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ABSTRACT 

In the current healthcare system, Acinetobacter baumannii is unquestionably one of the 

most aggressive bacteria causing nosocomial infections including pneumonia, bacteremia and 

wound infections. The frequent occurrence of Acinetobacter baumannii infections and outbreaks 

highlights the urgent requirement for using efficient antimicrobial agents to treat such cases due 

to the availability of few effective ones. This prompted the Centers for Disease Control and 

Prevention (CDC) to consider Acinetobacter baumannii as an urgent threat. Recent research on 

the virulence factors and resistance mechanisms of Acinetobacter baumannii is necessary to 

comprehend and combat this threat. Herein, we overviewed different virulence factors and 

resistance mechanisms involved in the pathogenesis of Acinetobacter baumannii. Virulence 

factors include outer membrane protein A (porins), biofilm formation, metal acquisition systems 

and lipopolysaccharide whereas antimicrobials resistance mechanisms involve β-lactamases, 

aminoglycosides-modifying enzymes, efflux systems, reduced membrane permeability and 

alteration of the target site of the antibiotics. Finally, a summary of potential and innovative 

therapies for infections caused by Acinetobacter baumannii was discussed. 
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1. Introduction 

High morbidity and mortality caused by Acinetobacter baumannii attracted the attention 

of the World Health Organization (WHO) to put this pathogen on the top of antimicrobial 

resistance research priority list (1). 

The studies on Acinetobacter spp. started when it was first isolated from a soil sample and 

named Micrococcus calcoaceticus in 1911 (2). The genus Acinetobacter was officially 

documented only in 1971, by taxonomists based on common biochemical characters (2, 3). 

Although these bacteria show a twitching motility and coccobacillary morphology, they were 

named after the Greek word a-kinetos-bacter which means non-motile rod.  

Molecular approaches have permitted identification of many available species within 

the Acinetobacter genus. This genus comprises strictly aerobic, non-fermentative, oxidase-

negative, catalase-positive and non-pigmented Gram-negative bacteria (4-6). From the closely 

related species showing similar phenotypic and biochemical properties that are included in 

the Acinetobacter calcoaceticus–Acinetobacter baumannii  complex (ACB complex), A. 

baumannii is considered as the commonest clinical species around the world (7). This 

opportunistic pathogen is one of the life-threatening nosocomial pathogens named ESKAPE, 

which include Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, A. 

baumannii, Pseudomonas aeruginosa and Enterobacter spp. (8). A. baumannii causes serious 

infections, mainly ventilator-associated pneumonia, urinary tract, bloodstream, skin and soft tissue 

infections, particularly among patients in Intensive Care Units (ICUs) (9).  

Unfortunately, a significant increase in the number of  multi-drug resistant (MDR) A. 

baumannii isolates has been reported (10). In addition to innate resistance to several antibiotics, A. 

baumannii is flexibly acquiring or upregulating resistance genes, therefore limiting the effective 

therapeutic choices and rising mortality rates (10). Furthermore, A. baumannii has numerous 

potential virulence factors that permit its persistence in the environment, adherence to surfaces, 

invasion to host cells and the escape from the host immune system (11-14). A. baumannii has been 

considered as one of the most persistent pathogens causing nosocomial infections (1). As most 

clinical isolates of this Gram-negative bacteria are found to be multi-drug resistant, suitable 

alternative therapies are needed to control this infection (15).  
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2. Clinical Significance 

A. baumannii is one of the most significant nosocomial pathogens, with known ability to 

cause infections like urinary tract infections, pneumonia, bacteremia, and wound infections (16). 

The most common clinical cases with high mortality rates include pneumonia and bacteremia (17). 

It results in a 26% mortality rate in medical facilities, rising to 43% in ICUs (18). The risk factors 

for acquiring MDR isolates involve recent exposure to antimicrobials, the application of urinary 

or venous catheters, severity of disease, duration of hospital accommodation, and recent surgical 

procedure (19-21).  The risk of mortality from invasive A. baumannii infection has been also 

reported to be high, especially for isolates that are resistant to carbapenems (22). 

2.1. Hospital-Acquired Pneumonia 

One of the most common clinical cases associated with A. baumannii is hospital-acquired 

pneumonia (HAP), especially for patients on mechanical ventilator assistance (23). HAP is an 

infection of the pulmonary parenchyma in patients at least 48 h after admission to the hospital, or 

in 14 days after leaving the hospital. The clinical case of HAP principally involves the presence of 

“new lung infiltrate of an infectious source, leukocytosis, new-onset fever, purulent sputum, as 

well as deteriorated oxygenation” (24). On the other hand, ventilator-associated pneumonia (VAP) 

is an infection of pulmonary parenchyma appearing at least 48 h after endotracheal intubation, 

including also the same clinical situation of HAP. Despite the notable improvements in the 

understanding of the influencing causes and prevention, HAP and VAP remain to be frequent 

complications of hospitalized patients (24). Zhang and co-workers also reported in meta-analysis 

performed in China that the incidence of HAP was 12.8–20.4%, and that of VAP was 31.4–36.1% 

(25). The mortality rate of HAP has been reported to be 21–37.4% according to Behnia and co-

workers (26), while the occurrence of HAP has been reported to extend hospital accommodation 

by 18–30 days (25). In large surveillance studies from the United States, 5 to 10% of cases of ICU-

acquired pneumonia were caused by A. baumannii (27). The proportion of MDR A. baumannii 

among causative agents of HAP and VAP has been reported to be approximately 30–34% (28). 

The mortality rate of A. baumannii pneumonia was 37.2–48.1% (29). Upon screening of A. 

baumannii isolates obtained from patients with late-onset VAP hospitalized in some Egyptian 
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University hospitals, MDR-carbapenem resistant A. baumannii were frequently found with about 

84% (30). 

2.2. Bloodstream Infection 

Bacteremia is a principal and widespread cause of the total mortality in patients with A. 

baumannii infection that ranges broadly from 29% to 63% (31-33). Together with the increasing 

exposure to antibiotics, multidrug resistance and carbapenem resistance, rates of bacteremia have 

been obviously escalating over years. Many previous studies have explored predictors of mortality 

in patients with A. baumannii bacteremia. Risk factors independently linked with mortality include 

selecting the suitable antimicrobial therapy, drug resistance, acuteness of illness, malignancy, and 

other comorbidities such as immunosuppression (34). In a study on bloodstream infections in 

patients with febrile neutropenic cancer in Egypt, MDR A. baumannii was responsible for about 

13% of MDR Gram-negative bacteria causing bloodstream infections (35) 

2.3. Wound Infection  

A. baumannii wound infections have become an issue of interest with statements of rising 

incidences of outbreaks among victims of battle injuries and natural disasters (6). A. baumannii is 

commonly isolated from wounds of combat casualties from Iraq or Afghanistan (36). Highly 

resistant strains of A. baumannii were reported to be among of the most common pathogens 

causing severe and sometimes fatal wound infections (37). Moreover, A. baumannii may 

occasionally cause skin infections outside of the military population. The pathogen caused 15% of 

hospital-acquired skin infections in a previous study (38). It is a well-recognized pathogen in burn 

units and may be difficult to eradicate from such patients (39). While wound infection is regarded 

polymicrobial, the contribution of A. baumannii is progressively being linked to bad outcomes and 

may require specific treatment (37).  

3. Transmission of Infection 

A. baumannii can be transmitted through the closeness of patients or colonizers such as 

hospital surfaces, and even medical tools. Contamination of respiratory support equipment, suction 

appliances, and that used for intravascular access are actually potential modes of transmission of 

infection (40). 
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4. Virulence Factors 

 Numerous virulence factors help in the interaction of A. baumannii infection with the host 

effectively (13). The virulence potential of A. baumannii and the host reactions to infection 

generated by this bacterium are poorly understood (41). Virulence factors of A. baumannii were 

reported to include outer membrane proteins (porins), cell envelope factors, enzymes, biofilm 

production, motility, micronutrient acquisition systems and protein secretion systems (13). The 

discussed virulence factors are summarized in Table 1. 

Table 1. Potential Virulence factors of A. baumannii. 

 

Virulence factor Role in interaction  

with host 

References 

Outer membrane protein A Attachment process and host cell invasion (42) 

Biofilm formation Attachment to epithelial cells and survival 

in hospitals 

(43) 

Metal acquisition systems Acquiring patient nutrients leading to 

survival  

(9, 44, 45) 

Lipopolysaccharide Resistance to human serum, survival in vivo 

and adhesion to host cells 

(46-48) 

 

 According to reports, A. baumannii outer membrane protein A have a considerable impact 

on signal processing and pathogenesis (49). It is a significant surface-bound protein that aids in 

the attachment process, stimulating apoptosis at the beginning of infection, in addition to its role 

in epithelial cell invasion (42).  

 In order to survive in unfavourable environmental conditions and during host infection, 

bacteria often form complex structures known as biofilms that are attached to biotic or abiotic 

surfaces and implanted in extracellular polymeric materials in the form of matrix (50). Numerous 

host variables, including growth conditions, light, cell density and quorum sensing affect the 

formation of biofilms (51). The ability of A. baumannii to quickly attach to epithelial cells and a 

variety of medical devices, is essential for the pathogen's invasion of vulnerable hosts and survival 

in hospitals (43). Clinical strains of A. baumannii have the ability to create biofilm which is 
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especially prevalent on abiotic surfaces, in patients with sepsis, urinary tract catheters, or even 

shunt-associated meningitis (52).  

 The ability of A. baumannii to acquire patient nutrients, such as iron, manganese, and zinc, 

and adapt to the patient's metal-limited atmosphere is a key component in its endurance as a 

nosocomial pathogen (45). A. baumannii primarily uses five clusters of siderophores, which are 

iron-chelating molecules with high ability to capture iron. Additionally, the pathogen has direct 

iron receptors and transporters like FecA and FecI that enable the use of heme (53). Iron transporter 

alteration have been reported to lower virulence by reducing biofilm development and oxidative 

stress resistance (44). 

 Lipopolysaccharide (LPS), one of the virulence factors in Gram-negative pathogens, is 

involved in several stages of the illness process. The LPS from A. baumannii is crucial for 

resistance to typical human serum and provides a survival advantage in vivo. As an initial step in 

colonization, the antigenic O-polysaccharide of the LPS in conjunction with pili may encourage 

adhesion to host cells (46). A. baumannii pathogenicity is mostly determined by the existence of a 

capsule surrounding the bacterial surface, in addition to LPS. The capsule's repeating, tightly 

packed sugars operate as a barrier against a variety of environmental factors, including dryness, 

phagocytosis by host’s immune system, and certain antimicrobials (48). Despite variations in A. 

baumannii capsular sugars, the pathogen can always survive throughout infections and flourish in 

serum when enclosed in the capsule (54). 

 

5. Resistance 

 Bacterial resistance is a normal outcome of how bacteria interact with their niche in the 

environment. Bacteria have accumulated a variety of defense mechanisms over time to secure their 

survival in a harsh environment. Consequently, it is thought that bacterial strains that are resistant 

to one or more antimicrobial substances have an intrinsic resistance, which is mediated by the 

resistance determinants (55). The development of the enzymes that can destroy the antimicrobial 

agent or stop its intracellular interaction to the target site is the general base of intrinsic resistance. 

This property of bacteria is demonstrated by their ability to continue exhibiting some level of 

antimicrobial compound resistance even in the absence of prior encounter (56). Bacteria have two 

genetic defense mechanisms against antibiotics: mutations, which typically alter the way the drug 



ERURJ 2024, 3, 1, 816-836 

 

822 

works, and horizontal gene transfer acquisition of external genetic material (57). In terms of 

acquiring external material, mobile genetic elements allow bacteria to take up and transfer genes 

that are crucial to the spread of antibiotic resistance. Enzymatic (production of β-lactamases) and 

non-enzymatic processes including alteration of membrane permeability, activation of efflux 

pumps and alteration of the target site are the major mechanisms of the acquired antibiotic 

resistance. The wide cluster of antimicrobial resistance systems that have been depicted for A. 

baumannii is great and opponents those of other Gram-negative microbes (58, 59). The fast 

development of multi-and pandrug-resistant strains of Acinetobacter features its capacity to rapidly 

adapt to environmental pressing factors. The upregulation of innate resistance mechanisms 

combined with procurement of foreign determinants are special abilities that have brought A. 

baumannii incredible regard as a MDR pathogen (60). The discussed antimicrobial resistance 

mechanisms are presented in Figure 1. 

 

Figure 1. Acinetobacter baumannii antimicrobial resistance mechanisms 

5.1. Enzymatic Mechanisms 

The existence of transferable plasmids expressing a wide variety of enzymes implicated in 

the propagation of β-lactam resistance has promoted the prevalence of β-lactamase production in 

Gram-negative bacteria (55). Based on molecular and functional structure analysis, β-lactamases 
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were categorized (61). Using the amino acid sequences, Ambler divided the β-lactamases into four 

classes (A, B, C, and D). Serine is present in the active enzyme site for classes A, C, and D, whereas 

Zn-dependent metalloenzymes are present in class B (62). A. baumannii strains include all of the 

β-lactamases classified under the Ambler system.  

The most common cause of β-lactam resistance is class A lactamases. These enzymes can 

hydrolyze penicillins and cephalosporins more effectively than carbapenems and are blocked by 

clavulanate (63). Over 2000 class A β-lactamases have been identified by phenotypic and 

biochemical investigations, with the majority of them being found in Gram-negative bacilli (64). 

Different molecular variants of the functional kinds of class A β-lactamases exhibit their capacity 

to hydrolyze cephalosporins and carbapenems (65). Numerous class A β-lactamases, including 

TEM, GES, CTX-M, SHV, SCO, PER, CARB, VEB, or KPC, were discovered in A. baumannii. 

Most of these (SHV-5, PER-1, PER-2, PER-7, TEM-92, CTX-M-15, VEB-1, GES-14, CARB -

10, CTX-M-2) are Extended-spectrum β-lactamases (ESBL), while some (TEM-1, SCO-1) are 

narrow-spectrum β-lactamases.  

Class B β-lactamases, often known as Metallo-β-lactamases (MBLs), have Zn or another 

heavy metal in the catalytic site as compared to class A enzymes, which have serine in the enzyme 

active site (66). Chelating substances like ethylenediaminetetraacetic acid (EDTA) can reduce the 

enzymatic activity of these forms of β-lactamases due to the chelation of the metal from the active 

enzyme site. A. baumannii has a variety of  MBLs that have been identified (67). The bla-ampC 

gene that belongs to Class C β-lactamases was found in 65 of the 105 MDR A. baumannii strains 

in China (68). All 23 Taiwanese strains of the bacteria A. baumannii tested positive for ampC-type 

β-lactamases, according to the investigation (69).  

In healthcare settings, carbapenem-resistant A. baumannii (CRAB) has emerged as a 

significant issue due to high prevalence of drug resistance. The most common mechanisms of 

resistance in CRAB are carbapenem hydrolyzing class D β-lactamases (CHDL), followed by class 

B MBLs (70). CHDL, also known as oxacillinases (OXA) for their capacity to hydrolyze oxacillin, 

contain serine in the active catalytic site. More than 400 OXA enzymes have been identified, the 

majority of which can hydrolyze carbapenems (61). One of the key mechanisms of resistance in 

A. baumannii is the existence of OXA-type β-lactamases, which hydrolyze carbapenems (71, 72). 

In A. baumannii strains, OXA enzymes such OXA-23, OXA-24/40, OXA-58, OXA-143, and 

OXA-235 are among the most common. OXA-23 was discovered in Scotland, spread over the 
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world, and is now present in large numbers in A. baumannii isolates (73, 74). OXA-type β-

lactamase genes have been found on chromosomes or plasmids in A. baumannii strains (75). New 

Delhi Metallo β-lactamase-1 (NDM-1), a B β -lactamase pattern with a high occurrence, is 

receiving attention on a global scale. NDM-1 were classified as superbugs that were reportedly 

known to be impossible to treat. Using one of the detection techniques in a previous study 

performed in Egypt, the percentage of presence of NDM-1 gene was 44.44% of the MBLs 

producers (76). 

One of the most crucial antibiotic groups for treating nosocomial infections brought on by 

A. baumannii strains is the aminoglycoside family (77). The primary mode of resistance in A. 

baumannii is the enzymatic alteration of aminoglycosides through the development of 

aminoglycoside-modifying enzymes that are divided into acetyltransferases, phosphotransferases, 

and nucleotidyl transferases depending on how they function (78). The primary aminoglycoside-

modifying genes implicated in aminoglycoside resistance in A. baumannii are aac (3′)-I, aph (3′)-

I, aac (6′)-Ib, ant (2′′)-Ia, ant (3′)-I, aac(3)-Ia [aacC1], aac(3)-IIa [aacC2], aac(6′)-Ib [aacA4] (79).  

5.2. Non-Enzymatic Mechanisms 

When overexpressed, chromosomal genes encoding A. baumannii efflux systems can 

confer resistance to a number of antibiotics (80). Chromosome-encoded MDR efflux systems often 

contribute to intrinsic resistance by constitutive expression or acquired resistance through 

expression following mutation (81). Resistance Nodulation Division superfamily (RND), 

Multidrug and Toxic compound Extrusion family (MATE), Major Facilitator Superfamily (MFS), 

and Small Multidrug Resistance transporters (SMR) are four kinds of efflux pumps found in A. 

baumannii  (71). The RND system, which includes the AdeABC pump and is the most prevalent 

one among the four efflux systems in A. baumannii, plays a crucial part in the organism's ability 

to withstand antibiotics, particularly aminoglycosides. The fusion protein AdeB, the outer 

membrane factor (AdeC), and the inner membrane of the pump (AdeA) make up the AdeABC 

pump (82). The adeRS operon, which encodes AdeABC, is expressed when the efflux pump is 

exposed to an excessive amount of hazardous substances or antibiotics, resulting in an MDR 

phenotype. This operon also contributes to the development of biofilm in A. baumannii (83). 

MATE is a different class of efflux pumps found in A. baumannii. AbeM, that belongs to MATE 

family was reported with other efflux pumps to play a role in the resistance to imipenem, 
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gentamicin, doxorubicin, norfloxacin, and ciprofloxacin (84). The MFS superfamily is crucial in 

the resistance of A. baumannii to many antibiotics including doxycycline, minocycline, 

chloramphenicol, tetracycline and fosfomycin (85-87). SMR, another efflux pump class reported 

in A. baumannii, which involves AbeS, with indicated participation in resistance to various 

antibiotics (88). 

The Antimicrobial resistance might rise if the membrane permeability is reduced. By 

facilitating the transfer of molecules, the pores of the outer membrane play a crucial role in the 

virulence and resistance of different strains of A. baumannii (89). Reduced membrane porin 

density in A. baumannii is linked to increased carbapenem resistance (90). 

One key mechanism of bacterial resistance is alteration of the target site of the antibiotics. 

This mechanism typically relies on point mutations that barely affect the homeostasis of bacterial 

cells. Mutation-mediated resistance mechanisms of A. baumannii to common antibiotics were 

reported. Spontaneous mutations in the gyrase and topoisomerase IV-encoding genes parC, gyrA, 

and gyrB occurred as resistance mechanisms to fluoroquinolones (91, 92). There are two known 

pathways for colistin resistance: First, mutations in the PmrAB two-component system modify the 

lipid A from LPS, and second, mutations in the lpxA, lpxC, and lpxD genes reduce the ability to 

produce LPS (93). 

6. Treatment Options 

Sensitive isolates of A. baumannii can be treated with conventional antibacterial agents, 

including the third and fourth generations of cephalosporin, carbapenems or fluoroquinolones (94). 

It was known that carbapenems were particularly effective at treating A. baumannii infections in 

vitro. Thus, carbapenems are one of the most important lines of defense for treating infections 

brought on by MDR A. baumannii. However, clinical strains of A. baumannii have become more 

resistant to carbapenems, especially in Europe, Latin America, Asia, and Australia (95). 

Combined therapy is indicated once all conventional antibacterial agents become 

unsuccessful against A. baumannii (96). Combined therapy has shown exceptionally bactericidal 

activity against the MDR clinical isolates of A. baumannii (97, 98). Such synergic combinations 

include blends of two or three classes of the following antibacterials: sulbactam, tigecycline, 

aminoglycosides, polymyxins or β-lactams, such as broad-spectrum cephalosporins or 

carbapenems (99, 100). 
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 Sulbactam, a common β-lactamase inhibitor, possesses an innate mechanism that makes it 

effective against A. baumannii isolates (101). Promising results of sulbactam against A. 

baumannii infections have been monitored both in vivo and in vitro (98). However, resistance to 

sulbactam has recently increased significantly so it is not recommended to use it empirically (102, 

103).  

 Tigecycline, a synthetic derivative of minocycline, that acquires a particular mechanism of 

action with reported bacteriostatic activity against CRAB isolates (104). The treatment of A. 

baumannii infections, such as VAP, bacteremia, and skin infections using combination therapies 

including tigecycline, was previously reported (105, 106).  

 Clinicians have reconsidered the use of polymyxins, colistin in particular, for MDR A. 

baumannii infections as a result of the lack of adequate therapeutic choices (107). The effect of 

the bactericidal agent, colistin, depends mainly on the used concentration against A. baumannii 

(108). Colistin has demonstrated intravenous efficacy in the therapeutic outcomes of patients with 

meningitis or VAP, either in mono- or combination therapy (109, 110). However, the frequent use 

of colistin for the treatment of A. baumannii infections in patients with critical illness may result 

in rising resistance (111). 

To develop better curative options for topical application, many institutions are working on 

small-molecule antibiotics that have a more narrow-spectrum with direct activity 

on Acinetobacter species (6). 

7. Innovative Approaches for Treatment of A. baumannii Infections 

Knowing that different A. baumannii strains has become resistant to many of the available 

antibiotics, the research has started to focus on the "post-antibiotic era," with special emphasis on 

the creation of innovative methods to stop the spread of MDR A. baumannii. The latest prevention 

approaches that include phage therapy, antimicrobial peptides, and the CRISPR Cas system will 

then be discussed. 

Bacteriophages are viral parasites, that when genetically modified, can be used to make 

resistant strains more susceptible to antibiotics. Phage therapy has been revived as a result of the 

worrying rise in resistance rates to boost bacterial susceptibility by eradicating resistance and 

virulence markers (112). Additionally, in vitro and in vivo studies have demonstrated that phage 
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therapy has a promising likelihood of serving as an efficient and secure treatment for MDR A. 

baumannii strains (113-115). 

 Antimicrobial peptides (AMPs) might serve as a better option than antibiotics for 

preventing the spread of MDR A. baumannii strains. AMPs can be regarded as principal defense 

against infectious organisms. The capacity of AMPs to destroy cell membranes and cell walls, the 

inhibition of protein synthesis, nucleic acids, and the promotion of apoptosis and necrosis are the 

basic mechanisms of their antimicrobial effect. Due to these characteristics, AMPs have been 

proposed for preventing the spread of nosocomial infections (116). Several recent studies have 

reported the effect of AMPs on A. baumannii (117-120). Currently, the main goal of scientific 

research is to create technologies that will increase the effectiveness and specificity of AMPs in 

vivo, along with improving their safety profile and production costs (118, 121, 122). 

Prokaryotes use the CRISPR-Cas system as an immune mechanism to battle off the 

invasion of foreign genetic material. A CRISPR array, a leader sequence, and Cas-related proteins 

are the typical components (123). Understanding how to disarm pathogens, develop effective 

therapeutics, and stop the horizontal gene transfer of antimicrobial resistance genes requires 

fundamental research into pathogen defense mechanisms and immunity, such as CRISPR-Cas 

systems. Recent studies involved understanding the CRISPR-Cas systems in A. baumannii (124, 

125).  

8. Conclusion 

Because of its growing clinical value, there are plenty of studies about A. baumannii. It has 

a well-known capacity to endure in various healthcare settings and to develop antimicrobial 

resistance. The most problematic aspect of A. baumannii is its multidrug resistance, which renders 

new therapeutics useless against it. Antibiotic resistance mechanisms of A. baumannii include β-

lactamases, enzymatic modification of aminoglycosides, overexpression of efflux pumps, reduced 

membrane porins, and alterations of target sites. To tackle the A. baumannii infection widespread 

in the meantime, we must understand how to maximize the efficacy of our present antimicrobial 

agents, possibly with combinational regimens concurrently with studying the different weapons of 

the threatening pathogen. 
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