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ABSTRACT 
 
A major class of applied stream cipher systems makes use of combining a number of Linear 
Feed Back Shift Registers (LFSR) to achieve reasonable cryptographic specifications.  The 
Feed back with carry shift register (FCSR) is a new   device to be used in the structure of 
stream ciphers in addition to or as a substitute for the LFSR.   In this paper, we investigate the 
advantages and limitations   of combining both LFSR and FCSR in one stream cipher design.  
A   proposed   novel design for a stream cipher architecture – using both LFSR and FCSR – 
will also be introduced and its cryptographic specifications will be evaluated.  
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1- INTRODUCTION 
 
Applying cipher systems is the most proven techniques for securing communication links. 
Due to the current    spread of communication and information technology, the society 
requires ultra-high speed data communications links while the requirement for achieving 
encryption security became   permanent   obligation. Stream cipher systems have many 
advantages over block ciphers such as simplicity of architecture, short processing delay and 
simplicity in security assessment, consequently, stream ciphers are more popular in 
proprietary applications of cipher systems.      
Stream cipher architecture is correlated from long time ago with the introduction of linear 
feedback shift register (LFSR) which is a simple and very fast device that produces 
pseudorandom bits with good statistical properties and large period.  
In the standard model of the stream cipher, the outputs of several independent LFSRs 
sequences are combined together using a nonlinear Boolean function that produces the final 
keystream. The main purpose of the nonlinear combining function is to make the keystream 
difficult for the cryptanalyst to predict. 
In 1997, Klapper and Goresky [1] proposed a new type of random number generator called 
the feedback with Carry Shift register (FCSR). This register is based on an algebraic 
framework for analysis analogous to that in LFSR. This algebraic structure is based on 
algebra over the 2-adic numbers in which the sequences generated by FCSR that analyzed, in 
the same way as the algebra over finite fields can be used to analyze LFSR sequences. 
This paper is divided into four parts. In the second part, we give brief descriptions of the basic 
building blocks of the stream cipher systems with focus to the FCSR as a newly introduced 
component, as well; we highlight the concatenation of LFSR and FCSR.   In the third part, we 
describe the idea behind the proposed algorithm and we evaluate its cryptographic parameters 
to show the figure of merits of our design. In the fourth part we came up with the conclusion 
of this work. 
 
 
2-  BASIC BUILDING BLOCKS OF STREAM CIPHERS 
 
2.1   Linear Feedback Shift Register (LFSR) 
 
Linear Feedback Shift Register is a well known device that implement linear feedback 
function, for generating periodic binary sequences. The linear feed back function combines a 
set of the contents of register cells (called the feedback taps) and then injects the resultant 
output to the first cell of the register. The choice of the feedback taps is defined by a 
characteristic polynomial Q(X) with a degree k here k equals the number of stages in the 
register. If Q(X) is primitive polynomial, then the obtained sequence of the LFSR is 
guaranteed to have the maximal period which equals to   2k – 1.  Such maximal sequence is 
called m -sequence.   
The linear complexity LC of a binary periodic sequence A is the length (i.e. the number of 
cells) of the smallest LFSR that can generate A [2]. 
An unknown LFSR can be completely cryptanalyzed using just 2LC bits of its output. 
Cryptanalysis means defining the unknown tap configuration of the register as well as its 
unknown   initial contents of register cells i.e.  its unknown initial state. Consequently, LC is a 
very significant cryptographic specification for this class of stream cipher systems. 
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2.2 Feedback with Carry Shift Register (FCSR) 
The architecture of the FCSR is given in Fig. 1. It consists of r register cells and   additional r 
– 1 memory cells for storing the carry variables. The feedback connections are given by the 
coefficients q1, q2, …, qr that are defined by the 2-adic integer q   which has the binary 
expansion given by: 
 

                            q = q0 + q12 + q222 + … + qr2r,           where qi ∈ {0, 1}  (1) 
 
q is called the connection integer of the FCSR  [1]. 
If the binary contents of the register at any given time are (ar – 1, ar – 2, …, a1, a0) and the 
contents of the memory cells are (cr – 1, cr – 2, …, c1), then the operation of the shift register is 
defined as follows: 
 

1. Take an integer sum jjjj cqaa ++= 0σ , with 1 ≤ j ≤ r – 1 
2. Put  2mod1 jja σ=−  
3. The higher order bit is used to replace the memory cell ⎣ ⎦2jjc σ= . 

 

      while the number of register cells r is given as   ⎣ ⎦)1(log2 += qr . 
Suppose a sequence A, then the 2-adic complexity φ2(A) of the sequence A is the smallest 
FCSR (the number of cells in the basic shift register) whose output is the sequence A [1]. 
The generated binary sequence A out of the FCSR will be periodic in case that the following 
necessary and sufficient conditions will be satisfied [1]:  
 

1. q is prime and 2 is primitive root modulo q. 
2. Initiate the FCSR with non degenerate initial state. 
 

Degenerate state is the state which makes the FCSR generates 0’s or 1’s sequences. If the 
memory cells ci (i = 1, ..., r – 1) are provided only when the corresponding feedback tap qi is 
nonzero, then there are only two degenerate states; 
 

3. All shift register and memory cells = 0 (Zeros state). 
4. All shift register and memory cells = 1 (Ones state). 
 

Any other initial state will make the FCSR to generate eventually periodic sequences. The 
length of the generated periodic sequence of the FCSR is given by T = q – 1. This is true only 
if q is prime and 2 is primitive root modulo q. The reader may refer to [1] for more detailed 
elaboration of the theory of FCSR. 
A modification to the above introduced architecture of the FCSR is shown in Fig. 2, in which 
an input is added to the FCSR. This slight modification is interpreted    mathematically as the 
division of an input integer by a constant integer q imbedded in the FCSR structure [3]. For 
example, if the input of the above circuit is A = (a0, a1, …), then the output is given by S = A / 
q [3]. 
 We call such FCSR Galois architecture circuit by FCSR Function (divisor-box in [4]) with 
one input and one output variable. Such FCSR function is illustrated in Fig. 3. 
 
 

2.3   Concatenation of LFSR and FCSR 
 
One of the applications of the FCSR function is to be used as a nonlinear filter for the linear 
sequences that generated from the LFSR. This filtering process is achieved by concatenating 
the LFSR to the FCSR Function as shown in Fig. 4. 
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The resultant output sequence of the concatenated LFSR and FCSR will satisfy the following 
advantageous cryptographic properties: 

1. Period  
From Fig. 4, set the LFSR size to be k and its period is TL. Also, set the FCSR size is k 
and its period is TF. Suppose that ∑ −

=
= 1

0
2LT

i
i

iL LI , where Li is the LFSR output i–th 
bit. If TL and TF are coprime, then the concatenation of LFSR and FCSR generates 
sequences with period TS given by [4] 
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Moreover, there are some initial states makes TS = TL, but the number of these initial 
states decreased with respect to the number of initial states – which makes 

FLS TTT ⋅= – as long the LFSR and FCSR sizes are increased [4, 5]. 
 

2. Algebraic degree 
The algebraic degree of the output sequence S obtained by representing the output S as 
function of the secret key values. In that case, we assume that the only secret value is 
the initial vector of the LFSR (p0, ..., pk – 1) and all the other parameters are known. 
For each i from 0 to Ts (period of S), there exists a Boolean function Fi such that si = Fi 
(p0, ..., pk – 1). Defining the sequence S is equivalent to solving the system of equations 
 

Fi (p0, ..., pk – 1) = si  for i = 0, 1, ..., Ts – 1   (3) 
 
Under this assumption, our problem can be modeled by a system of equations of 
expected degree at least k, and k + 1 unknowns, see [5] for proof. 
 

3. Linear complexity 
Following [4], the linear complexity is about 22k – 2. 
 

4. 2-adic complexity 

The expected 2-adic complexity of S is 
k

kS
k

k 22)(2 −+=φ  [4]. 

 
 

2.4   A Model Structure of Stream Cipher System   
 
Fig. 5 shows a model structure for the stream cipher systems which employs a combiner 
function f with multiple input driving sequences and single output sequence. The combiner 
function was proposed to have a memory to insure both nonlinearity and correlation 
immunity. The correlation immunity of this model structure reaches the maximum order (n – 
1), where n is the number of input driving sequences [6]. 
 

∑
=
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jjij XSZ

1
     (4) 

 
),,...,( 11 jjnjsj XSSfX =+      (5) 
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2.5 Related Definitions of Boolean Functions 
 
A Boolean function [7] maps one or more binary input variables to one binary output 
variable )2()2(: GFGFf n → and can be represented by binary form, }1,0{)( ∈xf . 
Sometimes it is desirable to consider a Boolean function over the set {1, –1} rather than {0, 
1}. The polarity form of a Boolean function is denoted )(ˆ xf  where }1,1{)(ˆ −∈xf  
and )()1()(ˆ xfxf −= . 
If the number of zeros in the function f(x) is equivalent to the number of ones then the 
function is said to be balanced. The following terms are frequently used in this paper: 
 

a) Linear Boolean function 
A linear Boolean function Lω (x), selected by ω ∈ GF (2n), is given by 

nnxxxL ωωω ⊕⊕= ...)( 11  where ωixi denotes the bitwise AND of the i-th bits of ω and 
x, and ⊕ denotes bitwise XOR. 
 

b) Affine function 
The set of affine functions Aω,c (x) is the set of linear functions and their complements; 
it is given by Aω,c (x) = Lω (x) ⊕ c, where c ∈ {0, 1}. 
 

c) Walsh Hadamard transform 
For a Boolean function f the Walsh Hadamard Transform Wf is defined by 

)()()(
)2(

xLxfW nGFxf ωω
))

∑ ∈
=  Thus, each Walsh Hadamard Transform Wf(ω) is the 

vector dot product of the polar forms of f and the linear function Lω. 
 

d) Nonlinearity 
The nonlinearity Nf of a Boolean function f is its minimum distance to any affine 

function. It is given by )))(max(2(
2
1 ωf

n
f WN −= . 

 

e) Correlation immunity 
A function f is correlation immune CI of order m if and only if 0)( =ωfW ; 

mwt ≤≤ )(1 ω , where ),...,( 1ωωω n= , and wt(ω) is the hamming weight of ω. 
 

Siegenthaler [8] has shown that for functions with n inputs and with correlation immunity of 
order m and algebraic degree d, it must follow that m + d ≤ n, and 1−≤+ ndm  for balanced 
functions. Hence, high correlation immunity implies low algebraic complexity, consequently, 
low nonlinearity order. This relation between correlation immunity and algebraic degree can 
be eliminated by adding memory to the function as described in section 2.3. 
 
 
3- THE PROPOSED STRUCTURE FOR STREAM CIPHER  
 
3.1 Design Description 
 
We propose here the mixing the concept of the concatenated LFSR and FCSR   with the 
concept of the model structure introduced above. Our proposed structure is shown in Fig. 6.  



Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 RS - 6 - 
 

 

3.2 Cryptographic Specifications of the Proposed Design 
 
Our proposed design will have significant cryptographic specifications as follows:  
 

1. Period 
From Fig. 6, the number of driving sequences is n. The sequence periods of LFSRs 
and FCSRs are (TL1, TL2, ..., TLn) and (TF1, TF2, ..., TFn) respectively. Set TSi is the 
period of the driving sequence Si for i = 1, ..., n. Hence, the total period Tz of the 
generated sequence Z is the least common multiple of LFSRs and FCSRs periods [5]  
 

),...,,( 21 SnSSz TTTlcmT =     (6) 
 
Back from section 2.3, the period of the concatenation of LFSR and FCSR is one of 
two values. Therefore, the Tz lower bound is Tmin ≤ Tz, whereas Tmin is the period when 

LiSi TT =  for all i = 1, ..., n. For practical stream cipher, Tmin should be sufficiently 
large enough. 
 
2. Correlation immunity and probability 
The proposed algorithm uses a combiner with memory (as in Fig. 5), whereas the 
output (Zj) and next-state (Xj) functions of the proposed design (Fig. 6) are the same as 
equations (4) and (5) respectively. Hence, the correlation immunity of the output 
function Z has maximum order (n – 1) [6]. 
The summation generator with two LFSR and one-bit of memory is proved to achieve 
maximum correlation immunity [6], in spite of that it is not entirely secure, whereas 
Meier and Staffelbach shows that existing correlation between the generator's output 
sequences and carry sequences (carry-output correlation probability is ) can easily be 
estimated by an outside party [9]. Therefore, to avoid correlation attacks, the existing 
of correlation between any input and output point should be eliminated. In the 
proposed design we can avoid this weakness by choosing a proper next-state function 
fx characterized by the following properties: 
 

 Balanced correlation probability of all inputs–outputs points; 
P[inputs-output(Z)] = P[inputs-output(Xj)] = P[output(Xj)-output(Z)] =  

 Balanced.  
 Very high linear complexity. 

 
3. Algebraic degree 
The algebraic degree of the sequence Z depends on two factors; the function fx and the 
algebraic degrees of its input driving sequences Si as shown in Fig. 6. 
From section 2.3, the expected algebraic degree of driving sequence Si is at least ki. On 
the other hand, the algebraic degree of the function fx helps in determine the algebraic 
degree of the sequence Z. Suppose a function fx with 1+n  input variables, its input 
driving sequences are S1, S2, ..., Sn. Set the algebraic degree of the function fx to be 3 
(for example). Suppose the term S2 S3 Sn is the largest term of the function fx (the terms 
of any function can be obtain from the algebraic normal form ANF representation of 
the corresponding function). Hence, the expected algebraic degree of the output 
sequence Z is at least ≥ k2 k3 kn. 
 
4. Linear complexity 
The driving sequences of the proposed design are obtained from concatenation of 
LFSR and FCSR whereas the corresponding LC of each sequence is near to its period 
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length [4].  Furthermore, the memory combiner which combine these driving sequence 
is a nonlinear combiner which in turn increases the LC of the produced sequence.  
For small size of LFSR and FCSR, simulation examples of period Tz and there linear 
complexity LC for the algorithm in Fig. 6 with different number of driving sequences 
are shown in Table 1. Using the Berlekamp-Massey algorithm [2], it is shown that the 
linear complexity of output sequences is close to their periods. 
 
5. 2-adic complexity 
The 2-adic complexity φ2 of a periodic sequence is given as follows. Suppose a 
periodic sequence A = {a0, a1, ..., aT–1} with period T. Let ∑ −

=
= 1

0 2T
i

i
iT aS  and 

12 −= TN . Set ),gcd( NSd T= , let R = N / d. Hence, the 2-adic complexity of the 
sequence A is ⎣ ⎦)(log)( 22 RA =φ . 
Table 2, shows a simulation examples of periods and 2-adic complexity of the 
proposed algorithm for different input driving sequences. Every driving sequence Si 
obtained from the concatenation of Qi and qi (the integer representation of the 
corresponding LFSRi primitive polynomial and the connection integer of FCSRi 
respectively). Each example in the table runs through all the good-keys to obtain the 
behavior of the 2-adic complexity. Therefore, Table 2 illustrates that the 2-adic 
complexity of the proposed algorithm is close to period length. 
 
  

4- CONCLUSION 
 

We have proposed here a novel architecture for stream cipher system through mixing LFSR 
and the nearly devised component known as FCSR. 
The proposed architecture of the stream cipher system depends on combining a set of driving 
sequences Si using nonlinear one–bit memory function f. The set of driving sequences Si is 
proposed to be produced by concatenating LFSRi and FCSRi. 
The simulation results of the proposed architecture showed that the linear and 2-adic 
complexities of the generated sequence are close to the generated sequence period. The 
algebraic degree of the generated sequence depends on algebraic degree of the function fx and 
the sizes ki of the LFSRi, where the algebraic degree of the driving sequence Si is ki.  
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Fig.1.  FCSR Galois architecture 
 
 

 
 

Fig. 2.   FCSR Galois Function with one input  output variable 
 
 

 
 

Fig.3.  The FCSR Function 
 
 

 
 

Fig.4.  Concatenation of LFSR and FCSR 
 
 

 
 
 
 
 

 
Fig.5.  Combiner with Memory 
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Fig.6.   The Proposed Structure for Stream cipher 
 
 

Table 1.  Simulation examples of the period and linear complexity 
 

Q1 q1 Q2 q2 Q3 q3 Q4 q4 Q5 q5 Tz LC 
11 11 19 19 – – – – – – 630 626 
19 29 55 61 – – – – – – 13020 13016 
11 11 55 59 – – – – – – 62930 62929 
11 11 19 19 25 59 – – – – 18270 18268 
13 13 19 29 25 37 91 101 109 181 6300 6300 
67 67 19 19 97 101 13 13 25 29 69300 69291 
109 421 97 67 25 61 19 19 103 163 124740 124722 

 
 

Table 2.  Simulation examples of the period and 2-adic complexity 
 

Q1 q1 Q2 q2 Q3 q3 Tz ≤ φ2(z) ≤ 
7 5 11 13 – – 84 78–84 

11 11 19 59 – – 6090 6084–6090 
7 11 25 107 – – 1590 1581–1590 

19 19 55 61 – – 5580 5562–5580 
7 5 11 11 19 19 1260 1243–1260 

11 11 19 37 67 101 6300 6259–6300 
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