

Risk Management as an Approach to Control Construction Projects Costs

Mostafa Mohammed Abdel-Hafeez¹, Sherif Sabry El-Attar², and Walaa Ahmed Abdel-Hafez³

Abstract

Cost overrun risks are very common in construction sector. These risks are the possibility of a cost deviation occurrence consequently, affecting the project costs and the involved parties. Cost overrun risks also affect investment in construction sector negatively and focusing on risk reduction measures. Cost control isn't confined to cost management only but also, risk management is considered an effective control tool of project costs. Cost overrun risks are identified and then risk assessment and analysis are done. Then risk management and risk mitigation are carried out. The purpose of this study is to present an approach that can assess cost overrun risks after identifying them. Then, resorting to response strategies to create a response plan for high-priority risks, the researcher conducted a survey research by applying a questionnaire among the specialists in the construction industry and chose the touristic projects in Port Said as a case study. The risk identification techniques more frequently applied in construction are checklist and Brain storming, in addition the risk assessment and analysis technique (the qualitative technique).

Keywords: Cost overrun, Risk, Matrix, Qualitative Analysis, Response Plan

1.INTRODUCTION

Construction industry is suffering from cost overruns; cost overrun (*CO*) is a major problem in project development and is a regular feature in construction industry. The situation of a construction project in which budgetary estimate exceeds estimation, budget exceeds budgetary estimate, and settlement exceeds budget is a universal phenomenon. Construction cost which is out of control adds investment pressure, increases construction cost and affects investment decision-making [1]. Besides, the increasing in cost of project (cost overrun) can reduce the feasibility of the project, its contribution to the development and the renaissance of community.

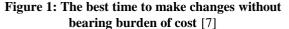
Cost control will be explained from the view of risk management, as uncertainty and risks linked with construction industry as it threats achieving the project success. In addition, it's clarified that cost overrun is considered as a risk [2]. Consequently, this paper discusses cost overrun as a risk and deal with it by risk management process. Once factors causing cost overrun are determined, it will be easy to deal with them. Also, it's clarified that *Risk management* is considered as "a control technique that can help in achieving project success" [3].

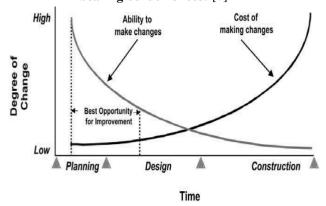
The avoidance of the risks' occurrence in construction projects can be achieved in the presence of a good management in attempt to reach the supposed approach helps who are responsible for those risks [4]. So, it has become crucial for contractors to understand their risk of cost overburden in advance and manage it effectively. This requires utilization of a systematic approach to the management of project risks and uncertainties in the cost estimation stage to minimize their effects for identifying the factors that contribute to cost overrun avoiding and reducing the problems [5][1]. So, the main objective of this research paper is to find an approach to providing early warning devices to reduce these problems. So, understanding these factors allows for appropriate actions to mitigate factor impacts. Project participants can take action to curtail or control the effects of these identified cost escalation factors throughout the life of the project. So, both of theoretical and practical studies aimed at:

- Ranking the causing factors of cost overrun in Egypt, in particular, prioritize the cost overrun factors regarding their risk index.
- Determining a response plan for cost overrun risks in construction projects in Egypt.

¹Professor at Department of Architectural Engineering and Urban Design, Faculty of Engineering, Port Said, Egypt,

E-mail: Whitehouse.egy@gmail.com


²Professor at Department of Architectural Engineering, Faculty of Engineering, Fayoum University, Fayoum, Egypt, E-mail:Sma00@fayoum.edu.eg


E-mail:<u>Sma00@fayoum.eau.eg</u>

³ M.Sc. Candidate at Architectural Engineering and Urban Design Department, Faculty of Engineering, Port Said, Egypt, E-mail:Walaa_ahmed22222@yahoo.com

2.COST CONTROL IN CONSTRUCTION PROJECTS

Successful project management requires the identification of the factors impacting project scope definition, cost, schedule, contracting strategy and work execution plan. However, much of the research related to risk identification, assessment and management for constructed facilities is focused on specifics such as location, categories of risks aspects, or types of projects. Consequently, lists of relevant construction project risks have been developed. Hence, the accuracy of planning costs leads to reduce these costs as it is the most appropriate chance to avoid any mistakes that would happen later in cost estimating, budgeting, and control [6]. Also, the best time to make changes without bearing burden of cost in other words the appropriate period to control the costs of projects [7]. As shown in Figure 1. Consequently, the best tool used within this period is RM process.

So, it's preferred to use an aiding tool to guarantee achieving the goal of cost reduction within preparing lists of potential risks that affecting cost overrun occurrence in addition, creating a suitable response plan for them. The suggested approach is an attempt to reduce the occurrence of cost overrun in construction projects is depending on project management knowledge as shown in figure2 using three steps to achieve the desired goal; first, focusing on defining the objectives regarding the project cost (budget); second, discussing the cost management, the phase of cost control in particular. Moreover, risk management had been selected as a tool of cost control in a new approach to deal with the cost overrun in projects.

3.THE PROPOSED APPROACH TO CONTROL PROJECT COSTS

It is recognized that cost management is responsible for controlling project costs but it's necessary to integrate between cost management and risk management as the first concerns with all issues of project costs from planning to control and monitor, and the second concerns with evaluation and response of potential factors affecting on achievement of the project objectives. Moreover, the researcher will be able to conduct a response plan by qualitative analysis for the cost overrun risks. The model steps are shown in the following figure.

Figure 2: The idea of suggested approach

4.RISK MANAGEMENT METHODOLOGY

It was improved by the PMI, adding details based on users" experience. Consequently, the process of risk management includes many phases. These phases of proposed approach (RM process) are proper to achieve the researcher's target in getting a final risk matrix to deal with project construction risks [8] [9].

- **First step** is **"risks identification"** which was conducted by determining and classifying them into groups and categories.

- Second step is "risk assessment" which leads to risk analysis based on probabilities and impacts. The researcher preferred using the qualitative method.
- Third step is "risk response" which leads to create a response plan for determined risks. This plan contains the high-priority risks and the suitable response strategies for each one. The used strategies are mitigation, avoidance, transference, acceptance and watch.
- Fourth step is "monitor and control" which is considered the last category of RM process; it can be in controlling all the former categories as it is used from the earlier steps in dealing with cost overrun risks.

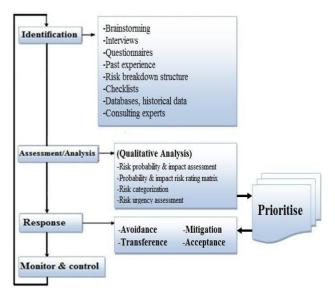


Figure 3: A proposed approach to manage risks

4.1. RISK IDENTIFICATION

Risk identification (*classifying risks into categories* and sub-categories) is considered the first step of risk management process, in which potential risks associated with a construction project are identified. As an integrative part of risk identification, risk classification attempts to structure the diverse risks affecting a construction project. Many approaches have been suggested in the literature for classifying risks. Also, it is defined as "*The purpose of identifying risks is to obtain a list with potential risks to be managed in a project*" [10].

In addition, this step is usually informal and can be performed in various ways, depending on the organization and the project team. It means that the identification of risks relies mostly on past experience that should be used in upcoming projects. In order to find the potential risks, an allocation needs to be done. This can be decided and arranged by the organization. In this case, no method is better than another, since the only purpose is to establish the possible risks in a project [9]. This process would highlight risks that may be considered, by project management, to be more significant and selected for further analysis. As, through this stage the potential risks affecting construction projects can be identified. However, the careless way in which this process is undertaken in many construction companies is one of the causes of failure of construction projects [10].

4.1.1. RISK CLASSIFICATION

It is an integrative part of risk identification; its main objective is to structure the diverse risks affecting a construction project [9].

Many sources can cause and identify risks. Some sources can be easily identified and risks can be analyzed, but other sources are not obvious. Risks can be predictable before projects start or appear during the construction process suddenly. Some risks are related to project itself that is under the control of project decision makers, while others are related to external factors that are out of control. Project managers identify risks by documenting their characteristics after determining the risks that are likely to affect the project. Moreover, the nature of risks could be internal or external. Consequently, the identification process should be carried out by a professional with enough experience [11].

4.2. RISK ASSESSMENT AND ANALYSIS

Risk assessment and management are important as identified risks on construction projects are typically financial in nature. Early in the project, an assessment of risk is crucial to establish the budget parameters within which the project must be completed. The calculation of project contingencies should be based on an assessment of the risk surrounding the project. Also, it is defined the risk analysis as estimating the probabilities needed as input data to evaluate the alternative decisions [3].

After the identification of risks, they must be evaluated in terms of the probability of occurrence and impact. An understanding of the possible effects on project objectives is needed. Since most projects have only a limited amount of resources to use for risk management, concentration on only the major risks is essential.

In addition that the common problem in project risk management processes is the need to determine the relative significance of different sources of risk so as to guide subsequent risk management effort and ensure it remains cost effective [11].

4.2.1. RISK ASSESSMENT

It is a process where the occurrence probability and the impact of risk are determined. This process consists of analyzing the causes of risk that might occur and the effects of risk that are the potential impacts on a project. The risk assessment process consists of two stages as shown in figure 4:

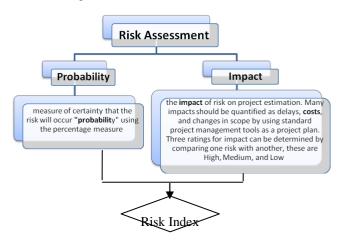


Figure 4: Risk assessment phases

According to risk matrix, the three variables; risk (R), probability (P) and impact (I) are all measured numerically. The project manager judged the probability of occurrence using the five-level judgment scale of: very high, high, medium, low and very low. The same scale was also applied to the degree of impact of the risk.

$\mathbf{R} = \mathbf{P} \times \mathbf{I}$

The previous step determined the probability of occurrence and the impact level for calculating the risk index. Moreover, the approach seeks to rank risks involves the use of probability-impact grid (matrix) to allocate the risks on risk matrix in order to understand the severity of risks better. Typically, such grids require individual sources of risk to be characterized as risk events with a roughly assessed probability of occurrence and degree of impact. This allows each risk to be characterized by a single `risk rating [11].

4.2.2. QUALITATIVE RISK ANALYSIS

Qualitative assessment is concerned with the qualities and subjective elements of the risk by assessing the impact and likelihood of the identified risks and developing the prioritized lists of these risks for further analysis or direct mitigation [8]. Also, the identified risks can be assessed qualitatively to determine both probability and potential effect on project objectives, allowing risks to be prioritized for further attention [3].

The primary technique for this approach is mainly based on the Probability–Impact Matrix, where the probability and impacts of each risk are assessed against defined scales, and plotted on a two dimensional grid. Hence, it uses expert opinion to evaluate the probability and consequence of interaction within a system. This approach can be used to assess the cost overrun risks as one of the project's threats [3][9].

In addition, qualitative assessment techniques have many actions like risk definition, risk details, and risk categorization and prioritization. In addition, *qualitative technique* has several methods as direct judgment, ranking options, comparing options and descriptive analysis. In fact, identifying, describing, and assessing project risks allow the team to have decision to move on project construction. Besides, project teams may elicit assistance from subject matter experts or functional units to assess the risks in their respective fields [12].

4.2.3. STEPS OF QUALITATIVE ANALYSIS

Once a risk is identified, including a thorough description of the risk, it can be characterized in terms of probability of occurrence and the consequence if it does occur as follow:

1- Gather the project team and appropriate persons to discuss project risk. Determine which of the qualitative

risk matrixes you intend to use and define the terms you plan to use (Very High, High, Medium, Low.... etc.).

2- Review the risk information from the risk identification step.

3- Discuss the risk with the group.

4- Evaluate the likelihood of the risk occurring by asking the group "How likely will this risk occur?" Record the result that the group agrees on.

5- Evaluate the consequences if the risk does occur by asking the group "What will be the impacts if this risk occurred?" Record the results that the group agrees on.

6-Prioritize the risks based on the results of the qualitative analysis. If it is desirable, the risks can also be grouped by category and ranked within each category.

Finally, the risk matrix consists of five levels (very low, low, moderate, high and very high) for impact and (rare, occasional, somewhat frequent, frequent, and very frequent) for probability of occurrence. Besides, high-priority risks locate on (Very High- Very Frequent); (Very High- Frequent); (Very High- Somewhat Frequent); (High- Very Frequent); (High- Very Frequent); (Moderate- Very Frequent) and (Moderate- Frequent) cells. So it differs from PMI's matrix in evaluating the high-priority risks to near- term response plan [12]. As shown in table (1) as follows:

10		wisits in		2	
Very high					
High					
Moderate					
Low					
Very low					
Impact/ likelihood	Rare	Occasional	Somewha t frequent	Frequent	Very frequen

Table 1: Risks matrix [12]
-------------------------	-----

Take action now
Put measures in place
Watch

5.RISK RESPONSE PLAN

A Risk response plan includes answers to the threats that are identified in the risk assessment phase. There are a number of ways to address these threats [13].

In other words, the control plan is a series of course adjustments within the project's main objectives. These adjustments include scheduling and tracing the advance of risk situations. The control plan defines indicators that provide warnings regarding the realization of specific risks [8]. When as, the distribution of risks between the client and contractor make them tending to overshadow the effective management strategies. Also, investigations show that contactors and owners give minimal consideration to risks outside the realm of their own concerns.

	Strategy type	Description
ses	Acceptance	Accept risk impacts on cost,
ong	Acceptance	schedule, scope and quality.
esp	Avoidance	When scope could be changed.
Threat risks responses	Mitigation	Reduction of risk impact or
isk	X Mitigation	probability.
ut r	Transference	Shifting responsibility of risk to
rea	Tailsterence	another part.
Th	Watch	Delay response action to a later
	vv ateli	time.

Table 2: Response strategies of threat risks [3	3]	
---	----	--

6.PRACTICAL STUDY

This study follows a certain methodology depending on some approaches as field study (pilot, guide and field studies) and analytical study. In addition, there are many types of survey tools that were used in survey process hence, they can answer the research questions, and these answers will determine the most influencing factors in cost overrun occurrence and create a database for the risks which frequently occur in construction projects in Egypt, the establishing of an approach to control it. The methods used to collect data in this research are as follow:

- Previous Studies: Theoretical and practical.
- Meeting with experts: By conducting few interviews.
- Questionnaires: Delivered by hand or e-mailed.

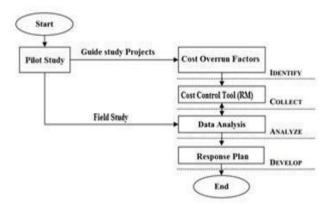


Figure 5: Structure of practical study methodology

The used questionnaires aim to obtain respondents' (expert and specialists) opinions on cost overrun problem in construction projects (tourist in particular) in Egypt at their life cycle. Hence, filling this questionnaire will help in identifying major factors that cause cost overrun and their level of impact on projects; this will help in developing an approach to control and minimize this problem. The purpose of these questionnaires is to

investigate project parties' and specialists' in construction field viewpoints about factors causing cost overrun in construction projects, Egypt (touristic projects in Port Said). The applied questionnaire that was reformulated tends as base the questionnaires used by some scholars [2][3][11] After reformulation, the questionnaire kept the possibility of multiple choices, arranged in a total of 102 questions, subdivided in three parts as shown in appendix A.

In general, data was analyzed using (SPSS 20) Version 20 as follows:

- **Descriptive Statistic:** mean, standard deviation .That was used to summary and describes the data.
- **Cronbach' alpha test**: estimating the reliability coefficients of the three variables of the current study.
- **Qualitative assessment:** for both impact and probability of each factor cause cost overrun.

6.1. SURVEY OF RESULTS AND DATA ANALYSIS

The questionnaires were distributed by several forms as personally (delivered by hand) or via e-mail to 75 respondents of the contracting companies and consultation firms. But, only 64 forms were filled and were returned (85.3% over all response rate) while, three forms were excluded for incomplete answers and missing data. Sample's size has been determined based on the participants in the designing and executing of the guide projects (10 touristic projects in Port Said).

In this questionnaire, cost overrun risks COR are grouped with reference to the literature review and interviews with experts (during the pilot study) classified risks into **6** main groups technical, economic and financial, political and regulation, management, project resources and environment, The questionnaire was the main used tool to evaluate and rank those factors. These groups are divided into **20** categories. Those categories that contain **95** risks were deemed to be able to influence the project costs and cause of cost overrun occurrence. They affect construction project cost during the project life cycle.

<u>First</u>, the analysis of demographic results concerned with the characteristics of participated respondents in the questionnaires survey as shown in the following table will present these demographic results.

Table 5. Respondents prome							
Catagory	Respondent						
Category	Number	%					
Years of respondents' experience							
Group < 10	10	15.6%					
Group 10 – 20	24	37.5%					
Group 20-30	22	34.4%					
Group > 30	8	12.5%					
Years of companies'	experience						
Group 10 – 20	14	21.9%					
Group 20-30	32	50%					
Group > 30	18	28.1%					
Position							
Consultant	8	12.5%					
Project manager	14	21.9%					

Table 3: Respondents' profile

Site engineer	8	12.5%
Technical office engineer	12	18.8%
Contractor	22	34.4%
Project counts		
<5	6	9.4%
5 - 10	10	15.6%
10 - 20	22	34.4%
>20	26	40.6%

The sample properties show that the respondents are highly experienced in implementing the construction projects (touristic projects) in Egypt.

<u>Second</u>, Cronbach Alpha test is concerned with the reliability and validity of the gathered data

Table 4: Cronbach's alpha value for groups

Group	Technical	Economic & financial	Political & regulation	Management	Project resources	Environment
Alpha Cronbach α Values	0.795	0.844	0.756	6.0	0.863	6.0

Cronbach's alpha α coefficient is greater than 0.7 and is considered highly reliable [14]. Consequently, the collected data is considered highly reliable as it is ranged between (**0.756**) and (**0.9**).

The survey feedback includes two groups of data, the likelihood of occurrence of each risk and its severity impact on project objectives in terms of cost. The five-point scales for the likelihood a (very highly likely, highly likely, moderate, likely, and less likely) need to be converted into numerical scales as the researcher put for them in sequence 0.1, 0.3, 0.5, 0.7 and 0.9. The matrix presented in Table 6 shows the converted numerical values and the calculation of the risk significance index which will be explained in detail later.

Table 5: Matrix of risk factors(Main zones' classification)

Very frequent Frequent				GRO	OUP I
somewhat frequent			GROUP I	I	
Occasional	GRO	OUP III			
Rare					
Probability/ impact	Very low	Low	Moderate	High	Very high

Table 6: Risk indexes of risk matrix zones

Very frequent	0.09	0.27	0.45	0.63	0.81
(0.9)	(I)	(E)	(C)	(.3.)	(A)
Frequent	0.07	0,21	0.35	0.49	0.63
(0.7)	(J)	(G)	(D)	(B)	(A)
somewhat frequent (0.5)	0.05 (K)	0.15 (H)	0.25 (F)	0.35 (D)	0.45 (C)
Occasional	0,03	0.09	0.15	0.21	0.27
(0.3)	(L)	(I)	(H)	(G)	(E)
Rare	0,01	0.03	0,05	0.07	0.09
(0.1)	(M)	(L)	(K)	(J)	(T)
Probability/	Very low	Low	Moderate	High	Very high
impact	(0.1)	(0.3)	(0.5)	(0.7)	(0.9)

Table 7:	Key	risks	as p	er thei	r sig	nificance on	l
	indi	i vidu a	ıl pro	oject o	bject	tive	

Factors of cost overrun risk	Risk index
1. Design changes	0.441
2. Modified to standard drawings	
during construction stage	0.331
3. Lack of experience of technical	0.454
consultants.	0.176
4. Poor review of drawings	0.213
5. Deficient documentation for	
specification	0.340
6. Delay in project completion time	0.704
7. Inappropriate contractor policies	0.014
8. Obsolete or unsuitable construction	0.0.61
methods	0.061
9. Changes in material specification	0.451
and type	0.451
10. Mistakes during construction	0.140
11. Lake of experience in contracts	0.178
12. Technology changes	0.039
13. Poor organizational structure	0.061
14. Lack of experience of project type	0.378
15. Absence of managerial programs	0.107
and poor decision-making process	0.107
16. Poor performance of subcontractor	0.548
17. Poor technical structure of	0 (17
construction companies	0.617
18. Incompetent subcontractors and	0.404
nominated suppliers	0.404
19. Inadequate pre-construction of site	0.398
study	0.398
20. Far storages from the site.	0.177
21. Unexpected site conditions	0.094
22. Additional work due to owner's	0.723
request.	
23. Change orders	0.278
24. Complexity of project.	0.371
25. The gap between the construction	0.714
plan and the reality.	
26. Lack review of contract.	0.013
27. Contractual claims such as	0.260
extension of time and cost claims.	
28. Poor financing / contract	0.178
management.	
29. Donor policy in bidding to the	0.709
lowest price one.	

30. Poor contract documentation	0.168
31. Bureaucracy and political interference	0.100
in tendering method	0.247
32. Insufficient number of competitors	0.208
33. Inefficient use of resources	0.051
34. Lack of incentives	0.212
35. Improper mode of financing and	
payment for completing work	0.209
36. Cash flow and financial difficulties	0.000
faced by contractors	0.608
37. Contractors undertaking projects	0.617
beyond their capacity	0.017
38. Problems in license' extraction	0.315
39. Fluctuation in money exchange rate	0.437
40. High interest rates charged by bankers	0.371
on loans received by contractors	
41. Financial difficulties of client	0.369
42. Domination of construction industry	0.288
by local organizations	
43. High transportation costs	0.042
44. High insurance cost.	0.041
45. Long period between design and	0.370
bidding	0.070
46. Delay in payment to	0.395
supplier/subcontractor	0.070
47. Work suspension because of	0.047
litigation/disputes within the parties	0.067
involved in the project	
48. Economic instability/Political	0.626
insecurity	
49. Change in the scope of the project according to government policies	0.243
50. Lack of experience of local regulation	0.066
51. Delays in decisions making by	0.242
Government.	0.242
52. Change in government regulation.	0.067
53. Inappropriate government policies.	0.183
54. Inaccurate estimation of original cost.	0.464
-	0.404
55. Wrong method of cost estimation.	0.392
56. Risk and uncertainty associated with projects.	0.459
57. Lack of cost planning/monitoring	
during pre-and post-bidding stage.	0.613
58. Inadequate project preparation,	
planning and implementation.	0.549
59. Poor managerial structure of	
construction companies.	0.399
60. Improper planning and scheduling	0.216
61. Absence of construction cost data/	
lake of reports.	0.216
62. Fraudulent practices, kickbacks and	0.541
corruption.	0.641
63. Number of projects going on at same	0.101
time/work load	0.101
64. Stealing and waste on site	0.168
65. Delay in inspection and approval of	0.613
completed works	
	1

	0.245
67. A poor site management/ Poor cost	
control	0.400
68. Poor relationships between	0.041
management and labor	0.041
69. Poor coordination among the	0.180
project participants	0.100
70. Subcontractors' passive	0.284
attitude toward project	
1	0.160
72. The project manager's poor	0.268
capability	
	0.520
	0.270
	0.389
	0.393
Ĩ	0.067
78. Lack of labor productivity.	0.398
79. Fluctuations in the cost of building	0.709
materials.	
	0.180
	0.064
82. Inadequate production of raw	0.183
materials in the country.	
83. Project materials monopoly by some suppliers.	0.065
	0.513
85 Omissions and errors in the hills of	
quantities.	0.233
*	0.076
	0.185
costs.	0.105
88. Delay in Equipment supply.	0.182
	0.183
90 Inadequate site investigation	
/unexpected ground conditions.	0.284
91 Wrong / inappropriate choice of	
location.	0.021
	0.094
93. The project located in the middle	
of public facilities.	0.221
94.Unpredictable weather conditions.	0.021
95.The impact of bad weather on	0.051
production's rate.	0.051

6.1.1. RISKS OF TECHNICAL GROUP

This group contains 5 categories and consists of 25 factors affecting cost overrun in construction projects, it is shown that 6 out of 25 factors in this group are considered as strongly casual factors of cost overrun in building construction projects. In this group," Additional works at owner's request" is the most influencing factor of cost overrun in building construction projects followed by "Delay in project completion time", "Poor technical structure of construction companies", "The gap between the construction plan and the reality", "Poor performance of subcontractor" and "Design changes". Besides, the "Additional work at owner's request"

factor has the most significant impact and the greatest value of probability occurrence in technical group too.

6.1.2. RISKS OF ECONOMIC AND FINANCIAL GROUP

This group contains 5 categories and consists of 22 factors affecting cost overrun in construction projects, it is shown that 3 out of 22 factors in this group are considered as strongly casual factors of cost overrun in building construction projects. In this group, "Donor policy in bidding to the lowest price" is the most influencing factor of cost overrun in building construction projects follows by "Contractors undertaking projects beyond their capacity" and "Cash flow and financial difficulties faced by contractors". Besides, the "Donor policy in bidding to the lowest price one" factor has the most significant impact; the "Contractors undertaking projects beyond their capacity" factor has the greatest value of probability occurrence in economic group.

6.1.3. RISKS OF POLITICAL GROUP

This group contains 2 categories and consists of 6 factors affecting cost overrun in construction projects, it is shown that 1 out of 6 factors in this group are considered as a strongly casual factor of cost overrun is in building construction projects. In this group, "Economic instability/Political insecurity" is the most influencing factor of cost overrun in building construction projects. Besides, the "Change in the scope of the project according to government policies" factor has the most significant impact, the "Economic instability/ political insecurity" factor has the greatest value of probability occurrence in political group.

6.1.4. RISKS OF MANAGERIAL GROUP

This group contains 4 categories and consists of 19 factors affecting cost overrun in construction factors of cost overrun in building construction projects. In this group, "Fraudulent practices, kickbacks, corruption" is the most influencing factor of cost overrun in building construction projects, it is shown that 6 out of 19 factors in this group are considered as strongly casual projects followed by "Delay in inspection and approval of completed works", "Poor managerial structure of construction companies", "Inadequate project preparation, planning implementation". and "Inaccurate Estimation of Original Cost" and "Risk and uncertainty associated with projects". Besides, the "Fraudulent practices, kickbacks, corruption" factor has the most significant impact, in addition, the "Risk and uncertainty associated with projects" factor has

the greatest value of probability of occurrence in management group.

6.1.5. RISKS OF PROJECT RESOURCES GROUP

This group contains 3 categories and consists of 17 factors affecting cost overrun in construction projects, it is shown that 4 out of 17 factors in this group are considered as strongly casual factors of cost overrun in building construction projects. In this group, "Fluctuations in the cost of building materials" is the most influencing factor of cost overrun in building construction projects follows by "Limited skilled labor", and "Shortage of material". Besides, the "Fluctuations in the cost of building materials" factor has the most of significant impact and the greatest value of probability occurrence in project resources group too.

6.1.6. RISKS OF ENVIRONMENTAL GROUP

This group has 2 categories and consists of 6 factors affecting cost overrun in construction projects, it is shown that none of the 6 factors in this group is considered as a strongly casual factor of cost overrun in building construction projects. Besides, the "Inadequate site investigation /unexpected ground conditions" factor has the most significant impact and the greatest value of probability occurrence in environment group too.

These 19 factors of cost overrun risk are high-priority located in group I (red zone) which consist of three zones; zone A (additional works at owner's request, donor policy in bidding to the lowest price, fluctuations in the cost of building materials, delay in project completion fraudulent practices, kickbacks, corruption, time, economic instability/Political insecurity, contractors undertaking projects beyond their capacity and poor technical structure of construction companies), zone B (delay in inspection and approval of completed works, cash flow and financial difficulties faced by contractors, the gap between the construction plan and the reality, limited skilled labor, Poor performance of subcontractor, poor managerial structure of construction companies, inadequate project preparation, planning and implementation), and zone C (shortage of material, Inaccurate estimation of original cost, risk and uncertainty associated with projects and design changes).

Table 8: Factors allocated in risk matrix

Very frequent (0.9)	T.E2/ PR.E1/ T.S3	T.D2/ T.D4/ M.C5/ PR.L2	T.D1/ T.SC4/ M.EP1	T.E7/ T.SC1/ E. FP4/ PR.M1	
Frequent (0.7)	T.C3/E. FP1/ E.IF5/ P&RE1/P& RE3/ PR.L5/ PR.M3/ PR.M5	E.FC7/ M.P4/M.MC1/ PR.M7	T.D5/T.E4/ T.S1/T.SC3/ E. EF4/E.IF4/ M.EP2/ M.P3	T.E6/E. FP4/ M.P1/ M.P2/ M.MC5/ PR.L1/ PR.M6	T.C1/ E.FC4/ P&PS1/ M.MC2
somewhat frequent (0.5)	E.IF1/ E.IF2	T.D3/ T.C4/ T.C5/ P&RE4/ M.MC4/ M.C4/ PR.M2/ PR.M4/ PR.E3	T.SC2/ E.FC6/ P&PS2/ E.L1 /M.MC6	T.E8/ E. EF1 E. EF2/E.EF3/ E.IF3/ M.MC7/ PR.L3/ PR.L4/ PR.L6	M.EP3
Occasional (0.3)	E.L2/E.WC1	E.L3	T.E1/T.S2/ E.FC3/ E.FC5/ M.C2/PR.E2/ PR.E4	E. FP2/ E. FP3/ P&RE2/ E.L4	E. EF5/ M.C3 E.FC2
Rare (0.1)	T.C2/ E.FC1/ M.MC3	M.C1	T.E3	E.WC2	T.E5
Probability /impact	Very low (0.1)	Low (0.3)	Moderate (0.5)	High (0.7)	Very high (0.9)

After allocating cost overrun risks in the risk matrix, a suitable response plan should be determined to mitigate probable impacts of those risks specially which are located on group I (red zone) and had high priority.

Table 9: Risk locations and response plans

Risk location	Need to response	Description
Red zone (Group I)	near-term response	Those risks that require an urgent response and those that can be handled at a later date may be put into different groups.
Yellow zone (Group II)	Medium- term response	Those risks that require some actions between acceptance and mitigation.
Green zone (Group III) Group III) Group III)		Watch lists of low priority risks. Risks that are not assessed as important in the qualitative risk analysis process can be placed in a watch list for continued monitoring.

Ranking	Group	Category	Code	The Problem causing cost's risks (subset risks of cost overrun risk)	Response strategy	Description	Responsible
1	Technical	Scope	T.SC1	Additional works at owner's request Mitig		 Avoid unnecessary additions to the project scope that don't add a value to the performance or functionality of the construction component or element. Focus on client's need. 	Project Manager/ Consultant
2	Economic and Financial	Financial Comtracts	E.FC4	Donor policy in bidding to the lowest price A		-Avoid using the traditional method of contractor choosing and try to use a scientific method to achieve the right evaluation to contender contractors and emphasis on the past experience, in other words, improving contract award procedure by giving smaller weight to prices and larger weight to the capabilities and past performance of contractors.	Owner
3	Project Resources	Material	PR.M1	Fluctuations in the cost of building Accept/ materials Mitigate		 The expected rising material cost should be taken into consideration during drafting the contract by providing budget margin. Adding contractual terms oblige the contractor to incur the increase in prices above 15% Expand the number of material choices on a given project. Consider allowing alternate materials by providing flexibility in specifications or by allowing other material options to the contractors. 	Owner/ Consultant/ Contractor
4	Technical	Construction	T.C1	Delay in project completion time	Transfer/ mitigate	 A proper choice of experienced contractor, subcontractors and suppliers Contractual conditions oblige the contractor to pay an expensive fine in case of exceeding project planned duration. Give more flexibility to contractors to plan traffic control. This can lead to more effective construction staging plans which are consistent with the contractor's construction schedule. Adoption of tools and techniques i.e.: value management, lean thinking, total quality management Training and development of all participant to support delivery process 	Owner/ Contractor/ Project manager

Table 10: The proposed response plan of cost overrun risks

5	Management	Monitor and control	M.MC2	Fraudulent practices, kickbacks, corruption	Mitigate	 The threat of cancellation the contracting with the contractor when adjusting any violation and Obligation of paying a large fine Send staff for anti graft training Effective site management and supervision 	Owner / Project Manager
6	Political and regulation	Political Situation	P&PS1	Economic instability/Political insecurity	Mitigate	 Seeking private funded projects instead of government funded. Take on projects with a shorter duration. Obtain insurance for political risks. Effective strategic planning 	Owner/ Project manager
7	Economic and Financial	Financial Policy	E. FP5	Contractors undertaking projects Avo beyond their capacity Mitig		 Avoid using the traditional method of contractor choosing and try to use a scientific method to achieve the right evaluation to contender contractors and emphasis on the past experience, in other words, improving contract award procedure by giving less weight to prices and more weight to the capabilities and past performance of contractors. Giving the contractors extra time to bid projects may result in more realistic bid prices. As, contractors have increased time to review plans, and obtain quotes from a number of suppliers and subcontractors in preparation of bids. Contractors may choose not to bid when the time available for bidding is too short. Then, making sure of the financial ability of contractor and take a guarantees as value of the work will be carried out. 	Owner
8	Technical	Experience	T.E7	Poor technical structure of construction Mitiga companies		-Adopting of the technical evaluation of the contractor as proper emphasis on past experience and use up to date technology utilization, the appropriate construction methods in particular.	Owner
9	Managem ent	Monitor and Control	M.MC5	Delay in inspection and approval of completed works	Transfer	-Minimize disputes inside the site and improve the coordination be the site and improve the coordination between the parties.	Project Manager/ Contractor

10	Economic and financial	Financial Policy	E. FP4	Cash flow and financial difficulties faced by contractors	Mitigate	-Accept cost saving proposals from contractors during bidding and construction. Hence, the contractors may be more motivated to submit such proposals when potential cost savings are shared and it should be negotiated in contracts or meetings of stakeholders	Owner
11	Technical	Scope	T.SC4	The gap between the construction plan Av and the reality /Mit		-Avoid the lumping too many work items together. -Itemizing work gives clarity to the contractor, regarding the extent of work and scope. Also it prevents them from charging for unforeseen items and quantities. In addition, proper project planning and scheduling.	Owner/ project manager
12	Project Resources	Labor	PR.L1	Limited skilled labor	Accept /Mitigate	-Developing human resources by provide knowledge/training to unskilled workers based on their scope of work in the construction industry. Rather it should be hired of skilled workers to achieve good progress, avoid poor quality of work, more rectification and double handling.	Project manager
13	Technical	Experience	T.E6	Poor performance of subcontractor /Tr		 Avoid the traditional methods in subcontractor choice Choice of experienced subcontractors by giving less weight to prices and more weight to the capabilities and past performance of contractors. 	Contactor
14	Management	Planning	M.P3	Poor managerial structure of construction companies	Avoid /Mitigate	 Adopting of the scientific evaluation of the contractor as proper emphasis on managerial aspects and use up to date technology utilization, the appropriate construction methods in particular. Training and development of all participant and More communication and coordination between project participants during all project phases as frequent progress meeting with owner 	Project manager
15	Management	Planning	M.P2	Inadequate project preparation, planning and implementation	Mitigate	-Performing a pre-construction planning of project tasks and resources needs by adopting of techniques as value management and total quality management	Project manager

16	Project Resources	Material	PR.M6	Shortage of material	Mitigate	 Performing an accurate planning of resources needs in pre- construction. Provide flexibility in specifications to give contractors the freedom to shop for alternative materials. Making adjustment in a number of resources used in order to fit in the schedule 	Project manager/ Consultant
17	Management	Estimating Process	M.EP1	Inaccurate Estimation of Original Cost	Mitigate	 -Using a cost-based bottom-up approach to estimate preparation. Moreover, cost estimates should be based on feedback from the contractors, experience, and understanding of the project conditions rather than on historical data adjusted for inflation increases over each year. -Adoption of tools and techniques as value management, in addition, material prices and labor rates should be updated continuously. The necessity presence for both of value and cost estimators. 	Project manager/ Consultant
18	Management	Estimating Process	M.EP3	Risk and uncertainty associated with projects	Accept /Mitigate	 Identifying the potential risks of cost overrun as a check list model and providing project managers an opportunity to manage these risks out of the project can result in a significant cost savings. Putting constructional contracts at fixed prices. 	Project manager/ Consultant
19	Technical	Design	T.D1	Design changes	Mitigate	-Monitoring the design changes to avoid reassessment implementation cancelling unless the opportunity outweighs the threat. It is preferable to take more time during design to get it right in the first place	Consultant

7.RESULTS AND DISCUSSION

In Egypt, the concept of risk management is unfamiliar and there is a misunderstanding the concepts risk management plan and safety procedures used in construction sites. This proves a weakness in the process of project risk management that identifies, analyzes, and deals with risks that may affect projects cost. While, being the cost control process in earlier phases of the project ensures that there is no deviation from the planned cost and the project would be completed according to its budget. The project's owner is considered the responsible part for controlling project costs and reducing any probabilities of cost overrun risks. Consequently, the proposed model of cost overrun's reduction has several steps based on RM as shown in the figure 6:

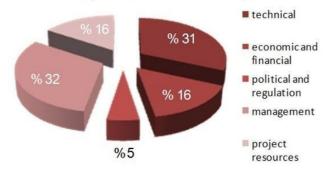
Figure 6: Proposed approach of cost overrun control & reduction

The proposed approach gives possibility to detect the identified risks that has the most influencing impact on cost. Hence, it provides a suitable response plan for them.

Table 11: Ranking of groups

Group	Risk index values	Risk index rank		
Technical	0.295	2		
Economic& Financial	0.265	3		
Political and regulation	0.222	5		
Management	0.314	1		
Project resources	0.257	4		
Environment	0.104	6		

It's noticed that the managerial group has the maximum risk index at the level of groups. On the contrary the scope category (belonged to the technical group) has the maximum risk index at the level of categories.


Table 12: Ranking of categories

Category	Risk index value	Risk index rank
Design	0.295	10
Construction	0.172	15
Experience	0.296	9
Site	0.223	13
Scope	0.477	1
Financial contracts	0.232	12
Financial policy	0.312	8
External factors	0.374	5
Internal factors	0.161	16
Political situation	0.435	3
Regulatory	0.134	19
Environment		
Estimation process	0.450	2
Planning	0.424	4
Monitor and control	0.324	7
Communication	0.182	14
Labor	0.333	6
Materials	0.253	11
Equipments	0.160	17
Location	0.140	18
Weather conditions	0.036	20

 Table 13: Summary of significance levels of risk ranking according to risk matrix

Tanking according to Tisk matrix						
Significance	High	Moderate	Low Risks			
Level	Risks	Risks				
Groups	Ι	Π	III			
Zones	A-B-C	D – E – F	H - I – J –			
		– G	K - L - M			
Factors	19	37	39			
Count						
Maximum	(T.SC1)	(M.MC7)	(PR.E2)			
Risk Index						
Minimum	(T.D1)	(E.FC7)	(E.FC1)			
Risk Index						
Range	0.759 :	0.435 :	0.195 :			
Values	0.455	0.223	0.018			

The (high-priority) risks belong to group A (located on red zone) are ranked according to the main groups of risks (six groups) based on the highest to the lowest impact on project costs and more probable to happen in construction projects. It proves that the management risk group has the strongest impact on cost overrun, then economic and financial risks affect cost overrun. Less impact on cost overrun comes from environmental risks. Management risks are more frequent in construction projects of touristic projects and other risks like environmental risks are less frequent in projects. Top Ranked Factors in Groups

Figure 7: Top ranked factors in groups

The researcher clarified the FCCO related to the group I that consists of 3 zones (A-B-C), hence, it consists of only 19 cost overrun factors. A response plan was proposed for those risk factors and noticed that the mitigation actions is the most used as it was 78.9% then the avoidance actions at value of 36.8%.

 Table14: Frequency of response strategies

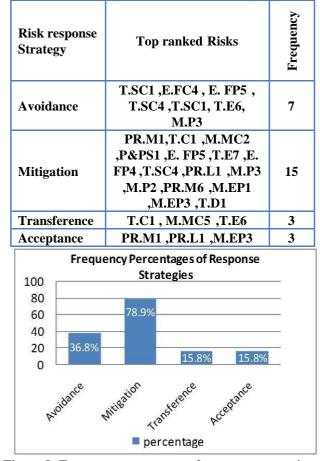


Figure 8: Frequency percentage of response strategies

Avoiding the potential FCCO in construction projects leads to make increased number of projects, and provide sufficient employment for youth in tourism sector, consequently, working on revitalizing the tourism industry in Egypt.

Figure 9: Cost overrun risks in zone (A) of risk matrix

It's noticed that almost of top FCCO located on zone A (red zone) of risk matrix is related to the poor efficiency of contractor. So, it's recommended to create an evaluation model for the contractor to improve the donor policy in bidding process.

8. RECOMMENDATIONS

- **1.** Consultants should have clear understanding about project background information collected by either clients or consultant.
- **2.** Feasibility report should be high quality as this report usually includes such items as purpose of study, requirements, and needs of project. The results of studies and investigations are usually submitted in written report. The quality of consultant investigation will inevitably be reflected in their reports.
- **3.** Clients should clarify their project requirements to the consultant. Consultants should be sure that the project design includes all of those requirements to avoid the additional works as possible and observe the client's requirements, but also make every endeavor to assist the client in identifying and developing other crucial objective for the project. Also, the additional work at owner's request is the most significant factor in cost overrun in that survey.
- **4.** Cost estimating process is preferred to be done by value estimator to obtain a more accurate cost based on the function.
- **5.** Change the donor policy in bidding to the lowest price to assess bidders based on the technical, managerial, economic, project resources and political aspects.
- **6.** Consultants should demonstrate their abilities in handling the claims and controlling the project costs properly in order to avoid the contractual claims, such as extension of time and cost claims (over budgeting).

9.CONCLUSION

The objective of this paper was to explore the most affecting factors in project costs and the main causes of

cost overrun occurrence in the planned budget. Consequently, the better understanding of project's risks helps the project parties in identifying these factors that may cause cost overrun. So, determination the most effective factors enable them to determine the stage per which the cost overrun takes an action, and then the proposed corrective actions will take place as shown in the following figure.

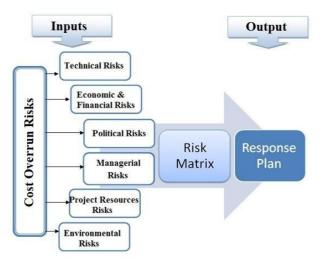


Figure 10: Inputs and outputs of practical study

Managing risks in construction projects has been recognized as a very important process in order to achieve project objectives in term of cost. This paper presents the research results obtained through past researches, meeting with experts and questionnaire surveys conducted in Egypt. A total of 95 factors of cost overrun risks were ascertained based on a comprehensive assessment of their likelihood of occurrence and magnitude of consequence on project objectives. The unique risks included only 19 risks are high- priority in influencing on project cost, so a near response plan must be found to deal with these risks in order to mitigate their impacts on project costs.

10. NOMENCLATURE

COR Cost overrun ris	sks
----------------------	-----

- CM Cost management
- **RM** Risk management
- FCCO Factors causing cost overrun

APPENDIX: A (THE QUESTIONNAIRE MODEL)

11. REFERENCES

[1] Ali, A. and Kamaruzzaman, S., 2010: Cost Performance for Building Construction Projects in Klang Valley, Journal of Building Performance, Volume 1 Issuel 2010.

[2] عكاب، سعاد ناصر 2009: در اسة العوا مل التصميمية والتنفيذيه التى تؤدى الى زيادة مخاطر التكلفة خلال مرحلة تنفيذ المشاريع الإنشائية، مجلة الهندسة والتكنولوجيا، المجلد 27، العدد12، العراق.

[3] Shaqour, E. 2014: An approach to Control Cost overrun in Construction Projects of Egypt: Special Reference to Administrative Buildings, Doctor Dissertation in Architecture Engineering - Building Science and Technology, faculty of engineering, Cairo University, Egypt.

[4] حسين، ولاء محمود 2011: تأثير إدارة المخاطر علَى إدارة مشروعات التشييد رسالة ماجستير كلية الهندسة، جامعة عين شمس، مصر

[5] Aklnci, B. and Ficher, M. 1998: Factors Affecting Contractors' Risk of Cost Overburden, Journal of Management in Engineering Vol. 14, pp:67-76.

[6] Kerzner, H., 2003: Project Management a Systems Approach to Planning, Scheduling, and Controlling, Eighth Ed, John Wiley & Sons, Inc. Hoboken, New Jersey, USA.

[7] Dell''Isola, M. 2002: Architect''s Essentials of Cost Management, John Wiley & Sons, Inc. New York.

[8] Gajewska, E. and Ropel, M. 2011: Risk Management Practices in a Construction Project, M.S.C thesis, Chalmers university of technology, Goteborg, Sweden.
[9] Loosemore, M.; Raftery, J.; Reilly, C. and Higgon, D. 2006: Risk Management in Projects, 2nd .London: Taylor & Francis.

[10] Raftery, J. 1994: Risk Analysis in Project Management, London: E & FN Sp.

[11] Khodeir, L. and Hamdy, A. 2014: Identifying the Latest Risk Probabilities Affecting Construction Projects in Egypt according to Political and Economic Variables, HBRC Journal.

[12] Garvey, P. 2008: Analytical Methods for Risk Management: A Systems Engineering Perspective, Chapman-Hall/CRC-Press, Taylor & Francis Group (UK), Boca Raton, London, New York.

[13] Wideman, R. 1992: Project and Program Risk Management: A guide to Managing Project Risks and Opportunities. Project Management Institute.

[14] Cortina, J 1993: What is Coefficient Alpha? An examination of Theory and Applications, journal of applied psychology 78:98-104.

This questionnaire is concerned with the causing factors of cost overrun in construction projects in Egypt Case study: (Touristic projects in Port Said)

<u>Part 1:</u>

Please tick the appropriate answer in the following questions:

1. Name of respondent (optional):

2. Your experience:

 $\Box < 10$ years $\Box 10-20$ years $\Box 20-30$ years $\Box > 30$ years

3. Name of company you work in (optional):

4. The company experience years:

 $\Box < 10$ years $\Box 10-20$ years $\Box 20-30$ years $\Box > 30$ years

5. Your position in the organization/company:

□ Consultant □ Project Manager □ Site Engineer □ Technical office engineer □Contractor

6. Average of projects you involved in:

 \Box Less than 5 \Box 5-10 \Box 10-20 \Box More than 20

There are some information that are preferred to read in order to provide your knowledge about the study topic. This questionnaire was designed as an attempt to control the project costs by determining the most influence factors in cost overrun's occurrence. It should be done within using *risk management* approach in order to focus on those factors (cost overrun risks).

Hence: Risk index (R) = Probability × Impact

Part 2:

Please tick only the appropriate two columns, one for (probability group) and the other for (impact group) regarding the factors influencing construction cost overrun risks

	Category	~		Probability						Impact					
Group		Code	Risk factor	Rare	Occasional	Somewhat requaent	Frequent	V.Frequent		V.Low	Low	Moderate	High	V.High	
	Design	T.D1	Design changes												
Technical		T.D2	Modifying to standard drawings during construction stage												
		T.D3	Lack of experience of technical consultants.												
		T.D4	Poor review of drawings												
		T.D5	Deficient documentation for specification												
	Construction	T.C1	Delay in project completion time												
		T.C2	Inappropriate contractor policies												
		T.C3	Obsolete or unsuitable construction methods												
		T.C4	Changes in material specification and type												
		T.C5	Mistakes during construction												
	Experience	T.E1	Lake of experience in contracts												
hmi		T.E2	Technology changes												
Tec		T.E3	Poor organizational structure												
		T.E4	Lack of experience of project type												
		T.E5	Absence of managerial programs and poor decision-making process												
		T.E6	Poor performance of subcontractor												
		T.E7	Poor technical structure of construction companies												
		T.E8 Incompetent subcontractors and nominated suppliers													
	Site	T.S1	Inadequate pre-construction of site study												
		T.S2	Distant storages from the site.												
		T.S3	Unexpected site conditions												
	Scope	T.SC1	Additional work at owner's request												
		T.SC2	Change orders												
		T.SC3	Complexity of project												

		T.SC4	The gap between the construction plan							
		E EC1	and the reality Lack review of contract documents					-		
		E.FC1	Contractual claims such as extension of							
	ts	E.FC2	time and cost claims							
	rac	E.FC3	Poor financing / contract management							
	cont	E.FC4	Donor policy in bidding to the lowest							
	Financial contracts	E.FC5	price one Poor contract documentation				-	-		
			Bureaucracy and political interference in	-						
		E.FC6	tendering method							
		E.FC7	Insufficient number of competitors							
		E. FP1	Inefficient use of resources							
al	cy	E. FP2	Lack of incentives							
Economic & Financial	Financial policy	E. FP3	Improper mode of financing and payment for completing work							
ć Fin		E. FP4	Cash flow and financial difficulties faced				\square			
ic &	ina		by contractors				\vdash	-		
omi	E	E. FP5	Contractors undertaking projects beyond their capacity							
ono		E. EF1	Problems in license's extraction						 	
Ec	External factors	E. EF1 E. EF2	Fluctuation in money exchange rate	$\left - \right $		+	+		\vdash	+
			High interest rates charged by bankers on				┢┤			+
		E. EF3	loans received by contractors							
		E. EF4	Financial difficulties of client							
		E. EF5	Domination of construction industry by local organizations							
		E.IF1	High transportation costs							
		E.IF1 E.IF2	High insurance cost.							
		E.IF3	Long period between design and bidding							
			Delay in payment to							
		E.IF4	supplier/subcontractor							
		Letu E.IF5	Work suspension because of							
			litigation/disputes within the parties							
-		D 0-DC1	involved in the project Economic instability/Political insecurity	$\left - \right $			+	-		
utio	Regulatory Political Environment situation	P&PS1	· · · · ·	$\left - \right $			+	-		
Political and regulation		P&PS2	Change in the scope of the project according to government policies							
d re		P&RE1	Lack of experience of local regulation				+			+
anc			Delays in decisions making by				\square			
cal		P&RE2	Government							
liti		P&RE3	Change in government regulation				Ш			
Pc		P&RE4	Inappropriate government policies				\square			
	on	M.EP1	Inaccurate estimation of original cost	$\left - \right $			\vdash			
Management	Estimation process	M.EP2	Wrong method of cost estimation	$\left - \right $			\vdash			
		M.EP3	Risk and uncertainty associated with projects							
	Fanning	M.P1	Lack of cost planning/monitoring during		+		+			
			pre-and post-bidding stage				Ц			\square
		M.P2	Inadequate project preparation and planning and implementation							
		M D2	Poor managerial structure of construction				+			
		M.P3	companies							
		M.P4	Improper planning and scheduling							
	lit r d	M MC1	Absence of construction cost data/ lake of reports							
	Mo nit or and	M.MC2	Fraudulent practices, kickbacks,							

			Corruption						
			Number of projects going on at same						
		M.MC3	time/work load						
		M.MC4	Stealing and waste on site						
		M.MC5	Delay in inspection and approval of completed works						
		M.MC6	Inadequate monitoring and control						
		M.MC7	A poor site management/ Poor cost						
			control						
·	Communications	M.C1	Poor relationships between						
			management and labor						
			Poor coordination among the project						
		M.C2	participants						
	iun	MGS	Subcontractors' passive attitude						
	ши	M.C3	toward project management						
	Con	M.C4	Disputes/Strikes/Accidents on site						
		M.C5	The project manager's poor capability						
		PR.L1	Limited skilled labor						
		PR.L2	High cost of skilled labor						
	Labor	PR.L3	Shortage of labor in site						
		PR.L4	Labor unrest						
		PR.L5	Poor performance of labor						
		PR.L6	Lack of labor productivity						
	Materials	PR.M1	Fluctuations in the cost of building						
			materials						
ces		PR.M2	Late in the delivery						
JUL		PR.M3	Limited stocks						
est		PR.M4	Inadequate production of raw						
ct 1			materials in the country						
Project resources		PR.M5	Project materials monopoly by						
\mathbf{Pr}			some suppliers						
		PR.M6	Shortage of material						
		PR.M7	Omissions and errors in the bills of quantities						
	Equipment	PR.E1	High cost of machineries						
		PR.E2	High machineries maintenance costs						
		PR.E3	Delay in equipment supply					1	
		PR.E4	Insufficient numbers of equipment		+			\neg	
Environment	Location		Inadequate site investigation						
		E.L1	/unexpected ground conditions						
		E.L2	Wrong / inappropriate choice of						
		E.L3	Social condition						
		E.L4	The project located in the middle of public facilities						
		E.WC1	Unpredictable weather conditions				\vdash		
	Weather		The impact of bad weather on production's rate	++	┿┫		\vdash	\neg	
	conditions	E.WC2							

<u>Part 3</u>:

□ Suggest some solutions for facing cost overrun's problem in construction projects in Egypt:	

Thanks for your cooperation with us The researcher