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ENHANCING ENERGY CONSUMPTION IN EGYPT WITHIN ADAPTIVE FACADE TECHNIQUES

1. INTRODUCTION

The building facade assumes a prominent role as a pivotal interface demarcating the interior
and exterior environments. The facade must be thoughtfully designed to provide a tangible
boundary to the building, ensuring privacy and shielding inhabitants from adverse external
influences [1]. Notably, these architectural elements play an indispensable role in shaping a
building's aesthetics and character, while also serving as conduits for natural light and ventilation.
The ramifications of facades extend to the energy consumption of a structure, as they commonly
function as the primary juncture between the internal and external domains, thus affording them
control over aspects like heat regulation, ventilation, and natural illumination. Various factors come
into play wherein the building facade exerts influence on energy consumption, encompassing
considerations such as insulation, glazing, shading mechanisms, natural ventilation strategies, and
daylighting [2, 3].

The prospects of sustainable building practices are influenced by multifaceted challenges.
Primarily, from a social perspective, there exists an imperative to attain a heightened level of user
well-being and indoor environmental quality. Simultaneously, from an environmental standpoint,
there is a pressing need to curtail building energy consumption and mitigate the environmental
repercussions associated with buildings [4, 5]. Numerous innovative concepts and technologies for
building envelopes have been proftered as solutions to enhance indoor comfort conditions while
concurrently diminishing environmental impacts across the lifecycle of structures [6]. Particularly
noteworthy is the growing attention devoted to the amalgamation of passive and active design
technologies within the building envelope, an area of burgeoning interest within the research and
development community [7, 8].

Owing to the swiftly evolving dynamics governing the interaction between humans and the
built environment, the advent of adaptable architecture has emerged as a response to this paradigm
shift. Consequently, a profusion of new facade typologies is burgeoning and evolving within our
technologically advancing society. These emerging paradigms proffer practical and efficient
architectural solutions tailored to unique and previously unexplored applications, harmonizing with
the demands of contemporary adaptive, dynamic, flexible, and ever-evolving activities [9].

Objectives

The research aim is to investigate the opportunities of reducing energy consumption
through some techniques of adaptive facades, in office buildings, and in hot-dry climate zones in
Egypt, and Cairo. Also, encourages architects to make the decision to use this technique in
buildings through the positive results in reducing the annual energy consumption. It could be
achieved through the following objectives.

e Study and analysis of the different techniques of the adaptive facades, their components, and
their characteristics.

e Investigating the techniques that have the significant effect of reducing energy consumption
and improving thermal comfort.

e Determining the appropriate techniques of adaptive facades that can be applied in a hot-dry
climate, in Egypt.

Research Problem

One of the main issues in Egypt is the significant imbalance between rising energy
consumption and the available resources [10]. Previous research has shown that buildings in hot,
arid climates, especially office buildings, have poor energy performance. These buildings consume
a substantial amount of energy for cooling, ventilation, and air conditioning, resulting in high
electricity costs and increased carbon dioxide emissions, harming the environment. Urgent changes
are needed in the building sector to reduce energy use and improve overall efficiency and well-
being. The primary architectural challenge is achieving thermal comfort for occupants while
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reducing energy consumption. The design of the building facade assumes a pivotal role in
addressing energy conservation and diminishing cooling loads [2, 3].

Research Methodology

The research methodology comprises two phases. The initial phase is theoretical,
encompassing data collection and analysis. The subsequent phase involves practical aspects, often
referred to as the simulation phase, which is structured into three steps. In the first step, essential
inputs are identified, including the climate template, model specifications, and the specifications
pertaining to adaptive facade techniques. The second step entails the execution of simulation
processes for each adaptive facade technique separately, systematically analyzing their
performance. Ultimately, the third step includes the outcomes of the simulation processes, as shown
in Fig. 1.

Case Studv model Techniques
Input [ Building geometry, climate conditions, 4‘* Specification of each technique of adaptive
template specifications. fagade techniques.

Simulation | Simulation tool + Parameters
Design builder + energy plus Simulate each type separately.
Results

Output —

Annual energy consumption

Fig.1. Simulation steps.

2. ADAPTIVE FCADADE DEFINITION

Adaptive facades, defined by the European COST Action TU1403, are building exteriors
designed to meet three key performance criteria: energy efficiency, occupant comfort, and
environmental impact reduction [11]. These facades can adapt to changing environmental
conditions, such as daily cycles, seasons, and short-term weather fluctuations. They are
multifunctional systems that modify their functions over time to enhance overall building
performance. Adaptive facades save energy by responding to weather conditions and prioritizing
occupant comfort based on occupants' needs and preferences [12].

3. THE NEED OF ADAPTATION

The building facade not only plays a significant role in a building's aesthetics but also serves
as a vital barrier between the interior and exterior environments. It is exposed to unpredictable
weather conditions, such as extreme temperatures, wind, precipitation, and solar radiation, which
directly impact the comfort of occupants indoors. The design of an adaptive facade, as illustrated
in Fig.2, necessitates specific environmental considerations [13].

Despite substantial external climate variations, the indoor comfort requirements of
occupants remain relatively stable. Therefore, building envelopes must possess adaptability to
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address short-term weather fluctuations, daily cycles, and seasonal patterns. The effectiveness of
adaptive systems relies on their ability to balance occupant dynamics with external environmental
conditions [11]. Furthermore, adaptive facades significantly contribute to energy conservation by
adjusting their components to respond to external conditions, either passively or actively [13].

Solar Gain Control

Heat Control ¢ Moisture control «
Adaptive
facade
parameters

Natural Ventilation ¢ - View out

v

Daylighing Noise control

Fig. 2. Adaptive facades parameters, source: author based on [15].

4. ADAPTIVE FACADES FEATURES

These adaptive facade features efficiently contribute to the building's energy balance,
reducing the demand for air conditioning devices and, as a result, reducing energy consumption.
Some more specific Features of adaptive facades such as energy performance, control strategy,
sensing, thermal comfort, visual comfort, integration with the building, flexibility, aesthetics, cost
efficiency, and user interaction [14 -16], as shown in Fig. 3.

1 Energy
performance

Energy performance can be

optimized through AF

2 control startegy

The control strategy can be
either passive or active

sensing and
acutation
AF can detect and respend
to environmental conditions

visual&thermal
comfort
AF can enhance occupants
visual and thermal comfort

integration with
building

AF can be integrated with
other building systems to
reduce energy consumption

6 flexability

AF can provide flexibility in
building design and use

7 Aesthetics

AF can enhance the aesthetic
appeal of a building

ADAPTIVE
FACADE
CHARACTERIZATION

8 cost

The higher cost of AF can be
offset by the patential energy
savings
Maintenance and
Durability

AF reguire more maintenance
than traditional facades

10 user interaction

Some AF are designed to allow
for user interaction, which
enhance occupants comfort

Fig. 3. Adaptive facades features, source: author based on [14].
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5. ADAPTIVE FACADES TECHNOLOGIES

Based on the expertise in each technology’s market requirements, adaptive facade
technologies can be classified into four distinct categories: switchable windows, dynamic shading
devices, solar active facades, and active ventilative facades, as shown in Table 1 [17].

Switchable windows: are designed to enhance indoor comfort and energy efficiency by
adjusting their optical properties to control solar gains and daylight. They are available in different
stages of development [17].

Dynamic shading devices: including technologies like louvers, Venetian blinds, and glass
flirts, have proven to be highly effective in enhancing the indoor environment of buildings. They
serve a triple purpose by improving thermal comfort, reducing energy consumption, and preventing
glare[18].

Solar active facades: encompass technologies designed to manage solar radiation and
excessive daylight effectively. their impact extends to thermal comfort, energy consumption, and
visual comfort. the performance of these technologies is intricately linked to how materials react
to sun radiation and temperature functions, influencing their chemical, physical, and biological
properties[17].

Active ventilated facades: utilize ventilation, employing two methods. the first method
involves managing airflow within the facade cavity, while the second focuses on regulating the
airflow entering the building. these approaches are instrumental in improving thermal comfort
within the building and reducing overall energy consumption [17].

The focus of the practical part of this research will be on the switchable windows category.

Table 1. Adaptive facades techniques, classified into four categories, source: author based on [17].

Adaptive facades techniques
T T T T T T themmocwomie glazine
-Photochromic

1

1

1

1

1

-Electrochromic device :

Switchable glazing -'g:ﬂcchrfstﬂ in—g.lzs:‘:omposﬂes window :
-Gasochromic window

Active -Suspended particles devices -Liquid crystals :

-Electrokinetic pixels windows 1

-Elastomer-deformation tunable window :

-Liquid infill tunable window 1

1

-Conventional dynamic shading devices (Venetian blinds .Louvers and Glass frits)
-Kinetic dynamic shading devices (Parametric geometries and Foldable origamis)

Dynamic shading

devices Hybrid -Systems base on Biomimetics

-elastomer-deformation tunable window

Dynamic photovoltaic shading devices

-Ventilation mode (-No ventilation, Natoral (Hybrid) and Mechanical (Hybrid))
Double skin facade -Airﬂow path (Buffer zone, Indoor air curtain . Qutdoor air curtain, Air supply and
Air exhaust)
-Geometry of the cavity (Box-window, Corridor, Shaft-box and Multi- storey)
Solar active facade Green _Green roofe
Vertical greenery system
Static photovoltaic panels

Phase change materials (PCM)

Closed cavity fagade (CCF) (With pressurized system and With mechanical ventilation)

Active ventilated
facade Automated operable windows

Agtively ventilated double-skin fagades
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5.1.  Switchable Glazing

Switchable windows have the capability to modify their optical properties, allowing them
to control the solar gains and daylight within interior spaces by either reflecting or absorbing them,
as indicated [19]. The primary goal of these windows is to improve the thermal comfort of indoor
spaces while simultaneously reducing the building's energy consumption through effective solar
radiation control.

5.1.1. Thermochromic window

Thermochromic windows, depending on external temperature conditions, possess the
ability to regulate and modify the transmission of solar heat and light. This control is achieved
through a change in their color, shifting from a clear to a dark state [20]. These windows incorporate
a metal oxide, particularly vanadium oxide (VO2), positioned between two glass layers. When the
temperature reaches a specific threshold, the material undergoes a transformation, exhibiting a
metallic color and becoming reflective to infrared radiation. Consequently, during the summer,
these windows effectively manage the solar energy entering the building, leading to a reduction in
the energy required for cooling, as shown in Fig. 4A [21].

5.1.2. Photochromic window

Photochromic windows, akin to thermochromic glazing, operate with a comparable principle.
However, they distinguish themselves in their ability to regulate and adjust the transmission of solar
heat and light based on solar radiation rather than temperature variations [20]. These windows
feature a photochromic layer, typically composed of silver crystallites enclosed within an AIPO4
or borosilicate matrix. The color of the tinted glass is determined by the size of the silver
crystallites, as shown in Fig. 4B [22].

N

Upy S,
Uni
Clear state Dark state Clear state Dark state

Outside inskda Outside Inside Onitzide Inside Outside [ sice

il o B e |

Visible light Visible light Visible light Visible light

@ @
g = =g g g
L M I g:
Y < = <|(=] o||o| % |o ol Z|o
L SOW e L L Low E-layer - Silver crystallites Silver crystallites
in AIPO4 matrix
VO2 + metal oxide VO2 + metal oxide in AIPO4 matrix

Fig. 4. (A) Thermochromic glzing operation, source: [21], (A) Photochromic glzing operation, source: [22].

5.1.3. Electrochromic window

Electrochromic windows respond to external electrical stimuli by transitioning from a clear to a
dark state through oxidation or reduction reactions. This transformation effectively regulates and
reduces the solar heat entering the building. These windows consist of five layers. The layers
arrangement is as follows; transparent conductive oxide for the outside layer, electron accumulation
layer which performs as a counter electrode, ion conductor layer or electrolyte, electrode layer, and
finally transparent conductive oxide for the outside layer [23], as shown in Fig. SA.
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5.1.4. Gasochromic window

Gasochromic windows typically consist of a gas-sensitive layer, often made of materials like
tungsten oxide (WO3) or similar compounds. When this layer is exposed to certain gases, such as
hydrogen (H2), it undergoes a chemical reaction that causes it to change from a clear or transparent
state to a dark or opaque state. This is useful for improving energy efficiency and occupant comfort

in buildings [19,24], as shown in Fig. 5B .
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v
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(A)

Tinted state
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Soja, ’;‘:
L
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Fig. 5. (A) Electrochromic glzing operation scheme, source: [21], (B) Gasochromic glzing operation, source:

[19,21].

6. CASE STUDY

The base case involves an office building located in New Cairo, Egypt Fig. 6. This building features
an open floor plan with a single core and is occupied by many people who work long hours. These
conditions offer significant opportunities to decrease energy usage and improve thermal comfort

by using switchable glazing.

Fig.6. Case study location, source :author based on [25].
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6.1. Weather Data

The Cairo region falls under the Bwh climate classification according to the Koppen system,
signifying a hot and arid climate. Summers are hot and dry with temperatures reaching up to 45°C,
and the area experiences continuous sunshine throughout the year [26]. Data from Cairo  ETMY
indicates that the average annual air temperature in Cairo is 22°C. August records the highest
annual mean air temperature, reaching 35°C, while January exhibits the lowest annual mean air
temperature at 10°C. (This information is based on data from Cairo International Airport.) [27].

6.2. Case Study Description

The base case involves an office building with a total area of 893 square meters Fig. 7. This building
1s divided into two main zones: the office area and the service area. It comprises a basement floor
and extends to five floors above ground level. The building features a curtain wall fagade, and the
third floor is selected as the reference point for the base case. Considering the office building type
in this case study, the operational schedule is defined as five working days per week, from 8:00
a.m. to 4:00 p.m., with an occupancy density of 4.5 square meters per person.

7
7

7]
0
7

2 7 7| 7
7 P Z
7 7 7
% 7 Z "

Fig. 7. Case study plan, source: author.

6.3. Simulation Methodology

The aim of this simulation is to analyze the impact of employing various switchable glazing
types on the annual energy consumption of the case study building. After establishing the base case,
the simulation process involves two phases. The first phase employs conventional window glazing,
while the second phase employs different types of switchable glazing, which fall under the category
of adaptive facades. Each type of switchable glazing will be individually simulated in this second
phase.

6.3.1. Simulation process depending on conventional windows

In this phase, conventional and standard window glazing components typically employed
in the construction of office buildings in Egypt will be utilized. The chosen glazing type is double
glazing, consisting of 6mm glass, a 12mm air gap, and another 6mm glass. The properties of the
glazing material are detailed in Table 2 [17,19, 23].

Table 2. Specifications of used glass in the base case, source: author based on [17, 9, 23].

Property Value
o Thickness 24
"
= L
on Heat transmission 0.89612
&
-
&) Light transmission 0.91339

137 JAUES, 19, 70, 2024



ENHANCING ENERGY CONSUMPTION IN EGYPT WITHIN ADAPTIVE FACADE TECHNIQUES

6.3.2. Simulation process using switchable windows

This process involves simulating four distinct types of switchable glazing, belonging to the
category of adaptive facades. Each type is simulated separately, and the specific properties of the
switchable glazing are detailed in Table 3. Additionally, LED lighting was incorporated [21- 23].

Table 3. Specifications of Switchable glazing types, source: author based on [21-23].

Property Value
2
=] Thickness 24 mm
)
'Eu Heat transmission 0.19 — 0.02
% (clearest state —dark state) . ’
b7
= Visible transmission
0.49 —0.06
= (clearest state —dark state)
9 Thickness 24 mm
=
=
= -
g Heat transmission
= -
'_g (clearest state —dark state) 0:251-0.115
k=
= Visible transmission -
~ -
(clearest state —dark state) 0.65-0.246
o Thickness 24 mm
‘g
o Heat transmission
-% (clearest state —dark state) 043 -0.09
3
5 Visible transmission 0.64—015
(clearest state —dark state) : :
2 Thickness 24 mm
g
2 Heat transmission
= 0.29 — 0.006
Té (clearest state —dark state)
e
9 Visible transmission
L 5 -
m (clearest state —dark state) 0-51-0.01

6.4. Simulation Results

In the results, it was observed that the annual energy consumption significantly decreased with the

implementation of various types of switchable glazing. Notably, this reduction in energy

consumption was accompanied by a decrease in carbon dioxide (CO2) emissions, highlighting the
environmental benefits of using these adaptive facade technologies.

Additionally, the solar gains through the exterior windows saw a notable reduction, contributing to

improved thermal comfort and energy efficiency. According to the data presented in Table 4 and

Fig. 7, the energy consumption and CO2 production for a single-floor office space decreased by a

percentage ranging from 20% to 28%. Similarly, solar gains through the exterior windows were

reduced from 79.6% to 92%.

e Thermochromic Glazing (28% Reduction): The utilization of thermochromic glazing achieved
a substantial 28% decrease in annual energy consumption and CO2 emissions. This glazing
type, which responds to temperature changes by darkening in hot weather and lightening in
cold weather, contributed to a 92% reduction in solar gains from exterior windows.

e Photochromic Glazing (26.7% Reduction): The installation of photochromic glazing led to a
noteworthy 26.7% reduction in annual energy consumption and CO2 emissions. It also resulted
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in an 87.5% reduction in solar gains through exterior windows. Photochromic glazing adapts
to sunlight exposure, reducing glare and cooling demand.

e Gasochromic Glazing (25.5% Reduction): The use of gasochromic glazing led to a 25.5%
reduction in annual energy consumption and CO2 emissions. It was associated with a 79.6%
reduction in solar gains through exterior windows. Gasochromic materials react to specific
gases, making them advantageous for maintaining indoor comfort and reducing heating and
cooling energy demands.

e Electrochromic Glazing (20% Reduction): Implementing electrochromic glazing resulted in a
20% decrease in energy consumption and CO2 emissions. It also led to an 80.7% reduction in
solar gains through exterior windows. Electrochromic glazing can adjust its tint based on
temperature changes, thereby regulating incoming sunlight and heat.

These findings highlight the considerable energy savings, CO2 reduction, and control over solar

gains achieved through the implementation of switchable glazing, emphasizing their pivotal role in

enhancing building performance and sustainability.

Table 4. Simulation results, source: author

Energy co2 Solar Gains Exterior
Glazing type Consumption Production ‘Windows
( Mwh ) (kg *10%) ( Mwh)
Clear Glazing 428.16 259.48 288.97
Thermochromic 308.65 187.05 23.17
Photochromic 314.02 190.30 36.04
Gasochromic 319.08 193.37 59.17
Electrochromic 34393 208.42 55.69

139 JAUES, 19, 70, 2024



ENHANCING ENERGY CONSUMPTION IN EGYPT WITHIN ADAPTIVE FACADE TECHNIQUES
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(D)

Fig. 7. Simulation results : (A) Annual energy consumption, (B) Annual CO; production, (C) Annual solar gains of
exterior windows (D) The relation between the annual energy consumption and the annual solar gains for windows,
source: author.

CONCLUSIONS

Ultimately, this research highlights the significant potential of adaptive facade techniques
in reducing annual energy consumption and promoting sustainability in building design. The study
found that various switchable glazing technologies, such as thermochromic, photochromic,
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gasochromic, and electrochromic glazing, can lead to substantial energy savings ranging from 20%
to 28%. These technologies not only reduce energy consumption but also decrease solar heat gains
for exterior windows, lower CO:2 production, and enhance occupant comfort and well-being.

However, the effectiveness of adaptive facade techniques can vary based on factors like
climate and building materials characteristics, emphasizing the importance of tailored solutions.
Overall, adaptive facade techniques offer a promising pathway toward energy-efficient buildings,
making them a crucial part of our efforts to combat climate change and create a sustainable future
in the built environment. Further research and innovation in this field about other techniques are
essential for continued progress.
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