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                                            Abstract 

       About 70 % of the surface of Earth is covered with oceans and hosts an enormous variety 

of environmental, biological, and chemical standings. The marine environment consists of a 

comprehensive range of animals, plants, and microorganisms, which have several benefits in 

the biotechnological developments. This review aimed to investigate the potentials of using 

the marine microbial enzymes in therapeutics. The marine microbial species were uncultivable 

but recently, scientists cultivated certain seawater microbes effectively by a metagenomic 

technique. Several studies on the marine microbiome are undergoing and it can be assumed 

that approximately 91 % of the microbial species in the oceans are unidentified. The marine 

surroundings possess an exclusive environment with inimitable features and become a source 

of microbes fabricating many biocatalysts with no earthbound analog. The oceanic microbial 

enzymes have recently been found to be eco-friendly, rapid, inexpensive for construction, and 

can be used in several industries, including food, fabric, cleansers, medications, chemicals, 

dairy, biodiesel, and cosmetics. Compared with the mesophilic enzymes, the extremozymes 

execute a wider range of reactions and can act as natural substitutes for the mesophilic 

enzymes. The most relevant part of the worldwide economy is the therapeutic industry, whose 

market value is around 1.1 trillion US $. The enzyme biocatalysis is a prevailing approach that 

can be implemented in an assortment of industries, and is a more discriminative tool, 

sustainable, and eco-friendly as compared with the chemical catalysis.   

Keywords: Marine microorganisms, Marine enzymes, Natural substitute, Biotechnological 

developments, Therapeutic industry 

1. Introduction         

       About 70 % of the surface of Earth is covered by 

oceans, which host an enormous variety of 

environmental, biological, and chemical standings 

(Stincone and Brandelli, 2020). The marine 

environment consists of a comprehensive range of 

animals, plants, and microorganisms, which embraces 

bacteria (Mohamed et al., 2021), fungi, viruses, and 

other microbial species, including archaea, 
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cyanobacteria, eubacteria, actinomycetes, unicellular 

yeasts, microalgae, algae, and protozoa (Beygmoradi 

and Homaei, 2017). These microbial species have 

several benefits in the biotechnological developments 

(Mohamed et al., 2021). The structure of the oceanic 

microbial communities fluctuates daily, monthly, and 

yearly, due to the patterns of the ecological seasons. 

The factors that alter the microbial existence include 

nutrient accessibility, temperature, light intensity, 

eddies, and upwelling events, which regulate the 

microbial communities that are also predisposed 

strongly to their activity and growth rates (Mena et al., 

2020; Auladell et al., 2022). The oceanic microbial 

species were uncultivable, thus they obtained 

inadequate consideration by the researchers; however, 

recently, scientists effectively cultivated certain 

marine microbes using a metagenomic technique 

(Kizhakkekalam and Chakraborty, 2019), which is 

helpful in the study of the sea microbiota as well as 

exploring the novel enzymes without cultivation (Rao 

et al., 2017) When the taxonomic classification 

commenced, more than 1.2 million of the marine 

microbial species have already been categorized, and it 

can be assessed that in the oceans approximately 91 % 

of the microbial species are still unidentified (Stincone 

and Brandelli, 2020).  

     The marine surroundings possess an exclusive 

environment with inimitable features and become a 

source of the microbes fabricating many biocatalysts 

and bio-macromolecules with no earthbound analog 

(Ghanbarzadeh et al., 2018). In 2018, the worldwide 

market manufactured enzymes at the cost of 5.5 billion 

$, which must reach 7.0 billion $ in 2023, with a 4.9 % 

of compound annual growth rate (CAGR) for the 

extent of 2018-2023 (Global Markets for Enzymes in 

Industrial Applications. 2018). The extremophilic 

microbes in the oceanic surroundings can survive 

under extreme pressure, temperature, and salinity, thus 

proving their potential for the biotechnological 

progressions (Di Donato et al., 2019). The researchers 

are now attentive to exploring the novel enzymes in 

industry (Bhatia et al., 2021), which are more 

sustainable, eco-friendly, survive in extreme settings, 

and substitute the chemical catalysis with the 

enzymatic processes (Bhatia et al., 2021). Seawater 

microbes produce several enzymes, which possess 

countless biological activities, including protease, 

xylanase, ligninase, lipase, keratinase, amylase, 

galactosidase, esterase, superoxide dismutase, 

phospholipase, fumarase, glucoamylase, pullulanase, 

gelatinase, luciferase, DNA ligase, chitinase (Rao et 

al., 2017), cellulase, agarase, carrageenase, and lyase, 

etc. (Wijaya et al., 2021).  

     The marine origin is testified as a significant source 

of microbes having pharmacologic implications, like 

anti-inflammatory, antioxidant, anti-diabetic 

(Kizhakkekalam and Chakraborty, 2019), antiviral 

(HIV), anti-cancerous, and anticoagulant, etc. (Ellithey 

et al., 2014). Currently, more than 120 formulations 

are used medically to treat the communicable diseases, 

cancer, and organ transplantation (Kizhakkekalam and 

Chakraborty, 2019). Industrially, the oceanic 

surroundings are observed as a possible reserve of 

huge bioactive metabolites. From marine sources, 

around 20,000 natural products, nine accredited drugs, 

and 12 drugs under clinical trials have been 

documented (Al-Agamy et al., 2021). An inadequate 

number of marine enzymes are used for several 

industrial and research purposes, due to the absence of 

inexpensive procedures for their large-scale 

construction (Kim, 2015). Considerable modifications 

have been reported between the homologous enzymes 

produced by the terrestrial and marine microbes, 

which are attributed to the presence of extreme aquatic 

environments, such as temperature, salinity, pressure, 

and lightning settings (Nguyen and Nguyen, 2017). 

Compared with the mesophilic enzymes, the 

extremozymes execute a wider range of reactions and 

can be considered as natural substitutes for the 

mesophilic enzymes under the harsh circumstances 

(Mesbah, 2022). The enzyme biocatalysis is a 

prevailing approach that can be executed in a variety 

of industries and is a more sustainable, ecological, and 

discriminative tool compared with the chemical 

catalysis. Marine enzymes can be used in several 

industries, including food, fabric, cleansers, 
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medications (Wijaya et al., 2021), chemicals, dairy, 

biodiesel, and cosmetics (Nguyen and Nguyen, 2017). 

The objective of this review was to explore the use of 

the oceanic microorganisms and their enzymes in 

therapeutics.   

2. Marine microbial assortment 

       A previous study conducted by Petersen et al., 

(2020) reported that across the millennium, the 

progression of various creatures and biocoenosis have 

been created with alterations in their emergence, way 

of living, processing, absorbing, and secretion of the 

constituents into the atmosphere, which can be found 

in all the living organisms. Microorganisms play a 

substantial part in the seawater ecologies, such as the 

association with macroorganisms, biogeochemical 

cycles, and established chemical indications, which 

support the conscription of the oceanic invertebrates 

(Zhang et al., 2019). The forms of marine microbial 

assortment relate to the communities and nearby 

situations that encompass latitude, depth, and season 

(Galand et al., 2018). The marine microorganisms 

comprise viruses (stereotypically 4 × 10
30

 cells and 10
7
 

viruses/ ml), archaea (1.3 × 10
28

 cells), bacteria (3.6 × 

10
29

 cells), fungi, and microalgae (Luna, 2015). The 

marine bacterial biomass spreads into all the maritime 

bionetwork including tidal areas, seafloors, and brines, 

etc., which internationally accounts for around 5.4 × 

10
29

 cells (Di Donato et al., 2019). A previous study 

conducted by Rao et al., (2017) revealed that more 

than 98 % of the marine microorganisms have not 

been cultivated, in addition their enzymes and 

bioactive compounds are all wasted by the 

conventional culturing techniques. Metagenomics has 

been introduced as a tool for analyzing and 

discovering the novel enzymes from the various 

environmental sources (Mendes et al., 2017). 

3. Sources of the marine microbial species 

     Marine water has different areas like coral reefs, 

mangrove ecologies, deep sea, and extreme settings 

(Paulus, 2021). Microorganisms of the marine 

ecosystem are classified according to these areas 

(Baharum et al., 2010). The mucus fabricating bacteria 

are present in the coral reef areas (Lee et al., 2016), 

the nitrogen-fixing and photosynthetic bacteria exist in 

the mangrove ecologies (Inoue et al., 2020), the 

adequate substrate-consuming bacteria live in the deep 

sea (Baharum et al., 2010), and the bacteria that 

survive in the extreme circumstances (extremophiles) 

are present in the extreme situations (Schröder et al., 

2020). These sources are described below in details. 

3.1. Coral reefs     

     Coral reefs that occupy beneath 0.1 % of the 

surface of the ocean's biosphere are defined as the 

most varied creatures on the Earth and are frequently 

known as the “tropical forest of the sea” (Li, 2019). 

Coral reefs are one of the utmost miscellaneous 

bionetworks, which act as a habitat for an assessed 25 

% of the entire identified species of the aquatic system 

(Glasl et al., 2018). They offer an environment for a 

minimum of 1000 coral species, 500,000 multicellular 

species, and 6000 designated fishes. These faunas are 

enclosed by various plentiful bacteria, viruses, 

archaea, and micro-eukaryotes, which are collectively 

present in the exterior surface microbiota (Chiarello et 

al., 2020). The roles of capturing, retaining, and 

utilizing nutrients and trace elements in the coral reefs 

are performed by the assorted groups of nonparasitic 

and host-associated microorganisms, which permit the 

aquatic ecology to flourish like a desert 

(Vanwonterghem and Webster, 2020). A metagenomic 

study from the forereef sites illustrated that between 

daytime and nighttime, the composition of the 

microorganisms is more different when collecting 

samples from distant reefs. In the daytime, 

Psychrobacter spp. is more plentiful, while at night 

time, the Halomonas, Alteromonas, and Roseobacter 

species are present in the coral reefs (Kelly et al., 

2019). Similarly, a genome-centric metagenomic 

analysis from the inshore coral reefs reported the 

identification of four bacterial clusters, namely 

Alphaproteobacteria, Chloroflexota, Bacteroidota, and 

Firmicutes, which are correlated to the variations in 

the environment (Glasl et al., 2020). Another study 

reported by Weber and Apprill, (2020) has sequenced 
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the small subunit rRNA genes of the reef seawater, 

which revealed that Synechococcus and 

Prochlorococcus spp. are constantly raised at night. 

This fluctuates over time concerning the concentration 

of silicate, nitrite, and temperature, whereas in the 

daylight, the alpha assortment of archaea and bacteria 

are notably higher near the coral brine and reef depth. 

3.2. Mangrove ecologies  

      On earth, mangrove forests are the foremost 

prolific and environmentally significant bionetworks. 

These are present in the biosphere's tropical and 

subtropical shorelines, which live in brackish water 

and are the only woody halophytes (Jin et al., 2019b). 

Mangrove forests reside around 0.5 % of the shoreline, 

store about 10 to 15 % of the worldwide carbon, and 

are known as “Blue carbon reservoirs” (Zhang et al., 

2019). Mangroves offer substantial roles in the aquatic 

system, such as sustaining the diversity of the 

environment, improving the quality of the littoral 

water, and resisting wave destruction (Zhao et al., 

2019). Later, Allard et al., (2020) added that 

mangroves also yield treasured facilities for humans, 

such as plant products (i.e., timber, runoff earthbound 

filtration, etc.), and territory for the different species of 

fisheries. As indicated in Table (1), these roles and 

facilities are performed by the various mangrove 

microbes (i.e., fungi, protists, archaea, and bacteria). 

3.3. The deep sea  

     According to Zhang et al., (2018), approximately 

75 % of the entire oceanic volume is covered by the 

deep sea, which is the sea with a depth of > 1000 m. 

The temperature of the deep-sea water is ~1–3 °C 

(excluding hydrothermal vents), pH is ~7.8–7.9 

(examined in most sites), salinity is ~35, absence of 

sunshine, which exists only at the depth of 250 m of 

the aquatic water, and the aquatic water pressure is 

about >1000 atmosphere. The microorganisms present 

in the deep sea endure in the extreme surroundings by 

the exclusive biological metabolic pathways.  Around 

50 years earlier, natural products of > 30,000 from the 

oceans have been explored, where approximately 2 % 

of these products are derived from the deep-sea 

microorganisms (Wang et al., 2020). The deep sea is a 

huge biosphere encompassing half of the sea’s 

microorganisms. Using the non-culture-based 

techniques, we realized that sediments and water of the 

deep sea comprise extremely miscellaneous bacteria, 

as demonstrated in Table (2) (Zhang et al., 2018). 

3.4. Extreme situations 

      Nearly all parts of the Earth originate life, 

including the extreme environments categorized by the 

extreme situations of any abiotic limitation(s). These 

limitations significantly fluctuated comparatively for a 

short duration. The examples comprise the 

oligotrophic oceans, tidal zones, the deep sea, and 

deserts (Bang et al., 2018). The extreme settings 

incorporated a variety of physical limitations, 

including temperature, salinity, pressure (Zhu et al., 

2020), pH, radiation, metals, oxidative stress, 

chemicals (Dalmaso et al., 2015), vacuum, and 

absence of water (Di Donato et al., 2019). The 

organisms that are proficient in the existing specific 

ecologies, such as temperatures, pH, high pressure, 

salinity (Zhu et al., 2020), high ionic strength, UV 

radiations, and anaerobic surroundings (Poli et al., 

2017), are known as “Extremophiles” (Zhu et al., 

2020).  

     Numerous aquatic environments originate diverse 

types of poly-extremophiles, such as the cold seas in 

the Antarctic or Arctic regions, a few hypersaline lakes 

of an oceanic origin, shallow vents, the ocean depths, 

the undersea hydrothermal vents, and the black 

smokers (Di Donato et al., 2019). Across the 

preceding few eras, the extremophiles have gained the 

fascination of several scientists for the exploration of 

novel bioactive constituents, like biocides and 

enzymes (extremozymes), which will be used in the 

therapeutic, agricultural, nutriment, bioenergy, 

chemical, cosmetic, and fabric industries of the global 

economy (Di Donato et al., 2019). The 

microorganisms isolated from the marine extreme 

conditions are presented in Table (3). 
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Table 1: Isolated microorganisms from the mangrove ecologies 

Sample sites Locations Techniques Microorganisms References 

Mangrove and 

non-mangrove 

sediment. 

Beibu Gulf, 

South China 

Sea. 

Metagenomics 

analysis. 

Proteobacteria, Bacteroidetes, 

Firmicutes, 

Methanosarcinaceae,  

Vibrio and Dehalococcoides. 

 

(Zhao et al., 

2019) 

 

Mangrove 

sponges.  

 

New 

Washington, 

Aklan, 

Philippines. 

Morphological 

observation. 

22 Genera of ascomycetes, 

18 genera of asexual morphs, 

2 genera of basidiomycetes, 

21 morphospecies of Mycelia 

sterilia, 1 unidentified yeast 

species, and 11 unidentified 

hyphomycetes. 

 

(Calabon et 

al., 2019) 

 

Mangrove 

sediments. 

Southeastern 

China. 

High-throughput 

DNA sequencing. 

Prokaryotic alpha diversity, 

beta diversity, 

Gammaproteobacteria, 

 Deltaproteobacteria, 

Chloroflexi, 

and Euryarchaeota. 

 

(Zhang et 

al., 2019) 

 

Mangrove. Shenzhen, 

Yunxiao, 

Zhanjiang, 

Hainan, 

Hongkong, 

Fangchenggang, 

and Beihai. 

 

16S rRNA gene 

amplicon 

sequencing and 

GeoChip. 

Gamma proteobacterium, 

Woeseia, Neisseria, Ruegeria, 

 Rhodococcus, 

Desulfotomaculum, Gordonia, 

Neisseria and Treponema. 

 

(Meng et al., 

2022) 

Mangrove 

sediments. 

Zhenzhu 

Harbor, 

Yuzhouping, 

Maowei Sea, 

Qinzhou 

Harbor, Beihai 

City, and 

Shankou along 

the coastline of 

Beibu Gulf in 

Guangxi 

province, China. 

16S rRNA gene 

sequencing. 

Proteobacteria, 

Bacteroidetes, 

Chloroflexi, 

Actinobacteria, 

Parvarchaeota, 

Acidobacteria, Cyanobacteria, 

Desulfococcus, 

Arcobacter, 

Nitrosopumilus and 

Sulfurimonas. 

 

(Gong et al., 

2019) 
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Table 2:  Isolated microorganisms from the deep sea 

Sample sites Locations Techniques Microorganisms References 

Deep sea 

surface 

sediments. 

Arctic, South, and 

North Pacific, 

South and North 

Atlantic, Indian, 

and Antarctic 

Oceans. 

 

16S rRNA gene 

sequencing. 

Gammaproteobacteria, named 

“JTB255-Marine Benthic 

Group” (now the candidate 

order Woeseiales). 

(Hoffmann 

et al., 2020) 

Deep sea 

sediments. 

Northern South 

China Sea. 

Metagenomics. Phyla TA06 and LCP-

89, Lokiarchaeota, 

Heimdallarchaeota, and a newly 

described phylum B38. 

 

(Huang et 

al., 2019) 

Deep sea 

asphalt seeps 

Chapopote Knoll, 

Mictlan Knoll. 

Metagenomics and 

imaging analyses. 

Species of sponges, and 

methanotrophs. 

 

(Rubin-

Blum et al., 

2019) 

 

Deep sea 

sediments. 

The westernmost 

Mediterranean. 

High-throughput 

sequencing. 

Bacillus, Micrococcus,  

 Planococcaceae, 

Anaerolineaceae, 

Planctomycetaceae, 

Microlunatus, Microbacterium, 

 Propionibacterium, 

Fictibacillus, Thalassobacillus, 

and Bacteroides. 

 

(Jroundi et 

al., 2020) 

 

Deep-sea. Atlantic Ocean 

(seamounts and 

ridges). 

16S rRNA gene high-

throughput 

sequencing. 

Biofilm forming bacterial and 

archaeal communities on macro-

debris. 

(Woodall et 

al., 2018) 

 

 

 

Table 3:  Isolated microorganisms from the extreme situations 

Sample sites Locations 

 

Techniques Microorganisms References 

Shallow-water 

hydrothermal 

vents. 

Panarea. Culturing. Antibiotic and heavy metal-

resistant Actinobacteria, 

Gammaproteobacteria, 

Alphaproteobacteria, and 

Firmicutes. 

 

(Arcadi et 

al., 2022) 

Shallow-water 

hydrothermal vent. 

Offshore in 

northeast Taiwan. 

Culturing and 16S 

rRNA gene 

sequencing. 

Phylum Firmicutes and genus 

Bacillus. 

(Gurunathan 

et al., 2021) 



Wajahat, 2024 

2271 
Novel Research in Microbiology Journal, 2024 

 

Deep-sea 

hydrothermal 

region. 

South Atlantic 

Ocean. 

High-throughput 

sequencing, gas 

chromatography-

mass spectrometry, 

and gravimetric 

analysis. 

 

Oil degrading Pseudomonas, 

Nitratireductor, 

Acinetobacter, and 

Brevundimonas. 

(Ma et al., 

2021) 

Deep-sea 

hydrothermal 

environments. 

 

Northwest Indian 

Ocean. 

16S rRNA gene 

sequence analysis. 

Sulfurimonas 

hydrogeniphila sp. nov. 

(Wang et 

al., 2021) 

 

Shallow-sea 

hydrothermal vent 

system. 

Panarea Island, 

Tyrrhenian Sea off 

the southwestern 

coast of Italy. 

 

Culturing and 16S 

rRNA gene 

sequencing. 

Blastopirellula 

retiformator sp. nov. 

(Kallscheuer 

et al., 2020) 

 

Hypersaline lake. Aiding Lake, 

China. 

Culturing and 16S 

rRNA gene 

sequencing. 

Phylum Actinobacteria, 

Firmicutes, Proteobacteria, 

and Rhodothermaeota, and 

Order Actinopolysporales, 

Alteromonadales, Bacillales, 

Balneolales, Chromatiales, 

Glycomycetales, Jiangellales, 

Micrococcales, 

Micromonosporales, 

Oceanospirillales, 

Pseudonocardiales, 

Rhizobiales, 

Streptomycetales, and 

Streptosporangiales. 

Predominant phyla included 

Actinobacteria and 

Firmicutes, and the 

predominant genera included 

Actinopolyspora, 

Gracilibacillus, Halomonas, 

Nocardiopsis, and 

Streptomyces. 

 

(Guan et al., 

2020) 

 

Saline-alkaline 

crater-lake. 

Dziani Dzaha 

(Mayotte, Indian 

Ocean). 

Morphological, 

ultrastructural, and 

molecular methods. 

Picocystis, Salinarum, 

Desertifilum dzianense sp. 

nov., Sodalinema 

komarekii gen. nov., sp. 

nov., Sodaleptolyngbya 

stromatolitii gen. nov., sp. 

nov., and Haloleptolyngbya 

(Cellamare 

et al., 2018) 
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elongata sp. nov. 

 

Hypersaline 

environment. 

TuzGölü Lake, 

Turkey. 

Culturing and PCR. 

 

Bacillus megaterium strain 

CTBmeg1. 

 

(Akcay and 

Kaya, 2019) 

Hypersaline lake. Aran-Bidgol-Iran. Morphological, 

physiological, 

biochemical 

testing, and 16S 

rRNA gene 

sequencing. 

Bacillus, Halomonas, 

Oceanobacillus, Salinicoccus, 

Thalassobacillus, 

Ornithinibacillus, 

Halobacillus, Salicola, 

Virgibacillus, Aerococcus, 

Arthrobacter, Idiomarina, 

Paraliobacillus, 

Staphylococcus, 

Acinetobacter, 

Aneurinibacillus, 

Brevibacillus, 

Brevundimonas, 

Chromohalobacter, 

Gracilibacillus, 

Jeotgalicoccus, Kocuria, 

Marinilactibacillus, 

Marinobacter, 

Microbacterium, 

Paenibacillus, Paracoccus, 

Piscibacillus, Pseudomonas 

and Sediminibacillu. 

(Didari et 

al., 2020) 

 

 

 

4. Marine microbial enzymes 

     The microorganisms that can endure the various 

extreme settings such as temperature, pH, salinity, or 

pressure, are known as “Extremophiles” and the 

enzymes produced by these extremophiles are 

recognized as “Extremozymes” (Zhao et al., 2021). 

Compared with the mesophilic enzymes, the 

extremozymes execute a wider range of reactions and 

can be natural substitutes for the mesophilic enzymes 

(Mesbah, 2022). Due to the sophisticated activity and 

stability beneath the extreme situations, the 

extremozymes obtained from the deep-sea 

extremophiles have extensive diverse applications in 

industries, including pharmacological, nutriment, 

agriculture, beverage, forage, cleaner, fabric, leather, 

biomining, and pulp industries (Jin et al., 2019a). 

Rendering to their natural habitation, the 

extremophiles are categorized into halophilic, 

psychrophilic, xerophilic, acidophilic, barophilic, 

thermophilic, alkaliphilic, radiophilic, and 

metalophilic (Mesbah, 2022). A previous study 

conducted by Sarmiento et al., (2015) reported that 

genetic engineering or bioprospecting of extreme 

situations makes it possible to perceive and invent eco-

friendly, inexpensive, and sustainable extremozymes 

compared with chemical catalysis. Due to their 

substantial capabilities, the extremozymes such as 

proteinase, xylanase, lipase, cellulase, glucanase, 

pectinase, chitinase, α-amylase, esterase, pullulanase, 

mannanase, peroxidase, glucoamylase, and oxidase, 

can be applied industrially (Dumorné et al., 2017). 
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Several previous literatures reported that the microbial 

metabolic and enzymatic potential depends upon a 

distinction in the structure of the microbial community  

 

 

 

(Balmonte et al., 2019; Balmonte et al., 2021). The 

commercial uses of the marine extremozymes are 

depicted in Table (4). 

 

 

Table 4: Commercial uses of the marine enzymes 

Sources Marine enzymes Commercial uses References 

Bacillus amyloliquefaciens 

strain S13 isolated from 

marine brown alga. 

 

Keratinase. Leather and poultry industry. (Hamiche et al., 

2019) 

Clone of a marine 

metagenomic library. 

 

Laccase. Dye decolorizing industry. (Yang et al., 2018) 

 

Marine bacterium Bacillus 

sp. Alg07. 

Alginate lyase. Production of mannuronic 

oligosaccharides and polyG 

blocks from alginate. 

 

(Chen et al., 2018) 

 

Filamentous fungi 

Geomyces sp. F09-T3-2 

isolated from marine 

sponges. 

Pectinase. Food processing industry. (Poveda et al., 

2018) 

 

 

 

5. Potentials of the marine microbial enzymes 

in therapeutics  

      The most relevant part of the worldwide economy 

is the therapeutic industry, which is responsible for 

investigating (Milanesi et al., 2020), developing, 

manufacturing, and advertising several 

pharmacological medications (Peña et al., 2021), 

vaccines, and therapies, to cure the common and 

sporadic ailments (Milanesi et al., 2020). Yearly, the 

worldwide therapeutic market value is around 1.1 

trillion US$, and approximately 35 % of these 

medications are initiated from the natural products, 

such as herbs (25 %), microorganisms (13 %), and 

animals (3 %), which serve as enormous sources for 

expansion of the novel medications globally (Calixto, 

2019). Based on the chemical structure of the 

enzymes, antibodies, peptides, oligonucleotides, small 

molecules, natural products, and combination of 

medications categorization, the Food and Drug 

Administration (FDA) in 2018 permitted the use of 

about 59 novel medicines, including 17 biological and 

42 chemical entities (de la Torre and Albericio, 2019). 

In 2019, the US FDA approved 48 novel medicines, 

including 10 biological and 38 chemical entities (de la 

Torre and Albericio, 2021). The marine biosphere is 

the prime unexplored source for investigation of the 

innovative natural products that originated the 

invention of medicines. Meanwhile, nature is also 

deliberated as the “Primordial Pharmacy,” because it is 

the source of the innovative products used for the 

treatment of numerous ailments, such as Acquired 
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immunodeficiency syndrome (AIDS), cancer, and a 

huge diversity of bacteriological, mycological, and 

viral diseases (Ruocco et al., 2016). Moreover, these 

products also act as anti-microtubule, anti-tumor, anti-

hypertensive, anti-cytotoxic, and anti-proliferative 

drugs (Suarez-Jimenez et al., 2012). Enzyme 

biocatalysis is a predominant approach, which can be 

implemented in a range of industries for the 

construction of medicines, biofuel, nutriments, and 

biochemicals, etc. Furthermore, Kim, (2022) recently 

added that in contrast to the chemical catalysis, 

enzyme biocatalysis is a more discriminative, 

sustainable, and ecofriendly tool. A previous research 

conducted by Nguyen et al., (2021) highlighted that 4-

OH atorvastatin synthesized from atorvastatin by using 

the bacteriological CYP102A1 peroxidase is useful for 

treatment of the hyperlipidemia and cardiac diseases. 

Similarly, Nam, (2022) revealed that a glycosidic 

hydrolase named lysozyme degrades the bacterial cell 

wall that is made up of peptidoglycan and is reported 

as a natural antimicrobial constituent. Chemical nature 

of the marine water is significantly closer to the blood 

plasma of humans, which is the reason that the oceanic 

microbial enzymes are considered suitable for the 

human therapeutic execution with the least side effects 

(Barzkar et al., 2021). The enzymes can be utilized as 

therapeutic agents for cancer by using different 

mechanisms, such as decreasing the inflammation in 

the tumor tissue, preventing cellular death of the 

carcinoma cells, and averting the contagious pathogens 

in the cancer tissues, in addition to vital controlling of 

the catalytic enzyme activity at the site of the tumor, 

etc. For instance, arginine deaminase and asparaginase 

can be used effectively in treating liver carcinoma and 

acute lymphoblastic leukemia, respectively (Sharifi et 

al., 2020). A research study reported by Orabi et al., 

(2020) stated that the extracellular L-glutaminase 

enzyme obtained from the newly isolated marine 

Bacillus subtilis OHEM11 (MK389501) has anti-

cancerous activity against several cell lines, including 

NFS-60, MCF-7, and HepG-2. The same study 

verified that L-glutaminase could be implemented in 

the pharmacological, food dispensation, and many 

other biotechnological industries. Another study 

conducted in Saudi Arabia by Ameen et al., (2020) 

isolated the L-asparaginase-producing B. subtilis from 

the Red Sea marine sponges and conveyed that this L-

asparaginase (partially purified 100 μg/ ml) has 

presented positive anti-cancerous activities against 

MCF-7, HepG2, and HCT-116 cancer cell lines. 

Similarly, researchers of El-Gendy et al., (2022) study 

have isolated several strains of the marine 

Streptomyces (i.e., Streptomyces sp. MORSY 50, 17, 

36, 25, 45, and 22) from soft corals of the Red Sea, 

Egypt. In addition, they reported the production of 

several enzymes, such as alkaline protease, tyrosinase, 

L-asparaginase, L-methioninase, and L-glutaminase; 

with their anti-proliferative effects on the colon and 

liver carcinoma cell lines, antimicrobial activity 

against fungi and bacteria, anti-biofilm forming 

activities on the multidrug-resistant Pseudomonas spp. 

and methicillin-resistant Staphylococcus aureus, and 

antiviral effects on the Hepatitis C virus. The 

potentials of the marine enzymes in therapeutics are 

described in Table (5). 

6. Scope, significance, and limitations of the 

marine microbial enzymes 

     The marine microbial species that flourish in the 

hostile environment are the probable sources of the 

enzymes that have a variety of catalytic activities, and 

are fascinating for several commercial 

implementations, such as the manufacturing of 

medicines and biofuels (Zhang et al., 2021), leather, 

nutrition, forage, cleansers (Qeshmi et al., 2020), 

dairy, cosmetic, fabric (Nguyen and Nguyen, 2017), 

paper (Daniotti and Re, 2021), synthesis of novel 

polymeric constituents, agrochemicals, and chemicals 

(Nguyen and Nguyen, 2017), and as catalysts for 

bioremediation (Zhang et al., 2021). The marine 

enzymes have much significance in the industrial 

implementations, due to their stability at high 

temperatures, salinity, and pH, and they have novel 

chemical and stereochemical possessions (Dumorné 

and Severe, 2018). The limitations of exploring the 

marine ecology include the difficulties in accessing the 

deep sea, problematic analysis, and the complex  
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Table 5: Potentials of the marine microbial enzymes in therapeutics 

Samples Sources Marine enzymes Therapeutic 

implementations 

References 

Water samples from 

the Mediterranean 

Sea. 

 

Bacillus subtilis 

OHEM11. 

L-glutaminase. Anti-cancerous activity against 

NFS-60, HepG-2, and MCF-7 

cancer cell lines. 

(Orabi et 

al., 2020) 

 

Strains isolated from 

Red Sea, Egypt. 

Aspergillus 

terreus. 

L-asparaginase. Anticarcinogenic activity 

against HCT-116, Hep-G2, 

and MCF-7 cell lines. 

 

(Hassan et 

al., 2018) 

 

Seawater and 

sediment samples 

from the Al-Marabi 

coast, the Red Sea, 

Saudi Arabia. 

 

Halomonas 

meridian. 

L-glutaminase. Anticancerous effects 

on colorectal adenocarcinoma 

cells, LS 174 T and HCT 116. 

(Mostafa et 

al., 2021) 

 

Sponges from the 

Red Sea, Saudi 

Arabia. 

Bacillus subtilis. L-asparaginase. Anticarcinomic activity 

against HCT-116, MCF-7, and 

HepG2 cancer cell lines. 

 

(Ameen et 

al., 2020) 

 

Sediment samples 

from the Red Sea, 

Saudi Arabia. 

Bacillus velezensis. Glutaminase-

free L-

asparaginase. 

 

Anti-breast cancer activity 

against MDA-MB-231 cell 

line. 

(Mostafa et 

al., 2019) 

 

Water samples from 

the Red Sea off the 

southwestern coast 

of Saudi Arabia. 

 

Bacillus 

licheniformis. 

L-asparaginase. Antineoplastic activity against 

MCF-7 breast, HCT-116 

colon, and HepG human 

cancer cell lines. 

(Alrumman 

et al., 

2019) 

Marine sediment 

samples from Al-

Jouf, Saudi Arabia. 

Aspergillus 

terreus. 

Chitinase. Antimicrobial activity against 

Aspergillus niger, A. oryzae, 

Penicillum oxysporium, 

Rhizocotonia solani, Candida 

albicans, Fusarium solani, 

Staphylococcus aureus, 

Salmonella typhi and 

Pseudomonas aeruginosa. 

 

(Farag et 

al., 2016) 

 

 

Water samples from 

the Red Sea, Saudi 

Arabia. 

 

Bacillus 

licheniformis. 

L-asparaginase. Anticarcinogenic effects on 

MCF-7, HCT-116 cells, and 

HepG-2 cells. 

(Alrumman 

et al., 

2019) 

Aquatic sediment 

samples from 

Bacillus subtilis 

strain JK-79. 

L-glutaminase. Cytotoxic activity on Jurkat, 

K562, and U932 Leukemic 

(Kiruthika 

and 
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Parangipettai, India.  cell lines as well as MCF-7, 

HCA 7, and OV1063 cell 

lines. 

 

Swathi, 

2019) 

Marine sponge 

isolates from Egypt. 

Bacillus circulans, 

Bacillus safensis, 

Bacillus pumilus. 

 

L-asparaginase. Antineoplastic effects on PC-

3, HepG-2, and MCF-7 cell 

lines. 

 

(Bakeer et 

al., 2022) 

Mangrove water 

samples from the 

Red Sea, Egypt. 

 

Bacillus sp. DV2-

37. 

L-glutaminase. Antitumor activity against 

HCT-116, MCF-7, and HepG-

2 cell lines. 

(Gomaa, 

2022) 

Sea mud from Beibu 

Gulf, South China 

Sea. 

Bacillus 

velezensis Z01. 

Velefibrinase. Thrombolytic effects on mouse 

tail thrombosis. 

(Zhou et 

al., 2022) 

 

 

taxonomic classification. These are in addition to the 

probable errors that compromise the whole drug 

discovery procedure, which are attributable to the 

unreproducible isolation methods following the 

detection of new bioactive compounds (Daniotti and 

Re, 2021). 

Conclusion 

     This review has presented the potential of marine 

microbial enzymes in therapeutics. The marine 

microbial enzymes have meaningful advantages in the 

biotechnological industries and can act as substitutes 

for the mesophilic enzymes in therapeutics, due to 

their minimum side effects. The therapeutic industry is 

the most important part of the worldwide economy and 

up till now, approximately 35 % of the medicines have 

originated from natural products. Numerous 

researchers have explored the marine microbial 

enzymes obtained from different sample collection 

sites. They checked their anti-cancerous activities 

against diverse cell lines in the past seven years (2016-

2022), which indicate that these enzymes will be used 

as anticancer agents in the future, but excessive human 

trials are urgently needed. The future perspectives 

include studying the exploration of more novel marine 

enzymes from the different sites of the oceans, 

identifying the innovative and more feasible methods 

of isolation, and determining their potentials to treat 

more un-curable diseases. 
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