inflation factor for principle component regression. On the other hand, 
the presentation of variance inflation factors for lasso and ridge 
regression are less than the presentation of variance inflation factor for 
partial least squares, On the other hand, the presentation of variance 
inflation factors for elastic net is less than the presentation of variance 
inflation factors for lasso and ridge regression. On the other hand, the 
presentation of variance inflation factor for adaptive lasso and adaptive 
group lasso are less than the presentation of variance inflation factors 
for elastic net. On the other hand the presentation of variance inflation 
factor for group lasso and modified group lasso are less than the 
presentation of variance inflation factor for adaptive lasso and adaptive group 
lasso. Modified group lasso and group lasso are better than all other estimator, 
so the modified group lasso and group lasso are the best method. 

 

 
Fig.5: Values of mean square error. 

           In figure (5), it shows that the mean square error of partial least 
squares (.345) is less than the mean square error of principle component 
regression (.869). On the other hand, the mean square error of lasso and 
ridge regression (.235) is less than the mean square error of partial least 
square (.345). On the other hand, the mean square error of elastic net 
(.248) is less than the mean square error of lasso and ridge regression 
(.253). On the other hand, the mean square error of adaptive lasso and 
adaptive group lasso (.0738) are less than the mean square error of elastic 
net (.248). On the other hand the mean square error of group lasso and 
modified group lasso (.0737) are less than the mean square error of 
adaptive lasso and adaptive group lasso (.0738) , so the modified group 
lasso and group lasso are the best method. 



 
 
 
 
 
 

٣٢٠٢الرابع ديسمبر العدد                مجلة العلمية التجارة والتمويل                            ال  

(PRINT) :ISSN 1110-4716                       242                           (ONLINE): ISSN 2682-4825 
 

 

 

Fig.6: Presentation of mean square error. 

In figure (6), it shows that the presentation of mean square error for 
partial least square is less than the presentation of mean square error for 
principle component regression. On the other hand, the presentation of 
mean square error for lasso and ridge regression is less than the 
presentation of mean square error for partial least square. On the other 
hand, the presentation of mean square error for elastic net is less than the 
presentation of mean square error for lasso and ridge regression. On the 
other hand, the presentation of mean square error for adaptive lasso and 
adaptive group lasso is less than the presentation of mean square error 
for elastic net. On the other hand, the presentation of mean square error 
for group lasso and modified group lasso are less than the presentation of 
mean square error for adaptive lasso and adaptive group lasso, so 
modified group lasso and group lasso are the best methods. 
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Table 1: Comparison between ten imputation method by using 
(VIF, R square, MSE). 

Methods VIF R square MSE 

Lasso 1.22 81.9 .253 

Group lasso 1.03532 96.588 .0737 

Adaptive lasso 1.03533 96.587 ..738 

Adaptive group lasso 1.03533 96.587 .0738 

Modified group lasso 1.03532 96.588 .0737 

Ridge 1.22 81.9 .253 

Elastic net 1.213 82.3 .248 

Step wise 1.04 90.45 .208 

Principle component 3.9 65.5 .360 

Partial least square 3.6 67.1 .345 

         In table (1), it shows that the variance inflation factor of partial least 
squares (3.6) is less than the variance inflation factor of principle 
component regression (3.9). Since the mean square error of partial least 
square (.345) is less than the mean square error of principle component 
regression (.869), the determination coefficient of partial least square 
(67.1) is more than the determination coefficient of principle component 
regression (65.5), partial least square is better than principle component 
regression. On the other hand, the variance inflation factors of lasso and 
ridge regression (1.22) are less than the variance inflation factor of partial 
least square (3.6), and the mean square error of lasso and ridge regression 
(.235) is less than the mean square error of partial least square (.345). 
Since the determination coefficients of lasso and ridge regression (81.9) 
are more than the determination coefficients of partial least square (67.1), 
lasso and ridge regression are better than partial least square. On the other 
hand, the variance inflation factor of the elastic net (1.213) is less than 
the variance inflation factor of the lasso and ridge regression (1.22). 
Since the mean square error of elastic net (.248) is less than the mean 
square error of lasso and ridge regression (.253). The determination 
coefficient of elastic net (82.3) is more than the determination coefficient 
of lasso and ridge regression (81.9); elastic net is better than lasso and 
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ridge regression. On the other hand, the variance inflation factors of 
adaptive lasso and adaptive group lasso (1.03533) is less than the 
variance inflation factors of elastic net (1.213). Since the mean square 
error of adaptive lasso and adaptive group lasso (.0738) is less than the 
mean square error of elastic net (.248), The determination coefficient of 
adaptive lasso and adaptive group lasso (96.582) is  more than the 
determination coefficients of elastic net (82.3); adaptive lasso and 
adaptive group lasso is better than elastic net. On the other hand, the 
variance inflation factor of group lasso and modified group lasso 
(1.03533) is less than the variance inflation factor of adaptive lasso and 
adaptive group lasso (1.03532). Since the mean square error of group 
lasso and modified group lasso (.0737) is less than the mean square error 
of adaptive lasso and adaptive group lasso (.0738), The determination 
coefficient of group lasso and modified group lasso (96.586) is  more 
than the determination coefficient of adaptive lasso and adaptive group lasso 
(96.582), Modified group lasso and group lasso are better than all other 
estimators, so the modified group lasso and group lasso are the best methods. 
7.Conclusion: 

               Multicollinearity and omitted variables are considered two problems 

in a linear regression model. In this paper, we present the methods that are used 

to handle multicollinearity and the methods which select the best variables 

selection to accurately represent the model regression. Generalized Liu two-

type estimator and )( kr  class estimator are used to handle multicollinearity 

and reduce the matrix mean square errors in linear regression models. Least 

absolute shrinkage and selection operation (LASSO), adaptive LASSO and 

elastic net are used to handle multicollinearity and select variables to accurate 

the linear model in large sample but LASSO is used to handle individual 

variable. Adaptive LASSO is used when the degree of multicollinearity is 

minimum and medium, and elastic net tends to be accurate when the degree of 

multicollinearity is maximum. Step-wise selection, back-ward elimination and 

forward selection are used to select the best explanatory variables in the context 

of multiple linear regression analysis. 
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