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ABSTRACT 
 
Despite the good properties that the Nonlinear Quadratic Gaussian Predictive Control 
(NLQGPC) technique offers such as the low computational burden and the high performance 
when dealing with models with fast dynamics and input constraints, it suffers from unproven 
stability properties. In this paper, the recently introduced Control Lyapunov Function based 
satisficing approach is combined with the NLQGPC approach. This renders guaranteed 
asymptotic stability whilst retaining the good properties of the NLQGPC. 
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1. INTRODUCTION 
 

There has been a lot of interest recently in the derivation of control laws that include process 
constraints and nonlinearities by both industry and academia. This is necessary because 
almost all of the physical systems in science and engineering are nonlinear in nature. Besides 
the nonlinearities, all real processes are subject to constraints, which may also introduce 
nonlinearities into the closed-loop system. Unfortunately the design of linear controllers for 
systems with strong nonlinearities often leads to an unsatisfactory control behavior. This 
motivates the need for nonlinear control design techniques, which employs the nonlinear 
model directly in the controller calculation, without the need for local linearization about an 
operating point. 

Model Based Predictive Control (MBPC) is a form of control in which, at each instant of 
time, a performance index is minimized obtaining an optimal control sequence [1]. Only the 
first element of this sequence is applied to the plant. The major advantage of this type of 
control is its ability to account for hard constraints. Thus, by using a nonlinear predictive 
control design method, two objectives can be met: controlling processes in the presence of 
nonlinearities and dealing with hard constraints. 
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In earlier studies on the theory of Model Based Predictive Control, the technique of quadratic 
programming was employed to solve the open-loop optimal control problem with constraints. 
This results in a rapidly growing computational burden with the number of decision variables. 
These earlier schemes were therefore applied only to slow processes. This suggests the need 
for less computationally complex nonlinear predictive control methods that can be applied to 
models of systems with fast dynamics. 

The formulation of state-dependent state space equations, as a description of nonlinear 
systems, has been utilized to extend the Linear Quadratic Gaussian (LQG) approach to 
nonlinear systems in the framework of multi-step cost function based predictive control. This 
approach is called the NLQGPC [2].  

Unlike other nonlinear predictive control methods, NLQGPC utilizes an explicit optimal 
control law that can be solved analytically, removing the need for quadratic programming. 
This reduces the computations and allows the controller to deal with models of systems with 
fast dynamics [3]. The problem of dealing with input constraints can be solved by 
approximating these constraints by means of smooth limiting function and including them 
into the dynamics of the plant. A real model of fighter aircraft has been used to examine the 
strengths of the NLQGPC, where the results showed that the controls based on solutions to 
this approach offer high performance when applied to models of systems with fast constrained 
dynamics [4]. Despite these attributes that make the NLQGPC an effective practical tool for 
the control of many systems, it suffers from the lack of guaranteed stability properties.  

Despite the theory put forward by Lyapunov nearly a century ago, the fundamental problem 
in nonlinear systems remains the search for control laws that guarantee stability. It is well 
known that Lyapunov theory deals with dynamical systems without inputs. For this reason, it 
has traditionally been applied only to closed-loop control systems. That is, systems for which 
the input has been eliminated through the substitution of a predetermined feedback control. 
However, some recent papers proposed using Lyapunov function candidates in feedback 
design itself by making the Lyapunov derivative negative when choosing the control. Such 
ideas have been made precise with the introduction of the concept of a Control Lyapunov 
Function (CLF) for systems with a control input [5]. It has been shown in [6, 7] that the 
existence of a CLF for a system is equivalent to the existence of a globally asymptotically 
stabilizing control law u  everywhere, except possibly at x = 0. 

An approach recently introduced for cost-benefit analysis to decision making problems, called 
“Satisficing”, has been combined with the properties of CLFs to construct a CLF-based 
control method [8], which generates a state-dependent set of controls that render the closed-
loop system stable with respect to a known CLF. This approach has been used in a number of 
papers to guarantee stability for nonlinear continuous time systems [8, 11, 12]. 

The main contribution of this paper is to extend the satisficing approach to the discrete-time 
nonlinear system case. That is, to ensure the stability of any nonlinear discrete control design 
technique. The NLQGPC technique is then augmented with the satisficing approach by 
projecting the controls based on solutions to the NLQGPC point-wise onto the stabilizing 
satisficing set, which renders guaranteed asymptotic stability while retaining the good 
properties of the NLQGPC. 

The paper is organized as follows: Section 2 gives a description of the NLQGPC technique, 
with a demonstration of how the input constraints can be approximated by means of smooth 
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limiting functions, and incorporated into the dynamics of the plant. Section 3 describes the 
satisficing approach and the projecting of the NLQGPC onto the satisficing set. The F-8 
fighter aircraft nonlinear model, as a real model of fast dynamics, is used to demonstrate the 
performance of the resulting NLQGPC-satisficing controller in Section 4. Finally, this paper 
concludes with a brief summary in Section 5. 
 
 
2. NONLINEAR QUADRATIC GAUSSIAN PREDICTIVE CONTROL 
 
Consider a nonlinear continuous time system of the form: 
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where f1 is a vector of size nx, f2 is a matrix of size nx × nu, f3 is a vector of size ny.  

Equation (1) can sometimes be transformed into an alternative representation, with a linear-
like structure having State-Dependent Coefficients (SDC) in the following form: 
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where A is a matrix of size nx × nx, B = f2 , C is a matrix of size ny × nx. 

At each iteration, the predictions of the future state and control signal may be used, instead of 
the future state and control which are not available, to recalculate the state-dependent state-
space matrices within a prediction horizon N. These matrices are discretized with the 
sampling period Ts and integral action is incorporated. To simplify notation, the final matrices 
are denoted as An, Bn, Cn. Thus, by computing a prediction of the future trajectory, the 
nonlinear system response may be approximated by a known time-varying linear system. 
From these future state-space matrices, the following matrices can be calculated: 
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2.1. Cost Minimization Problem 
 
The infinite performance index to be minimized is defined as follows: 
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It is assumed that after the prediction horizon N, the state-space model matrices remain 
constant. Therefore, it is possible to obtain a solution for the Algebraic Riccati Equation 
(ARE) at time 1−+ Nn  and to use it as a steady-state solution for solving the Difference 
Riccati Equation (DRE) backwards from 1−+= Nnn  to n = 1. By using the solution of the 
DRE at n = 1, the optimal control may be calculated as follows: 
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where Nii

E ...1,0 =≥Λ  and 1...1,0 −=>Λ Njj
U  are weighting matrices and N is a positive 

integer greater than or equal to unity. The vector Rn+1,N is a vector containing current and 
future values of set point rn. βn  is constructed from the matrix Bn as follows: 
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T
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Θ is the transition matrix for the reference signal. i.e. it is assumed that: 
 

NnNnNn RR ,,,1 .Θ=+          (9) 
 

where 1
1

~
+nH  and 2

1
~

+nH  are the solutions of the coupled Riccati equations. See [9] for a detailed 
derivation of this algorithm.  

As with most MBPC techniques, at each iteration, only the first element of the calculated 
control vector is applied to the plant, but unlike other MBPCs, the remaining part of the 
control vector, referred to as the “tail” [10], is also used to predict future states and 
consequently system matrices by employing an appropriate numerical integration method. 
 
 
2.2. Input Constraints 
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The standard way of handling the constraints in an optimization problem is to add them to the 
cost function using Lagrange multipliers, which results in an unconstrained optimization 
problem. It is well known that the solution of the ARE is equivalent to the solution of the 
Lagrange multiplier approach for solving the LQ problem, with the constraint equations being 
determined by the dynamics of the plant. The approach here is similar since input constraints 
are incorporated into the dynamics of the plant in a state-dependent structure form. This 
enables the constraints to be taken into account, whilst preserving the problem as being 
unconstrained from the ARE point of view. 
Different types of actuator constraints have been investigated in [4], where it was shown that 
the magnitude saturation constraint represents the most significant nonlinearity in a control 
system, since it is a common term in the other constraints equations. Limiting functions that 
possess a smooth transition to the saturation from 0 to 1 (for instance, the logarithmic 
sigmoid) have been used to approximate the saturation of actuators that have a limited range 
of operation from zero to a certain value α. Other smoothing limiting functions that map the 
interval (-∞,∞) onto (-1, 1) have been used to approximate the magnitude saturations limited 
from –α to α, such as the hyperbolic tangent tanh function, and the error function erf. By 
obtaining an approximation to the magnitude saturation function, input constraints such as 
actuator saturation, rate-limited actuator, and actuator dead-zone, can be expressed as: 
 

)( insout ulu =           (10) 
 
 
where uin and uout are the input and the output of the actuator, respectively. ls(u) denotes the 
smooth limiting function. Then the system (2) can be rewritten as follows: 
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where 
in

ins
in u

ul
txBtutx
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))(())(),(( =ℵ  is the new input matrix of the augmented system. For 

non-strictly proper systems, the direct transmission matrices D(s) will be treated as the input 
matrices B(s). By this approach, the input constraints are included into the dynamics of the 
plant in a state-dependent state-space form. 
 
 
 
3. SATISFICING 
 
In this section, a straightforward technique for designing a stabilizing controller, once a 
Control Lyapunov Function (CLF) has been found, is presented. Consider an affine discrete 
nonlinear system with a quadratic discrete CLF:  
 

uxBxfx kkk )()(1 +=+         (12) 
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where u ∈ ℜm, f(0) = 0, P is positive definite matrix. 
 
Definition 1: A C1 function )( kxV : ℜn → ℜ is said to be a discrete-time CLF for the system 
(12), if )( kxV  is positive definite, unbounded, and if the increment 0),( <∆ = kuuk uxV  for all 

kx  ≠ 0. 
 
An approach recently introduced for decision-making problems, called Satisficing, has been 
used to develop a CLF-based control method for ensuring the closed-loop stability of 
nonlinear systems. The word "Satisficing" means, “deciding what constitutes a satisfactory 
outcome rather than an optimal one and then looking for ways to achieve it”. This method has 
been used in a number of papers to guarantee stability for nonlinear continuous time systems 
[8, 11, 12]. The objective of this section is to extend the satisficing approach to the discrete-
time nonlinear system case. That is, to ensure the stability of any nonlinear discrete control 
design technique. 
 
The CLF-based satisficing approach is based on a point-wise cost-benefit trade-off, where 
benefits are defined in terms of the CLF, and costs reflect a penalty on the control effort and 
the state. The satisficing set S as defined in [11] is the set of control values such that the 
benefits are greater than the costs. Therefore in the discrete-time case, S can be expressed as 
follows: 
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where R = RT > 0, b is a selectivity index, and )(xl  is a non-negative, locally Lipschitz 
function that represent the design parameters. Therefore, the satisficing set S is a state-
dependent set of controls that renders the closed-loop system stable with respect to a known 
CLF. It is clear that the condition for membership in S, 0),( <∆ kk uxV , is satisfied as the 
parameter b approaches infinity. 
 
For short, we will use f and B instead of f(xk) and B(xk). For such a class of systems, the 
increment V∆  can be written as: 
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Theorem 1 [14]: k

T
kk xPxxV =)(  is a discrete-time CLF for the system (12) if and only if 

there exists P > 0 satisfying: 
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then the control law ( ])(,0)( *
kk xuxu ∈  globally asymptotically stabilizes the origin of the 

discrete time dynamics (12). 
 
where 
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Proof : see [14]. 
 
From Equations (16) and (17), we obtain: 
 

0)( <−−− uPBfPxxPff TTT        (18) 
 
Hence, the satisficing set of stabilizing 
control values is only dependent on the 
vector fPBT− . More precisely as can 
be shown in Figure 1, the satisficing set 
is a region of the control space at every 
fixed x that contains all control values 
which render V∆  negative, and it is an 
open half space, bounded by the hyper-
plane which lies perpendicular to the 
vector fPBT− . 
 
 
 
 
 
 

   
Figure 1: Satisficing set in a 2-D control space 

 
 

Note from Equation (15) that V∆  is a convex function since 0)(
2
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u
V , u ∈ ℜm, and 

hence, V∆  has a global minimum. Now, setting 0)(
=

∂
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u
V  it follows that: 
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Therefore, an arbitrary discrete control value can be written as: 
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)())(( 1 xPfBPBBxu TT ξβ +−= −        (20)  
 
where )(xξ  is orthogonal to the vector fPBT− . 
 
Theorem 2: An arbitrary discrete-time control law )())(( 1 xPfBPBBxu TT ξβ +−= −  with 
u(0) = 0 is asymptotically stabilizing (lie in S) with respect to the known discrete time CLF, 
V(x), if and only if: 
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Finally, the procedure for point-wise projection of the NLQGPC (as an example of discrete-
time control design technique) control value onto S is as follows: 
 
If uNLQGPC is an arbitrary NLQGPC control value and β is defined as: 
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Otherwise, the augmented control: 
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where τ is some very small number, represents the projection of uNLQGPC onto S. The flow 
chart of the satisficing algorithm is shown in Figure 2. 
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Figure 2:  Satisficing algorithm flow chart 
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4. CONTROL OF F-8 AIRCRAFT 
 
This section deals with controlling the F-8 aircraft as a real model of fast dynamics. The 
nonlinear dynamical model of the F-8 fighter aircraft, adopted from [13], may be given in 
state-space representation as:  
 

,63.047.028.0

215.0846.3019.047.0088.0877.0
32

1
2
1

3
13

2
1

2
2

2
131311

uuxux

uxxxxxxxxxx

+++

−+−−+−+−=&
 

,32 xx =&           (24) 
32

1
2
1

3
1

2
1313 4.6146265.6967.20564.347.0396.0208.4 uuxuxuxxxxx +++−−−−−=&

   
where x1 is the angle of attack in radians, x2 is the pitch angle in radians, x3 is the pitch rate in 
radians/s, and the control input u is the elevator deflection angle in radians. The set of 
equations (24) represents the short-period approximation mode, which has a relatively short 
time constant. For flight safety, stabilization of this mode is required using a feedback control, 
since the pilot cannot control this mode. Therefore, the task is to stabilize the aircraft to the 
origin while fulfilling the following input constraint: 
 
 radu 05236.0≤          (25) 
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Figure 3: Illustration of longitudinal aircraft variables. 

 
 
 
First, (24) is transformed into a state-dependent state-space representation form (2), as 
follows: 
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where  a11 = - 0.877 - 0.088 x3 + 0.47 x1 - x1 x3 + 3.846 x1

2, 
a12 = - 0.019 x2, 
a31 = - 4.208 - 0.47 x1 - 3.564 x1

2, 
a33 = - 0.396, 
b1 = - 0.215 + 0.28 x1

2 + 0.47 x1 u + 0.63 u2, 
b3 = - 20.967 + 6.265 x1

2 + 46 x1 u + 61.4 u2.                                         
 
The short-period mode is displayed in the motion of the aircraft angle of attack x1 and the 
pitch rate x3, therefore the output matrix C is given as: 
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The error function erf is used as a smooth limiting function. The input constraint is included 
into the plant dynamics as in equation (11), where the input matrix of the augmented system 
is given as: 
 

u
erf
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It is well known that for linear systems, if the pair (A, B) is controllable, control design and 
search for Lyapunov function are done through the backward procedure as follows: given 
positive definite matrices Q and R, there is a unique positive definite matrix P satisfying the 
ARE, then the Lyapunov function is xPxxV T=)( . Since by using state dependent state-
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space form the nonlinear system is approximated by a time-varying linear system, therefore, 
the candidate CLF is given as: 
 

xxxV T Ψ=)(           (29) 
 
where the positive definite matrix Ψ is the average of the solutions of the ARE(s) over the 
whole simulation time (this doesn’t always work for all systems of course). 
 

The NLQGPC is designed based on equation (7), with N = 6, ΛE = ⎥
⎦

⎤
⎢
⎣

⎡
015.00
001.0

, ΛU = 1, and 

the sampling time Ts = 250 ms. τ is chosen to be 0.001.  The closed loop responses of the 
system from the initial condition xT(0) = [0.4655 0 0]T are shown in Figures 4-5, while Figure 
6 shows the trajectory of the elevator deflection.  
The response due to the constrained NLQGPC (dashed line) is almost identical to the 
response due to the NLQGPC-satisficing controller (solid line) except for few points, which 
lie outside the satisficing set S. These points are pulled inside S, by the satisficing method, 
which explains the very small deviation between responses. Although the two responses 
coincide with each other, the closed-loop response due to the NLQGPC-satisficing controller 
is guaranteed to be asymptotic stable, whereas the closed-loop response due to the constrained 
NLQGPC has no such guarantees. 
Figure 7 shows the norm of the difference between the constrained NLQGPC and the 
constrained NLQGPC-satisficing controller. The difference is very small which proves that 
the good properties of the constrained NLQGPC are retained while the analytical properties of 
the satisficing approach have been added. Asymptotical stability is proven by using different 
initial conditions as shown in Figure 8, where as the trajectories converge to the origin as t → 
∞.  
 
 
 
5. CONCLUSIONS 
 
 
In this paper, a discrete-time CLF-based control method is presented for determining closed-
loop stability under the recently developed satisficing approach. A solution for the stability 
problem of the NLQGPC strategy utilizing this method is proposed. A simulation of a non-
trivial example, of an F-8 fighter aircraft, provides a demonstration of the results, which 
shows that the good properties of the NLQGPC technique are retained whilst offering 
guarantees to asymptotically stabilize the closed-loop system. The resulting augmented 
controller has many attributes that make it a more effective practical tool for controlling 
systems of fast-constrained dynamics. 
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