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Parameter Estimation of the Generalized Pareto Distribution Using 
Robust Location and Scale Measures for Order Statistics x 

Abstract 

In this paper, a new robust weighted two-step method is proposed for 
estimating the parameters of the generalized Pareto distribution (GPD). 
Through two simulation studies, the empirical performance of the 
proposed estimator is evaluated and compared with some competitor 
existing estimators. The methods were applied to a real-life data. 
Simulation and application results reflect the stability of the empirical 
performance of the proposed estimator and also show that, in most 
cases, the proposed estimator outperforms all other competitor 
estimators under investigation or at least equally likely with them. 

 

Keywords: Generalized Pareto Distribution, Extreme Value Theory, 
The Peaks over Threshold Approach, Uniform and Exponential Order 
Statistics, The Inverse Regularized Incomplete Beta Function. 
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1. Introduction 

When analyzing data, the main focus is not always on some population 
central characteristics (e.g., the average amount of air pollutants, the 
average amount of water flow, the median income, etc.) but it may also 
be on “extremes” (the minimum or maximum) of phenomena under 
study. For example, in designing a dam, the average flood helps in 
determining the amount of water to be stored, but engineers may also 
be interested in the maximum flood, the maximum earthquake intensity, 
or the minimum strength of the concrete used in building the dam 
seeking high degree of work perfection. Also, in designing offshore 
platforms, breakwaters, dikes, or any other harbor works, the wave 
height and the probability distribution of the highest waves is the main 
factor to be considered. Dry spells, earthquakes, snowfalls, hurricanes, 
floods, …etc. are all some examples of rare catastrophic events to be 
avoided or at least to be prepared for. Extreme value theory (EVT) is a 
statistical tool to be used in modelling extreme values and the risk of 
rare events. Applications of extreme value modeling involve the field 
of meteorology, hydrology, economics, material science, insurance, 
finance, and survival analysis. 

There are two main approaches for modeling extreme values, the block 
maxima (BM) and the peaks over threshold (POT) approaches. The 
block maxima (BM) approach is based on the generalized extreme 
value (GEV) distribution through the Fisher-Tippett-Gnedenko 
theorem (Fisher and Tippett (1928) and Gnedenko (1943)). The peaks 
over threshold (POT) approach is based on the generalized Pareto (GP) 
distribution through the Pickands-Balkema-de Haan theorem (Balkema 
and de Haan (1974) and Pickands (1975)). In this paper, the POT 
approach is considered.  

The statistical literature is rich in methods of estimating the parameters 
of the (GPD). Each method has its own advantages and disadvantages. 
Some of the most frequently used methods of estimating the parameters 
of the (GPD) are: the traditional method of moments applied by 
Hosking and Wallis (1987), the maximum likelihood method computed 
by Grimshaw (1993), the method of probability weighted moments 
proposed by Greenwood et al. (1979), the elemental percentile method 
proposed by Castillo and Hadi (1997), the method of L-moments 
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introduced by Hosking (1990), the method of higher order L-moments 
introduced by Wang (1997), the method of generalized probability 
weighted moments introduced by Rasmussen (2001). Some likelihood-
based methods of estimation were introduced and modified by Zhang 
(2007), Castillo and Serra (2015), Zhang and Stephens (2009), and 
Zhang (2010). Some least squares methods of estimation were 
introduced and modified by Song and Song (2012), Park and Kim 
(2016), Kang and Song (2017), and Zhao et al. (2019).  

This paper is organized as follows. Section 2 introduces the extreme 
value theory. The (GPD) and some of its main properties are given in 
subsection 2.1, while the rationale behind the (POT) approach is 
explained in subsection 2.2. Section 3 is devoted to methods of 
estimation, competitor existing methods in subsection 3.1, while the 
new proposed estimation method in subsection 3.2. The two simulation 
studies are described in section 4. The parameters of the (GPD) are 
estimated under two settings: using all sample observations (Non-POT) 
in subsection 4.1 and in subsection 4.2 using only observations above a 
certain specific threshold (u) which is referred to as (POT). In section 
5, the proposed and competitor methods of estimation are applied to a 
real-world data set, the Bilbao waves data, used in Castillo and Hadi 
(1997). Section 6 reports the main results and gives concise conclusions 
of the study. 

2. Extreme Value Theory  

2.1. Generalized Pareto distribution (GPD) 
As shown in Coles (2001), the generalized Pareto distribution (GPD) 
with location parameter 𝑎 (𝑎 ∈ ℝ), scale parameter 𝜆 (𝜆 > 0), and 
shape parameter 𝜈 (𝜈 ∈ ℝ) is denoted by 𝐺𝑃𝐷(𝑎, 𝜆, 𝜈). The cumulative 
distribution function (cdf) of the 𝐺𝑃𝐷(𝑎, 𝜆, 𝜈) is defined as:  
 

𝐺(𝑥; 𝑎, 𝜆, 𝜈) =

⎩
⎪
⎨

⎪
⎧

1 − ቆ1 +
𝜈(𝑥 − 𝑎)

𝜆
ቇ

ିଵ
ఔ

,              ቆ1 +
𝜈(𝑥 − 𝑎)

𝜆
ቇ ≥ 0, 𝜆 > 0, 𝜈 ≠ 0

1 − 𝑒𝑥𝑝 ቀ−
𝑥 − 𝑎

𝜆
ቁ ,                                                  𝑥 ≥ 𝑎, 𝜆 > 0, 𝜈 = 0

     (1) 

 
 
The probability density function (pdf) of the GPD is defined as: 
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𝑔(𝑥; 𝑎, 𝜆, 𝜈) =

⎩
⎪
⎨

⎪
⎧1

𝜆
ቈ1 +

𝜈(𝑥 − 𝑎)

𝜆
቉

ቀ
ିଵ
ఔ

ିଵቁ

,                 ቆ1 +
𝜈(𝑥 − 𝑎)

𝜆
ቇ ≥ 0, 𝜆 > 0, 𝜈 ≠ 0

1

𝜆
𝑒𝑥𝑝 ቀ−

𝑥 − 𝑎

𝜆
ቁ ,                                                        𝑥 ≥ a, 𝜆 > 0, 𝜈 = 0

   (2) 

 
The quantile function is defined as: 

𝐺ିଵ(𝑝; 𝑎, 𝜆, 𝜈)  =  ቐ
𝑎 +

𝜆

𝜈
[(1 − 𝑝)ିఔ − 1] ,                  𝜈 ≠ 0

𝑎 + 𝜆൫−𝐿𝑛(1 − 𝑝)൯  ,                      𝜈 = 0
          (3)   

 
 The mean, variance, skewness, and kurtosis are: 
   𝐸(𝑋) = 𝑎 +  

ఒ

ଵିఔ
  ,                                            𝜈 < 1   

  𝑉𝑎𝑟 (𝑋) = 
ఒమ

(ଵିఔ)మ(ଵିଶఔ)
   ,                               𝜈 <  

ଵ

ଶ
     

 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (𝑋) =
ଶ(ଵାఔ)√ଵିଶఔ

ଵିଷఔ
 ,                     𝜈 <  

ଵ

ଷ
  

 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑋) = 
ଷ(ଵିଶఔ)൫ଷାఔାଶఔమ൯

(ଵିଷఔ)(ଵିସఔ)
,                𝜈 <  

ଵ

ସ
 

 
 When 𝑎 = 0, 𝐺𝑃𝐷(𝑎, 𝜆, 𝜈) reduces to 2-parameter 𝐺𝑃𝐷(𝜆, 𝜈) ≡

𝐺𝑃𝐷(0, 𝜆, 𝜈). 
 When 𝜈 = 0, the GPD reduces to the exponential distribution with 

mean 𝜆. 
 When 𝜈 = −1, the GPD reduces to the continuous uniform 

distribution 𝑈(0, 𝜆). 
 The GPD is short-tailed for 𝜈 < 0, medium-tailed for 𝜈 = 0, and 

heavy-tailed for 𝜈 > 0. 
 If the random variable 𝑋 is 𝐺𝑃𝐷(𝜆, 𝜈) then (𝑋 − 𝑢│𝑋 > 𝑢) is 

𝐺𝑃𝐷(𝜆 + 𝑢𝜈, 𝜈), Coles (2001). That is to say, the GPD is stable with 
respect to truncations from the left. This property is called the 
threshold stability of GPD.   

 
2.2. Peaks over threshold (POT) 

Let F be the distribution function associated with a random 
variable X. The distribution function of the exceedances (or 
excesses) over a threshold (u) is defined as: 
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F୳(x) = P(X − u ≤ x|X > u) =
F(u + x) − F(u)

1 − F(u)
 , 0 ≤ x ≤ x୊ − u 

Wherex୊ is the finite or infinite right endpoint of the distribution F. 

According to the Fisher-Tippett-Gnedenko theorem (Fisher and 
Tippett (1928) and Gnedenko (1943)), the distribution of the excesses 
over a sufficiently high threshold (u) can be approximated by the 
generalized Pareto distribution (GPD) with positive scale 
parameter λ(u), i.e.,  
lim

୳→୶ూ

Sup
଴ஸ୶ஸ୶ూି୳

|F୳(x) − G(x; λ(u), ν)| = 0, 

if and only if the distribution function F belongs to a certain class 
of distributions in the maximum domain of attraction of the 
generalized extreme value distribution (GEV), i.e., F ∈ MDA(Hν ), 
with distribution function     

H஝(x) = ൝
exp ൤−(1 + νx)

ିଵ
஝ ൨,           (1 + νx) ≥ 0,              ν ≠ 0   

exp[−exp(−x)],                                 x ≥ 0,              ν = 0
          (4) 

 
The above (GEV) distribution involves three types of distributions: 
the heavy-tailed Fréchet distributions when ν > 0 , the medium-
tailed Gumbel distributions when ν = 0 , and the short-tailed 
Weibull distributions when  ν < 0. The Pareto, Burr, Cauchy, log 
gamma, and t-distributions belong to the heavy-tailed Fréchet 
distributions. The normal, exponential, gamma, and lognormal 
distributions belong to the medium-tailed Gumbel distributions. 
The uniform and beta distributions belong to the short-tailed 
Weibull distributions.  
3. Methods of Estimation 

In this section, a review of four of the best existing least squares 
methods of estimation are considered, then the proposed method of 
estimation is introduced. 

3.1. Some Existing Methods of Estimation 

Four existing estimation methods are to be empirically evaluated and 
compared with the proposed one. Each method is based on a two-step 
minimization procedure, where the second minimization step takes the 
estimates of the first minimization step as initial values. The first 
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method was proposed by Song and Song (2012) and then was corrected 
by Park and Kim (2016) and will be referred to, in this paper, as (𝑺𝑺𝑷𝑲) 
method. The second method was proposed by Park and Kim (2016) and 
will be referred to as (𝑷𝑲) method. The third and the fourth methods 
were proposed by Zhao et al. (2019) and will be referred to as 
(𝒁𝒁𝑪𝒁_𝟏) and (𝒁𝒁𝑪𝒁_𝟐) methods. 

 

3.1.1. The (𝑺𝑺𝑷𝑲) method 

Suppose that 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, ⋯ ⋯ ⋯ , 𝒙𝒏  is a random sample of size (𝒏) 
and let the corresponding sample order statistics be denoted as 𝒙(𝟏) ≤

𝒙(𝟐) ≤ 𝒙(𝟑) ≤ ⋯ ⋯ ⋯ ≤ 𝒙(𝒏). According to the Pickands-Balkema-de 
Haan theorem (Balkema and de Haan (1974) and Pickands (1975)), 
under certain conditions with sufficiently large threshold (𝒖), the 
distribution of exceedances  (𝑿𝒊 − 𝒖 ≤ 𝒙|𝑿𝒊 > 𝒖, 𝒊 = 𝒏𝒖 + 𝟏, ⋯ , 𝒏) 
can be approximated by the GPD, where 𝒏_𝒖 < 𝒏 is the number of 
observations that are less than the threshold (𝒖).    

According to Song and Song (2012) and Park and Kim (2016), the 
parameters (𝜆, 𝜈) of the GPD can be estimated through the following 
two steps:  

(First step) 

( 𝝂ෝ 𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ቂ𝒍𝒐𝒈 ቀ𝟏 − 𝑭𝒏൫𝒙(𝒊)൯ቁ − 𝒍𝒐𝒈 ቀ𝟏 − 𝑭൫𝒙(𝒊)൯ቁቃ
𝟐

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

( 𝝂ෝ 𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ൤𝒍𝒐𝒈 ൬𝟏 −
𝒊

𝒏
൰ − 𝒍𝒐𝒈൛𝟏 − [𝟏 − 𝑭𝒏(𝒖)]𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯ − 𝑭𝒏(𝒖)ൟ൨

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

( 𝝂ෝ 𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ൥𝒍𝒐𝒈 ቈ
𝟏 − (𝒊 𝒏⁄ )

𝟏 − (𝒏𝒖 𝒏⁄ )
቉ − 𝒍𝒐𝒈ൣ𝟏 − 𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯൧൩

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

( 𝝂ෝ 𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ൥𝒍𝒐𝒈 ൤
𝒏 − 𝒊

𝒏 − 𝒏𝒖
൨ − 𝒍𝒐𝒈ൣ𝟏 − 𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯൧൩

𝟐

     (5)

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

(Second step) 

( 𝝂ෝ 𝟐, 𝝀෠𝟐) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ൣ𝑭𝒏൫𝒙(𝒊)൯ − 𝑭൫𝒙(𝒊)൯൧
𝟐

𝒏

𝒊ୀ𝒏𝒖ା𝟏
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( 𝝂ෝ 𝟐, 𝝀෠𝟐) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ൣ𝑭𝒏൫𝒙(𝒊)൯ − [𝟏 − 𝑭𝒏(𝒖)]𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯ − 𝑭𝒏(𝒖)൧
𝟐

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

( 𝝂ෝ 𝟐, 𝝀෠𝟐) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

  [𝟏 − 𝑭𝒏(𝒖)]𝟐 ෍ ቈ
𝑭𝒏൫𝒙(𝒊)൯ − 𝑭𝒏(𝒖)

𝟏 − 𝑭𝒏(𝒖)
− 𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯቉

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

(𝝂ො𝟐, 𝝀෠𝟐) = 𝒂𝒓𝒈 𝒎𝒊𝒏
(𝝂,𝝀)

෍ ቈ
𝑭𝒏൫𝒙(𝒊)൯ − 𝑭𝒏(𝒖)

𝟏 − 𝑭𝒏(𝒖)
− 𝑮𝝂,𝝀൫𝒙(𝒊) − 𝒖൯቉

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

(𝝂ො𝟐, 𝝀෠𝟐) = 𝒂𝒓𝒈 𝒎𝒊𝒏
(𝝂,𝝀)

෍ ൤
𝒊 − 𝒏𝒖

𝒏 − 𝒏𝒖

− 𝑮𝝂,𝝀൫𝒙(𝒊) − 𝒖൯൨
𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

                   (6) 

 
3.1.2. The (𝑷𝑲) method 
According to Park and Kim (2016), the parameters (𝜆, 𝜈) of the GPD 
can be estimated through the following two steps:  

(First step) 

(𝝂ො𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
(𝝂,𝝀)

෍ ቂ𝒍𝒐𝒈 ቀ𝟏 − 𝑭𝒏൫𝒙(𝒊)൯ቁ − 𝒍𝒐𝒈 ቀ𝟏 − 𝑭൫𝒙(𝒊)൯ቁቃ
𝟐

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

(𝝂ො𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
(𝝂,𝝀)

෍ ൤𝒍𝒐𝒈 ൬𝟏 −
𝒊

𝒏
൰ − 𝒍𝒐𝒈൛𝟏 − [𝟏 − 𝑭𝒏(𝒖)]𝑮𝝂,𝝀൫𝒙(𝒊) − 𝒖൯ − 𝑭𝒏(𝒖)ൟ൨

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

(𝝂ො𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
(𝝂,𝝀)

෍ ൥𝒍𝒐𝒈 ቈ
𝟏 − (𝒊 𝒏⁄ )

𝟏 − (𝒏𝒖 𝒏⁄ )
቉ − 𝒍𝒐𝒈ൣ𝟏 − 𝑮𝝂,𝝀൫𝒙(𝒊) − 𝒖൯൧൩

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

(𝝂ො𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
(𝝂,𝝀)

෍ ൥𝒍𝒐𝒈 ൤
𝒏 − 𝒊

𝒏 − 𝒏𝒖
൨ − 𝒍𝒐𝒈ൣ𝟏 − 𝑮𝝂,𝝀൫𝒙(𝒊) − 𝒖൯൧൩

𝟐

 (7)

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

(Second step) 

൫𝝂ො𝟐
∗ , 𝝀෠𝟐

∗ ൯ = 𝒂𝒓𝒈 𝒎𝒊𝒏
(𝝂,𝝀)

෍ 𝒘(𝒊) × [𝑭𝒏൫𝒙(𝒊)൯ − 𝑭(𝒙(𝒊))]𝟐

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

൫𝝂ො 𝟐
∗ , 𝝀෠𝟐

∗ ൯ = 𝒂𝒓𝒈 𝒎𝒊𝒏
(𝝂,𝝀)

෍ ቈ
(𝒏 + 𝟏)𝟐(𝒏 + 𝟐)

𝒊(𝒏 − 𝒊 + 𝟏)
቉ × ൤

𝒊 − 𝒏𝒖

𝒏 − 𝒏𝒖

− 𝑮𝝂,𝝀൫𝒙(𝒊) − 𝒖൯൨

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

          (8) 

   One advantage of the 𝑷𝑲 method of estimation over the 𝑺𝑺𝑷𝑲 
method is that it estimates the extreme quantiles in a more stable 

manner as larger weights are given for 𝑭൫𝒙(𝒊)൯ values as 𝒙(𝒊) moves 

towards the tail side. 
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3.1.3. The (𝒁𝒁𝑪𝒁_𝟏 and 𝒁𝒁𝑪𝒁_𝟐) methods 
Zhao et al. (2019) proposed two methods for estimating the 
parameters of the GPD. According to the first method, the 
parameters (𝜆, 𝜈) of the GPD can be estimated through the following 
two steps:  
(First step) 

( 𝝂ෝ 𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ቂ−𝒍𝒐𝒈 ቀ𝟏 − 𝑭൫𝒙(𝒊)൯ቁ − 𝜠 ቄ− 𝒍𝒐𝒈 ቀ𝟏 − 𝑭൫𝑿(𝒊)൯ቁቅቃ
𝟐

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

( 𝝂ෝ 𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ቎෍ ൬
𝟏

𝒏 − 𝒋 + 𝟏
൰

𝒊

𝒋ୀ𝟏

+ 𝒍𝒐𝒈൛𝟏 − [𝟏 − 𝑭𝒏(𝒖)]𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯ − 𝑭𝒏(𝒖)ൟ቏

𝟐
𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

( 𝝂ෝ 𝟏, 𝝀෠𝟏) = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ൦෍ ൬
𝟏

𝒏 − 𝒋 + 𝟏
൰

𝒊

𝒋ୀ𝟏

+ 𝒍𝒐𝒈[𝟏 − 𝑭𝒏(𝒖)] + 𝒍𝒐𝒈ൣ𝟏 − 𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯൧൪

𝟐

 (9)

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

(Second step) 

൫ 𝝂ෝ 𝟐
∗ , 𝝀෠𝟐

∗ ൯ = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ 𝒘(𝒊) × [𝑭൫𝒙(𝒊)൯ − 𝜠൛𝑭(𝑿(𝒊))ൟ]𝟐

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

൫ 𝝂ෝ 𝟐
∗ , 𝝀෠𝟐

∗ ൯ = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ 𝒘(𝒊) × ൥[𝟏 − 𝑭𝒏(𝒖)]𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯ + 𝑭𝒏(𝒖) −
𝒊

𝒏 + 𝟏
൩

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

൫ 𝝂ෝ 𝟐
∗ , 𝝀෠𝟐

∗ ൯ = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

  [𝟏 − 𝑭𝒏(𝒖)]𝟐 ෍ 𝒘(𝒊) × ቈ
(𝒊 (𝒏 + 𝟏)⁄ ) − 𝑭𝒏(𝒖)

𝟏 − 𝑭𝒏(𝒖)
− 𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯቉

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

൫ 𝝂ෝ 𝟐
∗ , 𝝀෠𝟐

∗ ൯ = 𝒂𝒓𝒈 𝒎𝒊𝒏
( 𝝂,𝝀)

෍ ቈ
(𝒏 + 𝟏)𝟐(𝒏 + 𝟐)

𝒊(𝒏 − 𝒊 + 𝟏)
቉ × ቈ

(𝒊 (𝒏 + 𝟏)⁄ ) − 𝑭𝒏(𝒖)

𝟏 − 𝑭𝒏(𝒖)
− 𝑮 𝝂,𝝀൫𝒙(𝒊) − 𝒖൯቉

𝟐𝒏

𝒊ୀ𝒏𝒖ା𝟏

  (10) 

 
According to the second method, the GPD is reparametrized 
through a new parameter (𝜽 = ( 𝝂) ⁄ 𝝀) and based on the 
maximum likelihood method of estimation, the shape parameter 
(𝝂) can be expressed as a function of the parameter (𝜽) as follows: 

 𝝂(𝜽) =
𝟏

𝒏 − 𝒏𝒖

෍ 𝒍𝒐𝒈ൣ𝟏 + 𝜽൫𝒙(𝒊) − 𝒖൯൧             ∀  

𝒏

𝒊ୀ𝒏𝒖ା𝟏

𝟏 + 𝜽൫𝒙(𝒊) − 𝒖൯ > 𝟎   (11) 

The parameters (𝜆, 𝜈) of the GPD can be estimated using 𝒁𝒁𝑪𝒁_𝟐 

method through the following two steps:  
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(First step) 

𝜽෡𝟏 = 𝒂𝒓𝒈 𝒎𝒊𝒏
𝜽

෍ ൦෍ ൬
𝟏

𝒏 − 𝒋 + 𝟏
൰

𝒊

𝒋ୀ𝟏

+ 𝒍𝒐𝒈[𝟏 − 𝑭𝒏(𝒖)] + 𝒍𝒐𝒈ൣ𝟏 − 𝑮 𝝂(𝜽),𝝀൫𝒙(𝒊) − 𝒖൯൧൪

𝟐

     (12)

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

(Second step) 

𝜽෡𝟐 = 𝒂𝒓𝒈 𝒎𝒊𝒏
𝜽

෍ ቈ
(𝒏 + 𝟏)𝟐(𝒏 + 𝟐)

𝒊(𝒏 − 𝒊 + 𝟏)
቉ × ቈ

(𝒊 (𝒏 + 𝟏)⁄ ) − 𝑭𝒏(𝒖)

𝟏 − 𝑭𝒏(𝒖)
− 𝑮 𝝂(𝜽),𝝀൫𝒙(𝒊) − 𝒖൯቉

𝟐

        (13)

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

Now, the shape parameter (𝝂) and the scale parameter (𝝀) can be 

estimated using the following relations: 

 𝝂ෝ =
𝟏

𝒏 − 𝒏𝒖

෍ 𝒍𝒐𝒈ൣ𝟏 + 𝜽෡𝟐൫𝒙(𝒊) − 𝒖൯൧,    𝝀෠ =  𝝂ෝ 𝜽෡𝟐⁄                 (14)

𝒏

𝒊ୀ𝒏𝒖ା𝟏

 

3.2. The Proposed Methods of Estimation (Sol)  

Going along the lines of Zhao et al. (2019), the proposed estimation 

method is a two-step weighted minimization procedure. The 
parameters (𝜆, 𝜈) of the GPD can be estimated using the proposed 
method (𝑆𝑜𝑙) through the following two steps:  
(First step) 

The target of the first step is to find the values of the parameters 

( 𝜈, 𝜆) that minimize the median absolute   deviations between 

(𝑮(𝒊) = −𝐥 𝐧ൣ𝟏 − 𝑭൫𝑿(𝒊)൯൧) and the corresponding theoretical 

medians, i.e., 

𝜽෡𝟏 = 𝒂𝒓𝒈 𝒎𝒊𝒏
𝜽

൛𝑴𝒆𝒅𝒊𝒂𝒏ห𝑮(𝒊) − 𝑴𝒆𝒅𝒊𝒂𝒏൫𝑮(𝒊)൯หൟ,                      (15) 

𝜽෡𝟏 = 𝒂𝒓𝒈 𝒎𝒊𝒏
𝜽

൛𝑴𝒆𝒅𝒊𝒂𝒏ห𝒍𝒐𝒈ൣ𝟏 − 𝑰𝟎.𝟓
ି𝟏(𝒊, 𝒏 − 𝒊 + 𝟏)൧ − 𝒍𝒐𝒈[𝟏 − 𝑭𝒏(𝒖)]

− 𝒍𝒐𝒈ൣ𝟏 − 𝑮 𝝂(𝜽),𝝀൫𝒙(𝒊) − 𝒖൯൧หൟ, 

Where 𝐺(௜) = −𝑙𝑜𝑔ൣ1 − 𝑈(௜)൧, 𝑀𝑒𝑑𝑖𝑎𝑛൫𝐺(௜)൯ = −𝑙𝑜𝑔[1 − 𝐼଴.ହ
ିଵ(𝑖, 𝑛 − 𝑖 + 1)] 

 
(Second step) 

Taking the estimates in the first step as initial values, the second 

step give the values of the parameters ( 𝜈, 𝜆) that minimize the 

median absolute deviations between (𝑼(𝒊) = 𝑭൫𝑿(𝒊)൯) and the 
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corresponding theoretical medians weighted by the reciprocals of 

𝑴𝑨𝑫൫𝑼(𝒊)൯. After reparametrizing the GPD through the parameter     

(𝜃 = ( 𝜈) ⁄ 𝜆) and making good use of the maximum likelihood 

method of estimation, the shape parameter (𝜈) can be expressed as 

a function of the parameter (𝜃) as indicated in equation (11). Thus, 

the second step of the proposed estimation method is given as: 

𝜽෡𝟐 = 𝒂𝒓𝒈 𝒎𝒊𝒏
𝜽

൛𝑴𝒆𝒅𝒊𝒂𝒏หൣ𝑼(𝒊) − 𝑴𝒆𝒅𝒊𝒂𝒏൫𝑼(𝒊)൯൧ 𝑴𝑨𝑫൫𝑼(𝒊)൯ൗ หൟ,       (16) 
𝜽෡𝟐 = 𝒂𝒓𝒈 𝒎𝒊𝒏

𝜽
൛𝑴𝒆𝒅𝒊𝒂𝒏หൣ𝑭𝒏(𝒖) + [𝟏 − 𝑭𝒏(𝒖)]𝑮 𝝂(𝜽),𝝀൫𝒙(𝒊) − 𝒖൯ − 𝑴𝒆𝒅𝒊𝒂𝒏൫𝑼(𝒊)൯൧ 𝑴𝑨𝑫൫𝑼(𝒊)൯ൗ หൟ, 

Where 𝑈(௜) = 𝐹൫𝑋(௜)൯, 𝑀𝑒𝑑𝑖𝑎𝑛൫𝑈(௜)൯ = 𝐼଴.ହ
ିଵ(𝑖, 𝑛 − 𝑖 + 1), and 

𝑀𝐴𝐷൫𝑈(௜)൯ can be numerically calculated by solving the following 

equation for the value 𝑧: 
𝜤𝑰𝟎.𝟓

ష𝟏(𝒊,𝒏ି𝒊ା𝟏)ା𝒛
(𝒊, 𝒏 − 𝒊 + 𝟏) − 𝜤𝑰𝟎.𝟓

ష𝟏(𝒊,𝒏ି𝒊ା𝟏)ି𝒛
(𝒊, 𝒏 − 𝒊 + 𝟏) = 𝟎. 𝟓(17) 

Where the regularized incomplete beta function 𝜤𝒗(𝒂, 𝒃) is defined as: 

𝜤𝒗(𝒂, 𝒃) = ൥න 𝒕𝒂ି𝟏(𝟏 − 𝒕)𝒃ି𝟏. 𝒅𝒕

𝒗

𝟎

൩ 𝜷𝒆𝒕𝒂(𝒂, 𝒃)൘                           (18) 

And the inverse regularized incomplete beta function 
 𝒛 ≡ 𝑰𝝂

ି𝟏(𝒂, 𝒃) is calculated by solving the following equation for the 
value 𝑧:  𝜤𝒛(𝒂, 𝒃) ≡ 𝝂 
As mentioned before, the shape and scale parameter ( 𝜈, 𝜆) can be 
estimated using equations in (14). 
 
4. Simulation Studies  

This section includes two simulation studies to evaluate and 
compare the empirical performance of all above mentioned 
existing and proposed estimation methods. In section 4.1, the scale 
and shape parameters of the GPD are estimated using all 
observations in a random sample. In section 4.2, the scale and 
shape parameters of the GPD are estimated using only observations 
above threshold. Table 1 shows the skewness degree and direction 
and the tail-heaviness degree of each member of the family of GP 
distributions used in the two simulation studies. The degrees of 
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skewness are measured by the well-known Bawley coefficient of 
skewness  (∆= [(𝑄(0.75) − 𝑄(0.5)) − (𝑄(0.5) − 𝑄(0.25))] ⁄
[𝑄(0.75) − 𝑄(0.25)] ). The degrees of tail-heaviness are measured 
by the Moors measure  (𝛽 ̃ = [(𝑄(0.875) − 𝑄(0.125)) −
(𝑄(0.625) − 𝑄(0.375))] ⁄ [𝑄(0.75) − 𝑄(0.25)] ) introduced by 
Moors (1988) and accompany all distributions used in this third 
simulation study, where 𝑄(𝑝) refers  to the 𝑝th population quantile. 
Table 1. Skewness and Tail-heaviness Degrees of the considered 
members of the family of GP Distributions 

𝝂 −3 −2 −1.5 −1 −0.5 0 1 2 

∆ −0.4615 −0.25 −0.1285 0 0.1317 0.2619 0.5 0.6875 

𝛽 ̃ 1.1731 1 0.9719 1 1.1028 1.3063 2.1714 4.0882 

It should be noted that the GPD can be negatively skewed, 
symmetric, or positively skewed when the shape parameter (𝝂) is 
less that (−1), equal to (−1), or greater than (−1) respectively. 
Also, the tail-heaviness of the GPD reaches its minimum when the 
shape parameter (𝝂) is equal to (−1.5) and starts to increase as the 
value of (𝝂) deviates from (−1.5). The rate of increasing the tail-
heaviness of the GPD is larger for values of (𝝂) greater than (−1.5).  
4.1. Parameter Estimation under the Non- POT Approach 

The target of this section is to compare the performance of five 
estimators in estimating the scale and shape parameters of the 
generalized Pareto distribution under two settings: the (Non-POT), 
where the whole random sample is used and the (POT), where only 
observations above threshold are used. Using the whole random 
sample, the first simulation study is designed as follows: 
1. Generate a random sample of size (𝒏) from the GPD with scale 
parameter (𝝈) and shape parameter (𝝂). 
2. based on the whole random sample, estimate the parameters 
(𝝀, 𝝂) using all methods under investigation. 
3. Repeat above steps 10,000 times. 
4. Compute the mean square error (MSE) of each estimator as 
follows:  
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𝑴𝑺𝑬(𝝈ෝ) =
𝟏

𝟏𝟎𝟎𝟎𝟎
෍ [𝝈ෝ𝒊 − 𝝈]𝟐

𝟏𝟎𝟎𝟎𝟎

𝒊ୀ𝟏

=
𝟏

𝟏𝟎𝟎𝟎𝟎
෍ ൣ𝝀෠ 𝒊 − 𝝈൧

𝟐
,        (19)

𝟏𝟎𝟎𝟎𝟎

𝒊ୀ𝟏

 

𝑴𝑺𝑬(𝝂ො) =
𝟏

𝟏𝟎𝟎𝟎𝟎
෍ [𝝂ො 𝒊 − 𝝂]𝟐

𝟏𝟎𝟎𝟎𝟎

𝒊ୀ𝟏

                                                        (20) 

This first simulation study was conducted with sample sizes  
(𝒏 = 50,100, 200,1000), a scale parameter (𝝈 = 𝟏), and shape 
parameters (𝝂 = −𝟑, −𝟐, −𝟏. 𝟓, −𝟏, −𝟎. 𝟓, 𝟎, 𝟏, 𝟐).  
For all methods of estimation and for each combination of the 
considered different levels of “𝒏 and 𝝂”, the MSEs are given in tables 
2 and 3. The main results deducted from these ϐirst two tables can 
be summarized as follows: 

1. As expected, and as can be seen form tables 2 and 3, increasing 
the sample size substantially reduces the MSEs of all estimators. 
2. As the value of (𝝂) gets closer to (−𝟏), the degree of skewness 
decreases and the empirical performance of estimators improves 
in terms of decreasing MSEs of both the scale and shape 
parameters. 
3. As the value of the shape parameter (𝝂) deviates from (−𝟏. 𝟓), 
the degree of tail-heaviness increases and the empirical 
performance of estimators gets worse. 
4. The proposed estimator (Sol) shows the best performance in 
terms of least MSEs. 
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Table 2. Mean square errors (MSE) of estimators of (𝜎, 𝜈) under 
Non-POT (𝑛 = 50, 𝑛 = 100, 𝝈 = 𝟏).  

 
 
Table 3. Mean square errors (MSE) of estimators of (𝜎, 𝜈) under 
Non-POT (𝑛 = 200, 𝑛 = 1000, 𝝈 = 𝟏). 
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4..2. Parameter Estimation under the POT Approach 
Using only observations above threshold, this second simulation 
study is designed as follows: 
1. Generate a random sample of size (𝒏) from the GPD with scale 
parameter (𝝈) and shape parameter (𝝂). 
2. Take the 𝟏𝟎𝟎𝒒th quantile as a threshold value (𝒖 =
𝑮ି𝟏(𝒒; 𝝈, 𝝂)). 
3. Based on only observations above threshold (𝒖), estimate the 
parameters (𝝀, 𝝂) using all methods under investigation. 
4. Repeat above steps 10,000 times. 
5. Compute the mean square error (MSE) of each estimator as 
follows: 

𝑴𝑺𝑬(𝝈ෝ) = ෍ [𝝈ෝ𝒊 − 𝝈]𝟐

𝟏𝟎𝟎𝟎𝟎

𝒊ୀ𝟏

10000൘ = ෍ ቈ𝝀෠𝒊 ቀ𝟏 −
𝒏𝒖

𝒏
ቁ

𝝂ො𝒊

− 𝝈቉

𝟐𝟏𝟎𝟎𝟎𝟎

𝒊ୀ𝟏

10000൘  , (21)  

𝑴𝑺𝑬(𝝂ො) = ෍ [𝝂ො 𝒊 − 𝝂]𝟐

𝟏𝟎𝟎𝟎𝟎

𝒊ୀ𝟏

10000൘                                                       (22) 

This second simulation study was conducted with sample sizes 
(𝒏 = 𝟏𝟎𝟎𝟎, 𝟏𝟎𝟎𝟎𝟎), a scale parameters (𝝈 = 𝟏), shape parameters 
(𝝂 = −𝟑, −𝟐, −𝟏. 𝟓, −𝟏, −𝟎. 𝟓, 𝟎, 𝟏, 𝟐), and only one level of 
threshold (𝒖 = 𝑭ି𝟏(𝒒)) equals the 𝟏𝟎𝟎 × 𝟎. 𝟗𝟎 = 𝟗𝟎𝒕𝒉 quantile. It 
should be noted that the scale parameter (𝝈) of the GPD of the 
random variable (𝑿) is related to the scale parameter (𝝀) of the 

GPD of the random variable (𝑿 − 𝒖 ≤ 𝒙│𝑿 > 𝒖) by the relation 
(𝝈 = 𝝀(𝟏 − 𝒒)𝝂). 
For all methods of estimation and for each combination of the 
considered different levels of “𝒏 and 𝝂”, the MSEs are given in table 
4. The main results deducted from tables 2, 3, and 4 can be 
summarized as follows: 

1. As expected, even if the effective sample size is equal, the MSEs 
accompanying estimators under the POT approach are greater 
than the MSEs accompanying estimators under the Non-POT 
approach. 
2. As the sample size increases or the skewness degree decreases 
or the tail-heaviness degree decreases, the MSEs of all estimators 
decrease. 
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3. The proposed estimator (Sol) shows the best performance as 
indicated by the corresponding least MSEs. 

Table 4. Mean square errors (MSE) of estimators of (𝜎, 𝜈) under 
POT (𝝈 = 𝟏).  

 
5. Application 

In section 4, two simulation studies were conducted to evaluate and 
compare the empirical performance of the proposed estimator under 
two approaches, the Non-POT and POT. In this section, the proposed 
and competitor methods of estimation are applied to a real-world data 
set, the Bilbao waves data, used in Castillo and Hadi (1997). The data 
measures zero-crossing hourly mean periods (in seconds) of the sea 
waves in a Bilbao buoy in January 1997. This data is modelled by the 
GPD with different thresholds starting from 7 up to 9.5. The overall 
goodness-of-fit of each estimation method is assessed by the average 
scale absolute error (ASAE) defined as: 

𝐴𝑆𝐴𝐸 =
1

n − 𝑛௨
෍ ൣห𝑥(௜) − 𝑥ො(௜)ห ൫𝑥(௡) − 𝑥(௡ೠାଵ)൯ൗ ൧,                         (23)

୬

௜ୀ௡ೠାଵ

 

where 

𝑥ො(௜) = 𝐺ିଵ ൬
𝑖

𝑛 + 1
; 𝑢, 𝜆መ, 𝜈̂൰                                                                    (24) 
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The values of ASAE for each method of estimation at various threshold 
levels are computed and summarized in table 5. The estimated 
parameters and their standard errors (in parentheses) for all estimation 
methods are given in table 6, for several threshold values 𝑢. The 
standard errors are computed based on 1000 bootstrap samples. 
According to tables 5 and 6, the following results can be deducted: 
1. The best choice for the threshold value is (𝑢 = 7.5) as it corresponds 
to the least ASAE. 
2. Based on ASAEs in table 5, the proposed estimator (Sol) outperforms 
all other competitor estimator as it has the least ASAE. 
3. Based on standard errors in table 6, the proposed estimator (Sol) 
performs as well or better than all other competitor estimators as it has 
small standard errors. 

4. At a threshold value of (𝑢 = 7.5), the proposed (Sol) estimates of (σ 
and 𝝂) are (2.2568) and (−0.8512) with standard errors of (0.0020) 
and (0.0088) respectively.  
 
Table 5. The Bilbao Waves Data: Average Scaled Absolute Errors 
(ASAE) for All Estimation Methods 

 
Threshold 

𝒖 
𝐧 − 𝒏𝒖 ASAE 

SSPK PK ZZCZ_1 ZZCZ_2 Sol 

7 179 0.0584 0.0388 0.0317 0.0314 0.0234 
7.5 154 0.03587 0.0278 0.0234 0.0200 0.0138 
8 106 0.0388 0.0292 0.0264 0.0261 0.0202 

8.5 69 0.0413 0.0385 0.0298 0.0281 0.0283 
9 41 0.0498 0.0452 0.0423 0.0411 0.0371 

9.5 17 0.0935 0.0897 0.0811 0.0801 0.0779 
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Table 6. The Bilbao Waves Data: Estimated Parameters and the 
Corresponding Standard Errors 

 

6. Conclusions 

In this paper, an efficient new estimator of the GPD parameters is 

proposed. Through two simulation studies and an application to a real-

life data, the empirical performance of the proposed (Sol) estimator is 

evaluated and compared with some existing estimators. Simulation 

results show that for the estimation of the scale and also the shape 

parameters, the (Sol) estimator performs as well or significantly better 

than all other competitor estimators. It is recommended to estimate the 

GPD parameters using the proposed new estimator using all sample 

observations or using only observations above a certain threshold. 
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