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Abstract:  

Virtual screening (VS) 

techniques have emerged in 

the past decade as an efficient 

strategy in lead 

identification. Molecular 

docking as well as 

pharmacophore and 3D-

QSAR modelling are two 

major VS techniques 

standing out as cornerstones 

in the process of new drug 

discovery. Explanation of the 

main virtual screening 

techniques as well as the 

most commonly used validation parameters are discussed thoroughly emphasizing their use and 

shortcomings. Criteria for the selection of benchmarking datasets and training sets for molecular 

docking, pharmacophore, and 3D-QSAR models are discussed. Understanding the basics behind 

these techniques and their validation is crucial to judge the validity of the obtained results. 

Computational technologies have witnessed great improvement in the last few years which had a 

great impact on the improvement of virtual screening. Fields such as cloud computing and deep 

learning algorithms are among the technologies modeling the future of computer-aided drug 

design. This mini-review gives summarized knowledge for guiding beginners as well as experts in 

the field of virtual screening. 
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1.  Introduction 

In the past 100 years and with the 

development of molecular sciences, the 

discovery of new proteins and their unique 

structure has been attracting significant 

attention as a valuable source of lead drug 

targets (1). Those leads can be synthetic, 

natural, or semi-synthetic compounds from a 

naturally occurring nucleus. 

Computer-aided approaches (in-silico) are 

playing a crucial role in the process of lead 

drug identification complementing other 

techniques such as high throughput screening 

(HTS) bioactivity-guided fractionation, 

bioautography, HPLC- based activity 

profiling, MS & NMR based methods, and 

many others are examples of these 

approaches (2, 3). These computational 

methods are becoming increasingly popular 

due to their cost-effectiveness and time 

efficiency compared to conventional 

methods used in the drug discovery process. 

Computer-aided drug discovery (CADD) 

approaches incorporate different fields such 

as drug target identification, virtual screening 

of chemical structure databases for prototype 

identification, in silico assessment of 

pharmacokinetics properties and toxicity 

profile (ADMET) of drug candidates, and 

optimization of these candidate compounds 
(4-6).   

Among CADD, virtual screening (VS) 

approaches have a significant impact on 

identifying lead compounds for a given 

target. Molecular docking, pharmacophore 

modelling, structure-activity relationship 

(SAR), and quantitative structure-activity 

relationship (QSAR) are utilized in virtual 

screening (7, 8). Being performed on a virtual 

level, validation of these techniques is the 

milestone in evaluating their outcomes. A 

massive achievement in computational 

technologies and the introduction of cloud 

computing and advances in machine and 

deep learning led to the improvement in the 

field of virtual screening (9).   

This mini-review is a simplified explanation 

of commonly used validation parameters and 

metrics that are applied in molecular docking 

and 3D-QSAR modelling. We also shed light 

on the basics that help researchers and even 

students to understand these techniques, their 

applications, and threats. In addition to some 

of the future perspectives of virtual screening 

techniques. 

2. Virtual screening (VS) programs: a 

useful means for performing in-silico work 

Generally, virtual screening (VS) programs 

are used for the following purposes: 1) 

identification of potential ligand–receptor 

interaction points, 2) reducing huge 

compounds database to the smaller matrix of 

predicted active compounds (hits), 3) 

designing novel compounds via using 

fragments and/or functional groups into new  

chemotypes, and 4) optimization of lead 

compound characters as pharmacokinetic 

properties and drug metabolism (10). 

Advances over the past 50 years resulted in 

the development of more than 60 different 

docking tools and programs such as Glide, 

GOLD 1.1, FlexX 1.8, DOCK, Autodock, 

and others (11). A list of the commonly used 

docking softwares are given in Table 1 (12, 13). 

In addition, a wide variety of pharmacophore 

modeling software like; Catalyst, Phase, 

HipHop, HypoGen, DISCO, MOE, and 

others were introduced, and are introduced in      

Table 1 (14, 15). These softwares and engines 

differed mainly in the algorithms used for the 

search and filtering methods. These 

algorithms perform the general filters of the 

compound libraries. Identify the potential 

ligand–receptor interaction points. In 

addition, evaluate these interactions and 

determine their strength through scoring 

function (16, 17). 
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Table 1: Some molecular docking and pharmacophore modelling softwares of common use in 

virtual screening  
Software Reference Website (if available) 

Molecular Docking (SBVS) 

AUTODOCK (18) https://autodock.scripps.edu/ 

Dock (19) http://dock.compbio.ucsf.edu/ 

FlexX (20) http://www.biosolveit.de/flexx/ 

FRED (21) http://www.eyesopen.com/oedocking 

GLIDE (22) http://www.schrodinger.com/ 

GOLD (23) https://www.ccdc.cam.ac.uk/solutions/software/gold/ 

ICM (24) http://www.molsoft.com/docking.html 

Ligand-

Receptor 

Docking 

(12) http://www.chemcomp.com/software-sbd.htm 

Maestro (25) http://www.schrodinger.com/downloadcenter/ 

SLIDE (26) https://kuhnlab.natsci.msu.edu/software/slide/index.html 

Surflex (27) https://www.biopharmics.com/ 

Virtual 

Docker 
(28) http://molexus.io/molegro-virtual-docker/ 

ZDOCK (29) http://zlab.umassmed.edu/zdock/ 

Pharmacophore modeling 

Catalyst (30) - 

COMSIA (31) - 

DISCO (32) - 

GALAHAD (33) - 

GASP (34) - 

HipHop (30) - 

HypoGen (35) - 

LigandScout (36) https://www.inteligand.com/ligandscout/ 

MOE (14) https://www.chemcomp.com/Products.htm 

PHASE (37) https://newsite.schrodinger.com/platform/products/phase/ 

PhDOCK (38) - 

ZincPharmer (39) http://zincpharmer.csb.pitt.edu/ 

 

3. Molecular docking (Structure-based 

virtual screening) 

Molecular docking uses computer 

technology to fit the conformations of ligands 

(usually small molecules or another protein) 

into protein binding sites and predict the best 

structure of receptor-ligand complexes that 

complements the protein binding site with the 

lowest energy (40-42). The 3D structure of the 

target should be available for molecular 

docking and hence it is named structure-

based virtual screening (SBVS). X-ray 

crystallography and NMR studies help in 

solving the  3D structures, (43) or built using 

homology modelling with related proteins (44) 

and they are freely available at the Protein 

Data Bank (PDB) (https://www.rcsb.org/) 

facilitating molecular docking studies. In 

selecting this 3D structure, crystal structures 

with the bound ligands are preferred since 

they give information about features of the 

binding site and ligand-target interactions (7) 

Two fundamental steps are performed in 

molecular docking software, first, prediction 

https://autodock.scripps.edu/
http://dock.compbio.ucsf.edu/
http://www.biosolveit.de/flexx/
http://www.eyesopen.com/oedocking
http://www.schrodinger.com/
https://www.ccdc.cam.ac.uk/solutions/software/gold/
http://www.molsoft.com/docking.html
http://www.chemcomp.com/software-sbd.htm
http://www.schrodinger.com/downloadcenter/
https://kuhnlab.natsci.msu.edu/software/slide/index.html
https://www.biopharmics.com/
http://molexus.io/molegro-virtual-docker/
http://zlab.umassmed.edu/zdock/
https://www.inteligand.com/ligandscout/
https://www.chemcomp.com/Products.htm
https://newsite.schrodinger.com/platform/products/phase/
http://zincpharmer.csb.pitt.edu/
https://www.rcsb.org/
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of ligand orientation and conformation inside 

the target’s active site (Pose prediction) (16, 45, 

46). Second, the scoring or evaluation function 

measures the fitness of each predicted ligand 

pose into the target binding site through the 

calculation of their free binding energies 

where lower values correspond to more 

favorable ligand binding (ranking) (41). 

4. Docking validation; method for 

evaluating docking performance 

Validation of docking studies represents the 

evaluating tool to assess the accuracy of 

docking software (47-51). Docking validation 

studies are divided into two interlacing 

classes, (i) Ligand pose prediction, and (ii) 

Ligand screening (41, 50) (Fig. 1). 

 

 

Fig. 1: Molecular docking validation studies  

 

4.1. Ligand Pose Prediction 

It is based upon the capability to replicate the 

experimental coordinates of previously 

docked ligands. Docking software packages 

are utilized to re-dock the original co-

crystallized ligand into the target's active site. 

Then, computing the root mean square 

deviation (RMSD) that denotes the mean 

distance of the ligand’s atoms in the model 

compared to those in the cocrystallized 

structure after receptor superposition (Fig. 2). 

Programs able to return poses with a 

preselected RMSD value (usually 1.5 or 2 Å) 

are accurate in pose prediction. It is accepted 

that RMSD values of 2 °A are an indication 

of the accuracy of protein–ligand docking 

algorithms beyond which the prediction is 

considered not reliable (16, 49). 

 

 

Fig. 2: Ligand pose prediction  

 

4.2. Ligand Screening (Enrichment 

descriptors) 

The key for molecular docking is the 

capability of docking protocol to pick active 

molecules among a set of inactives. This is 

performed through scoring and ranking that 

are evaluated by calculating enrichment 

descriptors. These descriptors indicate the 

capability of scoring functions to envisage 

the correct poses (16, 49). The VS technique is 

considered successful based on its ability to 

organize the active compounds in descending 

order of activity in a ranked hit list. The top 

fraction of the obtained hit list is likely to be 

evaluated using experimental in-vitro / in-

vivo models (52).  

The two most important values in the 

majority of the enrichment descriptors are 

sensitivity and specificity. Sensitivity (Se, 

true positives) denotes the ratio between the 

number of active compounds recovered by 

the virtual screening method and the total 

number of active molecules in the database. 

Specificity (Sp, false positives), denotes the 

ratio between the number of inactive 

compounds that were not selected by the VS 

method and the total number of inactive 

present in the database (52). These two terms 

are calculated according to the following 

equations*: 
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*Where (TP): true positive compounds, 

(FN): false negatives that are active 

molecules not identified by the VS method. 

(TN): true negatives, the unselected inactive 

compounds, (FP): false positive compounds 

(decoys). 

Evaluation of VS softwares is carried out 

using several metrics such as Area Under the 

Curve (AUC), Enrichement factor (EF), 

Boltzmann-enhanced discrimination of ROC 

(BEDROC), Robust initial enhancement 

(RIE), Receiver operating characteristic 

(ROC), and others (53). It is of great 

importance that VS protocol can organize the 

most actives at the top of a rank-ordered list 

(the “early recognition problem”). A VS 

algorithm that can identify all active 

molecules but fails to rank them at the top is 

useless. This is because  we only carry out 

biological evaluation for about 0.1–10% of 

the molecules in the rank-ordered list (52). 

Some metrices such as the (RIE) and 

(BEDROC) tackle the issue of “early 

recognition” in VS (50). A brief explanation of 

each of the enrichment descriptors is given 

below: 

4.2.1. Enrichment factor (EF) 

The enrichment factor (EF) indicates the 

capability of the docking software to point 

out true positives (active ligands) from the 

total database in comparison with random 

selection. In general, the following equation 

is used to estimate EF* 

EF(subset)

=
[
Ligands(selected)

N(subset)
]

[
Ligands(total)

N(total)
]

 

 

              (3) 

* Where ligands represent the active 

compounds in the database and N (subset) is 

the number of the compounds (eg: 100) 

obtained by VS software from the total 

number of compounds present in the database 

N (total) (54).  

A more simplified form for EF calculation is 

given by the equation (55) : 

EF(X%) = (100/X) * (Fraction of Actives 

Found)                                                    (4) 

Where X is a given fraction of the ranked data 

set for which enrichment is calculated and 

“fraction of actives” is the ratio between the 

retrieved active compounds by VS software 

to the total number of active compounds that 

exist in the original database (Ligands 

selected)/ (Ligands total). 

The enrichment factor is evaluated at 

different fractions of the ranked database. 

Early enrichment is usually calculated for the 

top 1% of the ranked hit list. Besides, late-

stage database screening is addressed through 

the calculation of the enrichment factor at 

20% of the ranked database (EF20). The 

higher the value of EF is better, but it should 

be noted that the maximum attainable value 

is obtained when the VS software retrieves all 

the active compounds present in the database; 

(Fraction of Actives Found=1). The 

maximum values for EF(2%), EF(5%), and 

EF(10%) are 50, 20, and 10, respectively (56). 

The EF is highly dependent on the proportion 

of the actives in the tested database and thus 

it can only be used to compare various VS 

workflows when the same database of actives 

and decoys is used for assessment. EF doesn't 

represent the ranking ability of VS software 

since all actives participate equally to the 

value regardless of their position in the rank-

ordered list (52). 

4.2.2. Receiver Operating Characteristic 

(ROC) 

The ROC approach, originating from signal 

detection analysis, is widely used in many 

fields. It involves plotting true-positive 

fractions (sensitivity) against false-positive 

ones (1-specificity) for all compounds in a 

ranked dataset. Plotting the ROC curve 

Se =
TP

TP+FN
                      (1) 

Sp =
TN

TN + FP
 (2) 
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represents both the sensitivity and specificity 

of the VS protocol (54, 57, 58). 

ROC curves close to the upper-left corner 

indicate better performance of VS workflow 

in discriminating actives from decoys. 

Theoretically, in ultimate distributions where 

there is a clear distinction between active 

compounds and inactive ones, the curve is 

aligned vertically to the upper-left corner. A 

diagonal ascending from the origin to the 

upper right would indicate a random 

classification of the compounds signifying 

poor VS protocol (Fig. 3) (52, 59). 

 

Fig. 3. ROC curves (Sensitivity as a function 

of 1 -Specificity) in 3 different cases 

representing ideal, practical (ROC curve), 

and random distributions of actives and 

decoys 

 

4.2.3. Area Under the Curve (AUC) 

It is a practical way of interpreting the results 

of ROC curves. The value of the (AUC) is 

obtained by summing the areas of all the 

rectangles formed by the Se and 1-Sp values 

for the different thresholds. AUC is bounded 

between zero and 1, where value of zero 

indicates poor performance while 1 indicates 

efficient VS protocols. Generally speaking, 

higher values of AUC denote the success of 

VS process in identifying actives from 

inactive molecules in the database. The ideal 

active and decoy distributions should have a 

value of 1, while a random distribution 

results in an AUC value of 0.5. 

On the other hand, AUC value less than 0.5 

indicates a VS method's unfavourable 

scenario, where higher scores are given to 

decoys rather than to actives. ROC and AUC 

metrics do not rely on the ratio of active 

compounds to decoys in a dataset (52, 57). 

4.2.4. Robust Initial Enhancement (RIE) 

The RIE descriptor describes how many 

times the distribution of the ranks for active 

molecules caused by a VS software is 

superior to a random rank distribution (52). It 

uses a continuously decreasing exponential 

weight α as a function of rank, where the 

active molecule located at the beginning of 

the ordered list gets a weight of 

approximately 1, and decreasing weights are 

given for increasing ranks of the actives. This 

function for the retrieved actives is as 

follows: S = ∑ exp(−
rank(i)

α
)actives

i=1          (5) 

The value [S] denotes the total of all weights 

for all active molecules. This value is divided 

by the mean sum (S), which is derived from 

calculations where the active molecules get 

randomly selected ranks to obtain the final 

RIE descriptor according to the equation (50)  

RIE= 
𝐒

(𝐒)
                                                 (6) 

RIE is similar in meaning to EF and hence, 

1/α for RIE resembles the X for EF indicating 

the fraction of the hit list investigated (eg: α= 

20 and 100 meaning the first 20 and 100 

retrieved compounds, respectively). 

A VS technique that is able to score more 

active molecules at the top of a rank-ordered 

list than a random distribution is generally 

indicated by RIE values larger than 1. Values 

of 1 indicate a random rank distribution of the 

active molecules. Therefore, RIE is sensitive 

to early recognition problem. RIE metric is 

highly affected by the ratio of actives to in 

actives and an adjustable parameter, the 

exponential weight (52, 57). 
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4.2.5. Boltzmann-  Enhanced Discrimination 

of ROC (BEDROC) 

It is a generalized AUC descriptor that 

contains a decreasing exponential weighting 

function that emphasizes active molecules 

ranked at the top of the ordered list. In this 

context, this descriptor addresses the early 

recognition problem in addition, it measures 

the overall performance of VS process not at 

a preselected threshold as other descriptors 
(52). This function is derived from RIE metric 

and hence has an α value (tuning parameter) 

similar in meaning to RIE. BEDROC  value 

is between [0, 1] it represents the probability 

that an active is ranked by VS method before 

a randomly selected compound from a 

hypothetical exponential probability 

distribution function with parameter α (57). 

The value of this tuning parameter α 

concludes what part of the curve is “early”. 

The suggested α value for BEDROC 

is 20, which indicates that 80% of the 

BEDROC value is contributed by the first 8% 

of the relative rank. A value of α= 160 is 

widely used and corresponds to 1% of the 

actives in the rank-ordered list. It should be 

noted that BEDROC scores are only 

comparable when the same α values are used 
(50).  

This metric can be considered as a “VS 

usefulness scale” with probability meaning 

like ROC curve and thus BEDROC values 

more than 0.5 account for a good VS 

workflow able to retrieve actives with high 

ranks within the screened dataset (52). 

5. Benchmarking dataset; a requirement 

for enrichment calculations 

Retrospective assessment of VS approaches 

is carried out through examination of test set 

enrichment or benchmarking datasets. These 

sets consist of known actives and putative 

inactives, often referred to as decoys. The 

decoys selection process is very crucial in 

evaluating enrichment factors in docking 

screens (60). Thus, on designing the decoys, 

they should resemble the physical properties 

of the active ligands while being chemically 

distinct from the ligands to be non- binders of 

the target structure thus leading to biased 

enrichments with artificially good results (61-

63). 

Investigators have put together sets of ligands 

and suspected decoys for numerous targets 

leading to the development of numerous 

benchmarking datasets (60). The Directory of 

Useful Decoys (DUD) is a widely used 

benchmarking dataset that comprises 

extensive decoy sets for a variety of protein 

targets and active ligands while maintaining 

physical similarity. This dataset is widely 

used for the evaluation of docking methods. 

An improvement of this dataset has been 

made, leading to a database named, enhanced 

DUD (DUD-E). the (DUD-E) is based on the 

intersection of the databases: ChEMBL for 

ligand affinities, ZINC for inactive 

molecules, and the RCSB-PDB database for 

target structures selection. This dataset 

provides active ligands and decoy sets for 

totalling 102 proteins. One can get the entire  

DUD-E benchmarking set for free at 

http://dude.docking.org (64). Moreover, with 

just a list of ligands, the online protocol used 

to create the decoys for DUD-E can be used 

to create decoys for any target, making it 

possible to explore new targets. 

6. Pharmacophore modelling (Ligand-

based virtual screening) 

The concept of a pharmacophore has been 

applied in many software packages and has 

many applications in the drug discovery and 

development process (65). Building a 

pharmacophore model can be made through 

one of two approaches: Ligand-based 

pharmacophore modelling and Structure-

based pharmacophore modelling (E- 

pharmacophore). Ligand-based modelling 

relies on knowing the 3D structures of active 

ligands against a specific target that are 

superimposed to extract common chemical 

features responsible for bioactivity. This 

approach does not require knowledge of the 

http://dude.docking.org/
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target protein structure and hence, could be 

used for pharmacophore model generation 

for target structures not fully resolved by 

NMR or X-ray crystallographic techniques 
(15). Structure-based pharmacophore 

modeling relies mainly on the 3D structure of 

a macromolecular target either free or with its 

bound ligand. This pharmacophoric model is 

derived based on analyzing complementary 

chemical features of the target active site and 

their spatial relationships (15, 65). 

Pharmacophore models are designed to 

provide relevant information for drug design 

by easily interpreting the locations of 

functional groups involved in ligand-target 

interactions and the various forms of non-

covalent bonding (66).  

Although their representation varies among 

different software, these models are 

commonly represented by spatial 

arrangement (Fig. 4) that contain the 

pharmacophoric points (fragments, chemical 

features) and the geometrical constraints 

connecting them (distances, torsionsand 3D-  

coordinate location constraints as excluded 

volumes) (67). 

Regions of “forbidden” space that the active 

molecule should not occupy to avoid a steric 

clash with the target are represented in 

pharmacophore models as variably sized 

spheres excluded volumes”. The hits 

obtained following pharmacophore model 

filtration must fit the interaction features 

defined by the model and fit within the 

region. 

7. 3D-Quantitative structure-activity 

relationship (3D-QSAR) models 

QSAR has been known for decades, simply, 

it's a process for developing mathematical or 

computer models to measure the 

relationships between chemical substances' 

physicochemical characteristics and 

biological activities through the use of 

chemometric techniques. These QSAR 

models should be reliable and statistically 

significant for the prediction of the activities 

of new chemical entities (69). To build 3D-

QSAR model, first, experimental activity 

data for enzyme inhibitors or receptor ligands 

should be available. This is followed by 

superimposition or alignment of the 3D 

structures of these molecules to identify and 

determine molecular descriptors of these 

molecules. Then, finding the correlations 

between these descriptors and the biological 

activity and finally, testing the statistical 

stability and predictive power of the 

developed 3D-QSAR model (70). 

Different approaches are used for 3D-QSAR 

model development according to the software 

applied. In most cases, developing a 

pharmacophore model comes as a preceding 

step to the generation of 3D-QSAR model as 

a superimposition process (69, 71).  

 

Fig. 4: Representation of pharmacophore 

model with the active compound aligned 

where HBA; hydrogen bond acceptor, HBD; 

hydrogen bond donor, HYD; hydrophobic, 

EV; excluded volume. Figure adapted from 

Kaserer et al.(68), which was published under 

the Creative Commons by Attribution (CC-

BY) license 

 

8. Training set specification for building 

pharmacophore and 3D-QSAR models 

The development of either pharmacophore / 

3D-QSAR models for a specific target using 

(The ligand-based approach) is often 
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accomplished by taking a series of molecules' 

3D structures and extracting common 

chemical characteristics from them 

interacting with the macromolecular target 

(training set) (72). Selecting training set 

compounds is a very challenging task. The 

size, chemical variety, and kind of ligand 

molecules all have a significant influence on 

the pharmacophore model produced. It has 

been demonstrated that different 

pharmacophore models could be generated 

for the same molecular target using the same 

program when altered training set 

compounds are used (73). For pharmacophore 

models, selecting the training set is a simple 

and flexible process. Compounds in the 

training set could be as minimum as two 

compounds with no defined maximum 

number composing the training set (74). 

In the case of 3D-QSAR, the training set 

implemented in pharmacophore model 

construction could serve as a set for 3D-

QSAR model generation provided that the 

compounds possess the following criteria (69); 

• Compounds with identical binding modes 

share the same mechanism of action.  

• The biological activity of the chosen 

compounds should be assayed using the 

same experimental study and the results 

expressed using the same unit of 

measurements (preferably data obtained 

from a single source). 

• Biological activity data should cover a 

wide range (4 orders of magnitude is 

recommended), where several ligands 

should be included from all categories 

from the most active to the least ones even 

the inactives are included (75). 

The minimum number of training set 

compounds should be 16 to ensure a 

statistically significant model, while no limits 

exist for the maximum number used (74, 76). 

To obtain compounds for training sets, many 

public databases are available such as 

ChEMBL and Drugbank that include activity 

data of compounds. In addition, ToxCast, 

Tox21, and PubChem Bioassay provide data 

for both active and inactive molecules. These 

databases could be used for extracting such 

compounds with their activity data besides 

the literature review (74). 

9. 3D-QSAR model validation 

QSAR models must be validated to confirm 

their reliability; and the capability of the 

model to predict compounds’ activity outside 

the training set. There are two types of 

validation used for 3D-QSAR models: (a) 

internal validation, and (b) external 

validation (69, 77). 

9.1. Internal validation 

It is performed on the training set used for 

developing the 3D-QSAR model. The most 

common method used for this purpose is 

“leave-one-out” (LOO) - cross-validation 

approach (70). This is done via testing the 

ability of the model composed from the 

training dataset to predict one of the 

observations previously eliminated from it. 

This process is repeated so that all of the 

observations play the role of a test compound 
(78, 79).  

The “leave-n-out” cross-validation method is 

considered more reliable and robust where a 

model constructed from the remaining 

compounds is used to predict the activity of 

small subsets of the training set that are 

temporarily held out (71). The predictive 

power of the model is then assessed by 

calculating the R2 of the training set. R2 (R-

squared; coefficient of determination) shows 

how resilient the model is to modifications in 

the training set. It has a maximum value and 

is computed between the leave-n-out 

predictions and the predictions made by the 

model constructed using the entire training 

set of 1 (79). 

9.2. External validation 

External validation involves predicting the 

activity of new compounds not included in 

the original true test set. This method is 

considered far superior to the internal cross-

validation process (78, 79). The statistical 
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parameters used to judge external validation 

are Q2 (predictive squared correlation 

coefficient) and, RMSE (root mean square 

error) (77, 80).  

It should be noted that many different 

statistical parameters are used for 3D-QSAR 

model validation. Some of the commonly 

used parameters for the training set are (SD) 

Standard deviation of the regression, R2 for 

the regression, F (Fischer statistic or variance 

ratio) which can indicate the level of 

statistical significance of the regression 

model where higher values indicate more 

significant regression, and its level of 

significance (P-value). For test set: (RMSE) 

Root-mean-square error, (Q2) for the 

predicted activities, and (Pearson-R) for the 

correlation between the predicted and 

observed activity for the test set (69). 

Moreover, plotting the experimental 

activities against the predicted ones for the 

training and test sets and calculating their R2 

is a further assessment of the reliability of the 

developed 3D-QSAR models. R2 values near 

1 indicate models with more predictive 

ability of the model especially for molecules 

outside the training set (37). 

10. Advantages and limitations of virtual 

screening techniques 

Virtual screening techniques were proved a 

powerful strategy for speeding up the drug 

discovery process. Screening gigantic 

databases in a timewise and cost-effective 

manner is a breakthrough of VS techniques. 

Compared to high throughput screening 

(HTS), VS is performed in-silico which 

doesn't necessitate the existence of all the 

compounds. This led to the identification of 

active hits with reduced costs (40, 81). 

Nowadays, a large number of docking 

softwares and pharmacophore modelling 

programs exist. This facilitates the 

identification of active drug candidates with 

nM potency. Moreover, VS can be easily 

utilized as a screening tool in finding new 

scaffolds with promising activities. A 

literature survey showed many success 

stories for the discovery of potent drugs 

through VS approaches. Captopril, indinavir, 

saquinavir, and others are a few examples (14). 

Unfortunately, VS techniques suffer from 

some limitations. This is mainly due to the 

fact that living biological systems are very 

complex and their simulation using 

computational methods is impractical. 

Furthermore, the scoring functions used in 

VS usually lead to a high rate of false 

positives and/or false negatives results. VS 

protocols are highly dependent on the 

database used; thus the results can vary 

greatly even for the same target.  

Docking simulation algorithms suffer from 

the limited flexibility of the protein or 

enzyme structure while offering high 

flexibility of the screened ligands. In living 

systems, both receptor and target molecules 

are highly flexible in solution, thus docking 

using limited protein flexibilities may lead to 

the wrong results. Some algorithms don't 

incorporate the effect of water molecules or 

other solvents that have a fundamental role in 

cellular systems. 

The generation of pharmacophore models 

doesn't take into account the dynamic nature 

of the receptor and ligand due to their 

flexibility in living cells. This leads to models 

lacking important features that could 

participate in predicting potential hits (82). A 

major limitation of the pharmacophore model 

is that they include the chemical nature of the 

ligands and are missing variables that can 

influence the binding of active compounds to 

the specific target. Features such as chemical 

solubility, cell metabolism, membrane 

permeability, and others that greatly affect 

ligand binding to the protein active site are 

not addressed during pharmacophore model 

generation (83). 

11. Cloud computing and deep learning; 

the future of VS techniques 

Over the past few years and with the 

achievements in computer technologies, the 
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virtual screening process has been enhanced 

especially on the scalability level (9). Virtual 

screening could work efficiently with a few 

hundred thousand and a few million 

molecules. Recently, with the availability of 

databases containing a billion molecules or 

more, virtual screening could be performed 

for such gigantic databases utilizing cloud 

computing infrastructure (84). Cloud 

computing infrastructure provides virtual 

machines and millions of processors and 

CPUs for a relatively low cost at any time. It 

is a means to integrate different workflows 

and tools provided through service providers. 

Clouding computing can be performed using 

many service providers such as Amazon Web 

Services and Google Cloud. This allows the 

conduction of virtual screens for a massive 

number of molecules at an affordable cost. 

Cloud computing can replace local compute 

cluster used in research facilities saving the 

expenses of hardware, maintenance, and 

others (85-87). Another major advantage of VS 

techniques is the way the data is being 

processed to provide meaningful results. A 

major achievement is the the use of deep 

learning methods complementing the 

traditionally used machine learning methods. 

Deep learning is classified as a subset of 

machine learning (ML) where the latter aims 

at learning and implementing tasks that can 

be used to predict certain parameter (s). ML 

is utilized in VS through training models 

using datasets of both active and inactive 

compounds then, algorithms are generated 

based on pairs of inputs and outputs, This can 

then be utilized to forecast a compound's 

activity (88). In deep learning (DL), a network 

is created by processing and transforming the 

input data into several hidden layers. These 

hidden layers consist of a linear component 

and a non-linear component, which is 

referred to as the activation function. (89, 90). 

The information-driven through these 

networks results in obtaining highly flexible 

predictive models. Deep neural networks 

(DNNs) are one example of the deep learning 

methods applied in VS (91). These networks 

transform the input data into more complex 

features and thus could have great 

performance in describing the complex 

interactions existing between molecules and 

biological targets (88). Their application in 

virtual screening resulted in many 

advantages, for instance, identifying 

relationships between multiple targets. 

Moreover, deep learning methods allow the 

prediction of hit compounds for targets 

having less training samples based on the 

shared hidden units among the targets (92). 

Deep learning methods adopted in VS have a 

great impact on improving the overall 

performance of VS. They show very 

promising results in comparison with the 

machine learning and docking classical 

approaches.  

12. Conclusions 

Both molecular docking and pharmacophore 

modelling stand out as an effective 

computational technique highly applicable 

during the drug discovery process. Being 

predictive techniques performed on virtual 

levels, their validation is of great importance 

to obtain reliable results. Understanding the 

basic concepts of these validations allows 

researchers to have more accurate insights 

into the results of VS workflow. It also helps 

explain the reliability of the obtained results. 

Validation of molecular docking is performed 

before conducting the screening. meanwhile, 

that of 3D-QSAR is done after model 

development to judge the stability and 

reliability of the model. Despite the wide 

applications of VS strategies in the drug 

discovery process, they suffer from many 

limitations. In particular, a shortage of these 

techniques to simulate the environment in 

living cells. It is strongly recommended to 

combine different VS strategies (SBVS and 

LBVS) to complement each other.  

The field of VS has rapidly evolved with the 

recent development in computing power and 
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machine learning techniques. Cloud 

computing and deep learning are among the 

newly evolved technologies contributing to 

the development of VS techniques. This 

requires the merge between scientific 

knowledge on molecular interactions levels 

with the enormous technological advances to 

provide meaningful results applicable during 

the drug discovery process.  
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