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Abstract  

Total fertilization failure (TFF) refers to the complete inability of all oocytes in a human IVF cycle to undergo 
fertilization, even after the administration of intracytoplasmic sperm injection therapy (ICSI). Currently, oocyte 
activation insufficiency could explain the occurrence of TFF; however, its mechanism remains unclear. 
Calcium signaling plays a crucial role in oocyte activation events. Following fertilization, oocytes from humans 
and animals exhibited notable calcium oscillations. Abnormal calcium oscillations following fertilization could 
be the primary cause of TFF. Examining the literature revealed numerous attempts to investigate the primary 
cause and discover an effective solution for that alarming occurrence. The most commonly used regimen to 
overcome oocyte activation deficiency (OAD) is the addition of Calcium, which cannot induce the proper 
oscillation needed for fertilization. This literature review seeks to address the issue of fertilization failure (FF) 
by examining the various factors associated with this occurrence and investigating the available techniques 
for artificial oocyte activation following ICSI. 
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Introduction 

Oocyte activation deficiency (OAD) is a failure 
or defect in a coordinated series of events 
during fertilization, whether sperm or oocyte-

borne. It results in the inability of the sperm to 
undergo activation and complete fertilization, 
which causes Fertilization Failure (FF) (1). 
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Total fertilization failure (TFF) refers to the FF 
of all oocytes in a human in vitro fertilization 
(IVF) cycle, even after ICSI treatment (2). TFF 
is poorly understood and is currently attributed 
to OAD (3).  
 
Oocyte activation events rely on the crucial role 
of calcium signaling. Calcium oscillations have 
been observed in both animal and human 
oocytes following fertilization. The leading 
cause of TFF may be abnormal calcium 
oscillations after fertilization (4). 
 
Many studies investigated the molecular 
mechanisms involved in oocyte activation and 
FF and the clinical methodologies used to 
overcome OAD, such as assisted oocyte 
activation (AOA) (5-7).  
 
Thus far, there is insufficient empirical evidence 
to establish the effectiveness and safety of such 
protocols. This current mini-review focuses on 
the molecular mechanisms of gamete 
activation before fertilization. It critically 
evaluates the literature on the involvement of 
Ca+2 oscillations in oocyte activation and the 
evidence regarding using natural and artificial 
factors as stimulants for AOA. The discussion 
will also include AOA's physiological, 
pathophysiological, and ethical aspects. 

 
Gamete Activation 
 

Gamete activation refers to the transition of 
both spermatozoa and oocytes from a 
quiescent state to a developmentally 
competent state, which is regulated by various 
cellular and molecular mechanisms (8). The 
events activating both gametes are 
interconnected, with shared molecules and 
signaling pathways. Calcium is crucial in each 
process stage for both gametes (9).  
The successful fertilization process relies on 
both gametes establishing full competency 
following the intricate sequence of events 
required for their activation (10). 
 
 

I. Sperm Activation 

 

Before the male gamete can commence the 
necessary steps for effectively fertilizing an 

oocyte, the spermatozoon must undergo 
activation, which encompasses various 
behavioral, physiological, and structural 
changes (11). Specific changes occur due to 
exposure to environmental signals, while others 
arise during the interaction between the 
spermatozoon and the oocyte and its 
extracellular investments (12).  
 
The steps include;  

1. Changes in Motility  

Spermatozoa remain in the testis in a 
quiescent state and only acquire full motility 
following ejaculation and capacitation. 
Intracellular ions play a crucial role in 
regulating sperm motility, which is closely 
linked to changes in the membrane 
potential. Specifically, this process is 
associated with a hyperpolarization induced 
by potassium (13). 

 

2. Capacitation and Hyperactivation 

Capacitation is a sequence of modifications 
that provide sperms with the ability to attach 
to and penetrate the oocyte. These changes 
encompass increased membrane fluidity, 
cholesterol efflux, ion fluxes that alter sperm 
membrane potential, increased tyrosine 
phosphorylation of proteins, induction of 
hyperactive motility, and the acrosome 
reaction (14). 
 
Hyperactivation is characterized by a 
change in flagellar beating and an increase 
in the amplitude of flagellar bending. Many 
enzymes and factors from the female tract, 
such as arylsulfatase, fucosidase, and 
taurine, have been implicated in causing 
capacitation. Moreover, follicular fluid can 
promote capacitation in vitro (15). A low 
molecular weight motility factor present in 
follicular fluid, ovary, uterus, and oviduct 
can enhance sperm metabolism and 
movement by reducing ATP levels and 
raising cyclic AMP levels within the sperm 
(16). 

 

3. Acrosome Reaction 

Due to the change in the membrane fluidity 
of the capacitated sperm head, the initiation 
of the acrosome reaction is triggered by the 
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fusion of the outer acrosomal membrane 
with the sperm head plasma membrane, 
releasing its contents. Subsequently, the 
acrosomal granule disintegrates, leading to 
the release of lysins (17). 
 
These enzymes create a path by breaking 
down the zona pellucida (ZP), resulting in 
the fusion of the sperm head plasma and 
oocyte plasma membranes. The acrosome 
reaction exclusively occurs in the presence 
of Ca2+, which may be induced artificially by 
adding Ca ionophore A23187. This 
chemical carries Ca2+ across cell 
membranes to the sperm cytoplasm or 
increases the external concentration of Ca2+ 
(18,19). 
The process of acrosome exocytosis may 
entail the activation of multiple second 
messenger pathways, such as: 
 

• Changes in intracellular Calcium 

• Activation of cAMP and 

phosphokinase A pathways 

• Phospholipase C zeta (PLCζ) 

generating Inositol 1,4,5-

trisphosphate (IP3) and 

diacylglycerol (DAG) 

• Phospholipase D generating 

phosphatidic acid 

• Activation of phospholipase A2 

generating arachidonic acid. 

 

It is crucial to note that completing the 
acrosome reaction does not guarantee 
successful fertilization in vitro. For fertilization, 
the physiological processes that lead to the 
acrosome reaction must be parallel to those 
that activate the oocyte. These processes 
include changes in the ion permeability of the 
plasma membrane, alterations in the 
intracellular level of free Ca2+, and alkalinization 
of the cytoplasm (20). 
 

 

II. Oocyte Activation 
 

1. Cytoplasmic Maturation 

Throughout the stages of oogenesis, the 
oocyte has gathered stores of proteins and 
mRNAs, which enable it to stay quiescent, a 

state of developmental arrest marked by 
blocks at both the nuclear and cytoplasmic 
levels (21). 
The germinal vesicle characterizes arrest 
during the first meiotic prophase. Following 
germinal vesicle breakdown, meiosis is 
again arrested, and the fertilizing 
spermatozoon removes this block. Two 
types of protein kinases maintain the 
second meiotic arrest in the cytoplasm: 
maturation-promoting factor (MPF) and 
cytostatic factor (CSF) (22).  
 
Oocytes gain competence for successful 
fertilization and the ability to sustain early 
development through cytoplasmic 
maturation, which is analogous to sperm 
capacitation. Several developmental 
milestones must be met before an oocyte 
can be fertilized appropriately(19, 23): 
 

• MPF is expressed at a high level. 

The core components of MPF are 

CSF and cyclin-dependent 

kinase1(Cdk1/Cdk2), CSF inhibits 

the anaphase-promoting 

complex/cyclosome (APC/C) via a 

signaling cascade involving early 

mitotic inhibitors, Emi2/Erp1. 

• The oocyte contains elevated levels 

of various factors, such as c-mos, 

mitogen-activated protein kinase 

(MAPK), and active p34cdc2. 

• Advancement to the MII phase of 

meiosis: The initial polar body must 

be expelled into the perivitelline 

space, which is located between the 

oolemma and the ZP. 

• Transcription is almost completely 

halted by the time of germinal vesicle 

breakdown (GBVD). At this stage, 

gene expression transitions to the 

translation of stored mRNA. 
 

In humans, the spermatozoon triggers an 
outward flow of electric current in the oocyte's 
plasma membrane by activating potassium 
channels controlled by Calcium. The activation 
competence of oocytes undergoes continuous 
changes in vitro and is not a stable or prolonged 
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characteristic of ovulated eggs. Therefore, 
precise timing is crucial when in vitro 
manipulations (24). 
 

2. Cortical Reaction 

 
Following sperm penetration, the calcium 
wave triggers the fusion of cortical granules 
with the oocyte plasma membrane, causing 
them to release their contents into the 
perivitelline space through exocytosis. The 
cortical reaction is the initial morphological 
sign of oocyte activation (25).  
 
The cortical reaction elicits the zona 
reaction (zona hardening), changing the ZP 
characteristics. Concurrently, the oocyte 
plasma membrane becomes a mosaic of 
cortical granule and original plasma 
membranes. The fusion of the CG/oolemma 
leads to a transient increase in surface 
area, which allows for the required increase 
in metabolic turnover in the activated 
oocyte. The embryo remains within the 
protective zona coat until it hatches, just 
before implantation (26). 

 
Intracellular Calcium Release 
 

The calcium release pattern during fertilization 
exhibits species-specific variations. Mammals 
have two distinct calcium release mechanisms 
in oocytes (19, 27): 
 

1. Inositol 1,4,5-trisphosphate- (IP3-) 

induced calcium release (IICR)  

IP3 is generated through the activity of 

phospholipase C on the lipid 

phosphatidylinositol bisphosphate in the 

plasma membrane. IICR is initiated by 

binding IP3 and its receptor (IP3R) on 

the endoplasmic reticulum. 

 

2. Calcium-induced calcium release 

(CICR) 

CICR is activated by opening the 

ryanodine receptor on an intracellular 

store; however, it can also be induced 

via a mechanism involving the IP3 

receptor. This release can also be 

triggered by Calcium, which cyclic ADP-

ribose modulates. Consequently, cyclic 

ADP-ribose is produced by metabolizing 

nicotinamide adenine diphosphate 

(NAD+) by ADP ribosyl cyclase or NAD+ 

glycohydrolase.   

The sensitivity to CICR and repetitive calcium 
spikes (oscillations) are significantly increased 
during fertilization. This indicates that both 
CICR and IICR are initiated during fertilization 
and that not only is cytoplasmic alkalinization 
required for fertilization, but also triggering the 
characteristic pattern of intracellular Ca2+ 
oscillations is mandatory for activating specific 
molecular pathways in the oocyte, resulting in 
meiosis resumption and completion (28).  
 
All the molecular mechanisms associated with 
sperm and oocyte activation are essential for 
fertilization. Calcium release in such a specific 
pattern is the fundamental factor that induces 
these cascade events. Thus, in the case of 
OAD, the inclusion or induction of Ca release to 
augment AOA in vitro may be efficacious 
regardless of whether the failure of fertilization 
induction is caused by improper activation of 
sperm or oocyte (29). 
 
The efficacy of AOA treatments is intricately 
linked to determining the causal factor behind 
FF. Several diagnostic tests have been devised 
to ascertain the etiology of OAD, such as 
heterologous and homologous tests, genetic 
tests, particle image velocimetry, and 
immunostaining (30).  
 
Several strategies can be employed to raise 
calcium levels and stimulate fertilization. This 
can be achieved by directly 
introducing Calcium using substances like Ca+2 
ionophore A23187 (calcimycin) or ionomycin. 
Alternatively, calcium oscillation release can be 
induced by natural stimulants such as 
phospholipase C-zeta (PLCζ) or by strontium 
chloride (SrCl2). 
 

Artificial Oocyte Activation Approaches 
Based on Calcium Level 
 

I. Direct Calcium Addition 
 

The predominant approach for assessing 

AOA in humans involves the utilization of 
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ready-to-use Ca+2 ionophores, such as 

ionomycin and Ca+2 ionophore A23187. 

Specifically, following ICSI, all microinjected 

MII oocytes were incubated for 15 min in an 

ionophore and then washed; before 

transferring the injected oocytes to culture 

media droplets (31). 

 

The application scope is to increase the 

fertilization potential by increasing the Ca+2 

permeability of the cell membrane, thus 

enabling extracellular Ca+2 to flow into the 

oocytes; nevertheless, both Ca+2 

ionophores cannot produce Ca+2 

oscillations (32). Additionally, this method 

may prove ineffective if the injected 

spermatozoa lack sufficient levels of PLCζ 

to induce Ca+2 oscillations (33). 

 

A retrospective cohort study by Miller et al. 

did not report a difference between ICSI and 

ICSI-Ca+2 in terms of the congenital 

disability rates (chromosomal aberration, 

structural malformations, and malformation 

types) and both singleton and twin 

pregnancies suggesting that in the event 

that ICSI fails or results in poor fertilization, 

oocyte activation with a Ca+2 ionophore 

could be an option (34).  

 

Karabulut et al. demonstrated that the 

fertilization rates, embryos' quality, and 

pregnancy rates increased by adding Ca+2 

ionophore, suggesting that patients with 

TFF and other patients with different 

indications may benefit from AOA (35). 

 

Capalbo et al. found no evidence 

suggesting that AOA leads to an increase in 

errors in the process of chromosome 

segregation during meiosis. However, 

epigenetic defects could not be ruled out, 

implying that AOA should be used only in 

patients with specific indications and not in 

all cases (36). 

 

On the one hand, combining ICSI with AOA 

using Ca2+ ionophores could benefit 

patients experiencing cleavage failure. This 

combination may assist the zygotes in 

progressing to more advanced 

developmental stages (37). 

 

On the other hand, a randomized control 

trial revealed that the fertilization rate did not 

increase when AOA was applied using Ca+2 

ionophore solution in patients with 

diminished ovarian reserve (38), In addition 

to its inability to induce calcium oscillations 

therefore became ineffective specially if 

spermatozoa lack PLCζ (33). 

 

II. Induction of Calcium Oscillation 
Release 
 

Strategies of AOA that aim to induce 

calcium oscillations are successful in 

overcoming FF caused by deficiencies in 

PLCζ-sperm (39).  

 

The most common one is Strontium 

chloride, As it was observed that SrCl2 

induces Ca+2 oscillations in mouse models, 

also it enhances fertilization rates, and 

improves embryo quality, when used in 

cases that experienced previous ICSI 

failure, leading to successful pregnancies 

(40- 41). 

 

To understand the mechanism of how SrCl2 

induces oocyte activation; A recent study in 

mice reported that Sr2+ triggers the 

formation of transient receptor potential 

cation channels, subfamily V, vanilloid3 

(member3) (TRPV3), mediating oocyte 

activation by promoting downstream 

oscillations in [Ca2+]i/[Sr2+] of the oocytes, 

probably by sensitizing IP3Rs and thus 

facilitating Ca2+ oscillations, or substituting 

for Ca2+ in the potentiation of IP3Rs (42). 

The TRPV3 channels are strongly 

influenced by temperature (43) and can be 

regulated by various stimuli and ligands, 

including natural compounds, such as 

carvacrol, thymol, eugenol, and 2-amino 

ethoxy diphenyl borate (2-APB) (44). 
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The agonists 2-APB and carvacrol 

demonstrated their ability to stimulate 

TRPV3 channels and induce an influx of 

Ca2+, activating mouse oocytes (42).  

 

Moreover, compared to other agents, the 

efficacy of Sr2+ as an antioxidant method 

was highest in a mouse model with deficient 

sperm activation capacity (45) and, more 

recently, in a knockout mouse model for 

PLCζ. Given that Sr2+ elicits Ca2+ spikes 

similar to those caused by rodent sperm, 

Therefore, the TRPV3 channel antagonists, 

such as 2-APB and carvacrol, can 

potentially serve as an alternative AOA 

method in humans (44). 

 

Fawzy et al. (2019) published an interesting 

randomised clinical trial that included 343 

couples and sought to assess the impact of 

AOA in combination with either calcimycin or 

SrCl2 on clinical pregnancy rates following 

ICSI. According to their findings, AOA in 

combination with either SrCl2 or calcimycin 

can increase the rates of clinical pregnancy, 

ongoing pregnancy, and live birth when 

compared to ICSI alone. Additionally, 

calcimycin AOA seems to be useful in 

overcoming sperm morphology defects, 

while SrCl2 AOA seems to be more 

beneficial for ICSI cycles that have a history 

of poor fertilization (46). 

 

Recombinant human PLCζ protein is a 

natural stimulant that triggers calcium 

oscillations. PLCζ is the primary 

spermatozoon protein activating the oocyte. 

Aberrant expression of PLCζ was noted in 

infertile men concerning ICSI failure, 

indicating that recombinant human PLCζ 

may be a potential treatment act as an 

activator or stimulant to improve fertilization 

after an ICSI procedure (47-48). The role of 

recombinant human PLCζ on AOA was 

demonstrated by Nomikos et al. who 

reported cytoplasmic Ca+2 oscillations 

during fertilization after recombinant human 

PLCζ protein administration, achieving 

mouse oocyte development to the 

blastocyst stage (49). Recently, it was 

discovered that injection of recombinant 

PLC ζ protein could effectively rescue 

mouse oocytes from activation failure in a 

mouse model of failed oocyte activation 

after ICSI (50). The same study revealed 

that Ca+2 signals can be restored using 

ionomycin. The restoration was more 

significant when the oocytes were exposed 

to strontium (Sr+2) media or injected with 

PLCζ than those subjected to the Ca+2 

ionophore.  

 

On another hand, The correlation between 

sperm quality, specifically in relation to 

fertilization, and sperm DNA fragmentation 

has been extensively documented (51). The 

chromatin integrity is critical because the 

spermatozoon must deliver an intact 

genome to initiate the cell cycle and embryo 

division. Because the spermatozoon's 

fertilizing potential depends on PLC 

expression, it can be presumed that the 

percentage of DNA fragmentation affects 

PLCζ expression levels. Recent studies 

indicated a correlation between PLCζ and 

the status of sperm chromatin, suggesting 

that the percentage of DNA fragmentation 

could potentially impact AOD (52- 54). 

 

However, despite the role and beneficial 

effect of human recombinant PLCζ, its 

routine use in IVF labs remains restricted 

due to its unavailability in the commercial 

market.  

 

Artificial Oocyte Activation Approaches 
Not Based on Calcium Level 
 

In contrast, deficiencies related to oocytes 
could be effectively addressed by utilizing 
alternative AOA promoters that trigger the 
deactivation of MPF and the resumption of 
meiosis. Such agents are comprised of 
cycloheximide, N, N, N', N'-tetrakis (2-pyridyl 
methyl) ethane-1,2-diamine (TPEN), 
roscovitine, and WEE2 (oocyte-specific gene 
responsible in pronuclei formation during 
fertilization) complementary RNA. Moreover, if 
OAD results from oocyte dysmaturity, 
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implementing a modified ovarian stimulation 
protocol and trigger could enhance fertilization 
(55). 

 

A novel oocyte activation method involves 
using Zn2+ chelators to imitate the changes in 
intracellular Zn2+ levels during fertilization. This 
approach introduces a new way of designing 
methods for oocyte activation. The principle of 
using Zn2+ chelators for AOA is the fact that 
during fertilization, a rapid efflux of intracellular 
Zn2+ occurs, a phenomenon known as the "Zn2+ 
spark" (56), this phenomenon originates from 
the loss of cortical vesicles containing ∼8 billion 

Zn2+ atoms through exocytosis (57) and is 
correlated to MPF inactivation and meiotic 
progression (58).  
 
TPEN and other Zn2+ chelators can be used to 
simulate intracellular Zn2+ depletion (59- 60). 
Exploring Zn2+ chelator-mediated oocyte 
activation approaches introduces a novel 
method for activating oocytes that 
complements Ca2+ based activation methods 
synergistically to enhance oocyte activation. 

 

Safety, Efficacy, and Ethical Issues 
 

The cause of FF must be identified to improve 
the effectiveness and safety of AOA 
treatments. Although most data does not 
indicate any negative impact of AOA on the 
development of embryos before and after 
implantation, there is a lack of extensive 
research on this topic. Recent studies on mice 
propose that AOA may lead to epigenetic 
changes in the embryos and their offspring. 
Pending the availability of more comprehensive 
data and notwithstanding the promising 
outcomes achieved, applying AOA should be 
exercised cautiously in clinical settings and 
exclusively following adequate patient 
counseling. AOA should be regarded as a 
pioneering therapy rather than a well-
established one (61). 
 
Even though AOA is conducted as a routine 
procedure in numerous assisted reproduction 
centers, no relevant randomized-controlled trial 
exists to date. AOA with ionophores is currently 
used cautiously due to the possibility of 
epigenetic defects arising from its use. This is 

because while most Ca+2 agents can cause 
Ca+2 release, it is not at physiological levels (it 
could be sub- or supraphysiological). 
Nonetheless, this Ca+2 release triggers 
fundamental downstream events that may 
result in various gene expression patterns (62- 
63).  
 
Furthermore, the observation that both 
gametes and preimplantation embryos exhibit a 
heightened metabolic rate, which could 
potentially govern the epigenetic process, may 
unavoidably result in epigenetic abnormalities 
(64).  
 
Several assisted reproduction centers only use 
AOA in couples who have had multiple 
implantation failures after ICSI. There are still 
no follow-up studies on the health of newborns. 
Therefore further studies should be applied to 
investigate the effect of using AOA on the 
offspring to guarantee its safety (65). 
 
Conclusion 
 

OAD is a phenomenon that causes FF, which 
may be oocyte- or sperm-borne. Determining 
the cause of OAD is critical in selecting the right 
stimulant to overcome the detected defect and 
activate the other molecular events required for 
fertilization. AOA is not a routine procedure and 
should be introduced with caution for the ones 
who need and benefit from it.   
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