

A Combined Particle Swarm Optimization Algorithm Based on the Previous
Global Best and the Global Best Positions

Mahmoud M. El-Sherbiny
Operations Research Dept, Institute of Statistical Studies and Research (ISSR),

Cairo University, Egypt.
Email. m_sherbiny@yahoo.com

Abstract
This paper introduces a combined algorithm to particle swarm based optimization and discusses the results of

experimentally comparing the performances of its three versions with the performance of the particle swarm optimizer. In
the combined algorithm, each particle flies and is attracted toward a new position according to its previous best position
and the point resulted from the combination of the previous global best position and the global best position. The variants of
the combined algorithm and the particle swarm optimizer are tested using a set of multimodal functions commonly used as
benchmark optimization problems in evolutionary computation. Results indicate that the algorithm is highly competitive and
can be considered as a viable alternative to solve the optimization problems.

Keywords: Particle swarm optimization; Convergence; Evolutionary computation;

1. Introduction

The particle swarm algorithm, which is frequently called particle swarm optimizer, is a new evolutionary algorithm,

where the population is now called a swarm and each individual is called a particle [1]. It is inspired by the behavior of bird
flocking and fish schooling. A large number of birds or fish flock synchronously, change direction suddenly, and scatter and
regroup together. Each particle benefits from the experience of its own and that of the other members of the swarm during
the search for food.

Particle Swarm Optimization (PSO) algorithm was proposed by Eberhart and Kennedy in 1995 [1], and had been applied
to evolve weights and structure for artificial neural networks by Shi and Eberhart in 1998 [2], manufacture and milling by
Tandon in 2000 [3], reactive power and voltage control by Abido M.A. in 2002 [4] and Jiang Chuanwenet in 2005 [5], and
state estimation for electric power distribution systems by Shigenori et al. in 2003 [6]. The convergence and
parameterization aspects of the PSO have also been discussed in [7, 8, 9].

PSO has been successfully used as an alternative to other evolutionary algorithms in the optimization of D-dimensional
real functions. Particles move in a coordinated way through the D-dimensional search space towards the optimum of the
function. Their movement is influenced not only by each particle own previous experience, but also by a social compulsion
to move towards the best position found by its neighbours. To implement these behaviours, each particle is defined by its
position and velocity in the search space. In each iteration, changes resulting from both influences in the particle’s trajectory
are made to its velocity. The particle’s position is then updated accordingly to the calculated velocity. The PSO, its main
variants and the structural model behind it are extensively discussed in [10].

This paper aims to introduce a combined algorithm of PSO and discuss the results of experimentally comparing the
performance of its versions with the particle swarm optimizer (PSO)[8]. In the combined algorithm, each particle flies and
is attracted toward a new position according its own best position and the point resulted from the combination of the the
point resulted from the combination of the previous global best position and the global best position.

The rest of the paper is organized as follows: in section 2, the PSO method is described. In section 3, the combined
algorithm and its versions are exposed. Test functions and test conditions are presented in sections 4 and 5. In section 6,
optimization test experiments are illustrated. In section 7, the experimental results are reported, and are discussed in section
8. Finally, conclusion is reported in section 9.

mailto:m_sherbiny@yahoo.com
http://www.pdffactory.com

2. Particle Swarm Optimization

The particles evaluate their positions relative to a goal (fitness) at every iteration, and particles in a local neighborhood

share memories of their “best” positions, then use those memories to adjust their own velocities and positions as shown in
equations (1) and (2). The PSO formula define each particle as a potential solution to a problem in the D-dimensional space,
with the ith particle represented as Xi = (xi1, xi2, …, xiD). Each particle also remembers its best position, designated as

ipX ,

and its velocity Vi = (vi1, vi2, …, viD) [11].
In each generation (iteration) t, the velocity of each particle is updated, being pulled in the direction of its own best

position (
ipX) and the best of all positions (Xg) reached by all particles until the preceding generation. After finding the

two best values, the particle updates its velocity and positions according to equations (1) and (2).

() () ()() ()()1 1 2 21
ii i p i g iV t aV t b r X X t b r X X t= − + − + − (1)

() () ()1i i iX t cX t dV t= − + (2)

At iteration t, the velocity ()1iV t − is updated based on its current value affected by a momentum factor a and on a term

which attracts the particle towards previously found best positions: its own previous best position (
ipX) and globally best

position in the whole swarm (Xg). The strength of attraction is given by the average of the own and the social attraction
coefficients b1 and b2 . The particle position ()iX t is updated using its current value and the newly computed velocity

()tVi , affected by coefficients c and d, respectively and they can be set to unity without loss of generality [8]. Randomness

useful for good state space exploration is introduced via the vectors of random numbers r1 and r2. They are usually selected
as uniform random numbers in the range [0, 1].

The original PSO formula developed by Kennedy and Eberhart [1] were combined by Shi and Eberhart [2] with the
introduction of an inertia parameter, ω , that was shown empirically to improve the overall performance of PSO.

Several interesting variations of the PSO algorithm have recently been proposed by researchers in [12], [13], [14], [15],
[16], [17]. Many of these PSO improvements are essentially extrinsic to the particle dynamics at the heart of the PSO
algorithm and can be applied to augment the new algorithm presented in this paper. By contrast to most other PSO
variations, this paper proposes a significant modification to the dynamics of particles in PSO, moving each particle towards
a new position according its own best position and the point resulted from the combination between the previous global
best position and the global best position instead of the global best position that used in the standard particle swarm. This is
in addition to the terms in the original PSO update equations.

3. The Combined Algorithm

In the standard PSO algorithm, in each generation t, the velocity of each particle is updated, being pulled in the

direction of its own previous best position (
ipX) and the best of all positions (global position) (Xg) reached by all particles

until the preceding generation. Whereas in the combined PSO algorithm, in each generation t, the velocity ()1iV t − of

particle i is updated based on its own best position (
ipX) and the point (Xc) resulted from the combination of the global best

position (Xg) and the previous global best position (X2g) as illustrated in equation (3). Where R1 and R2 ∈ [0,1] are uniform
random variables defined as the combination weights.

(Xc) = R1 (Xg) +R2 (X2g) (3)
In other words, after finding a new global best position for the (Xg) its old position will be assigned to (X2g) and the

particle updates its velocity according to equation (4) and updates its positions according to equation (2).

() () ()() () ()()1 1 1 1 1 2 21
ii i p i g g iV t aV t b r X X t b r R X R X X t= − + − + + − (4)

http://www.pdffactory.com

In order to study the effects of the parameters R1 and R2 in (4) on the performance of the Combined Particle Swarm
Optimization algorithm (CPSO), three variants were used in the experiments denoted as CPSO1, CPSO2, and CPSO3.

In the CPSO1 version, the particle updates its velocity according to equation 3 with equal random weight combination
between the global best position (Xg) and the previous global best position (X2g). i.e. R1 = R2 =R.

In the CPSO2 version, the particle updates its velocity according to equation 3 with random weight combination between
the global best position (Xg) and the previous global best position (X2g). i.e. R1 and R2 are two different random variables.

In the CPSO3 version, the particle updates its velocity according to equation 3 with random linear combination between
the global best position (Xg) and the previous global best position (X2g). i.e. R2 = (1- R1).

4. Test Functions and Conditions

In order to know how competitive the combined algorithm is and the effects of the combination weights R1 and R2 , we

decided to compare its three versions against the PSO algorithm that is represented in [8]. Five benchmarking functions
were selected to investigate the performance of the three versions CPSO algorithm and PSO. The considered test functions
were used in [6], [7] and [8]. The functions, the number of dimensions (D), the admissible range of the variable (x), and the
goal values are summarized in Table 1.

Two parameter sets (Eqs. (1), (2) and (4)) a and b = b1 = b2 were selected to be used in the test based on the suggestions
in other literature where these values have been found, empiricaly, to provide good performance [10, 7, 9]. and used in
testing the PSO by I.C. Trelea [8].

Parameter set 1 (a = 0.6 and b = 1.7) was selected by the author in the algorithm convergence domain after a large
number of simulation experiments [7].

Parameter set 2 (a = 0.729 and b = 1.494) was recommended by Clerc [18] and also tested in [7] giving the best results
published so far known to the author. All elements of c and d were set to 1 as used in [8].

A more detailed study of convergence characteristics for different values of these parameters exists in [19].

5. Optimization Test Experiments

In order to test the performance of the three versions of CPSO and PSO algorithms two sets of experiments were used

with the above mentioned test conditions and the two parameter sets.
In the first set of experiments, the maximum iteration number was fixed to 2000. Each optimization experiment was run

20 times with random initial values of x and v in the range [xmin, xmax] indicated in Table 1. Population sizes of N = 15, 30
and 60 particles were tested. The number of iterations required to reach the goal was recorded. Average number, median,
minimum, maximum, and success rate of required iterations, and expected number of function evaluations, for each test
function are calculated and presented in Tables 2-6.

In the second set of experiments, Each optimization experiment was run 20 times for 1000 iterations with population

sizes of N = 30 particles. The averages of the best values in each iteration were calculated and plotted in figures 1- 5.
During the optimization process the particles were allowed to “fly” outside the region defined by [xmin, xmax] and also the

velocity was not restricted.

6. The Experimental Results

This section compares the various algorithms to determine their relative rankings using both robustness and convergence

speed as criteria. A “robust” algorithm is one that manages to reach the goal consistently (during all runs) in the performed
experiments [20]. Tables 2–6 present the following information: Average number, median, minimum, maximum number of
iterations required to reach a function value below the goal. Also, success rate of required iterations, and expected number
of function evaluations. The “success rate” column lists the number of runs (out of 20) that managed to attain a function
value below the goal in less than 2000 iterations, while the “Ex. # of Fn. Evaluation” column presents the expected number

http://www.pdffactory.com

of function evaluations needed on average to reach the goal, calculated only for the succeeded runs using the following
formula.

Ex. # of Fn. Evaluation = (Average number of iterations) x (number of particlsin the swarm)/ (success rate)

Table 2 shows that the CPSO1 and CPSO2 algorithms reached the goal during all the runs for solving the Sphere

function (F0) with both parameter sets. While CPSO3 and PSO algorithms failed to reached the goal during some runs with
parameter set 1.

Table 1. Test functions [8]

Name Formula Dim.
D

Rang
[xmin, xmax]

Goal for
F

Sphere
() ∑

=

=
D

i
ixxF

1

2
0

30 [-100, 100]D 0.01

Rosenbrock
() () ()()∑

−

=
+ −+−=

1

1

222
11 1100

D

i
iii xxxxF

30 [-30, 30]D 100

Rastrigin
() ()()∑

=

+−=
D

i
ii xxxF

1

2
2 102cos10 π

30 [-5.12,
5.12]D

100

Griewank
() 1cos

4000
1

1 1

2
3 +

−= ∑ ∏

= =

D

i

D

i

i
i i

x
xxF

30 [-600, 600]D 0.1

Schaffer’s

() ()
()()22

2
2
1

2
2
2

2
1

6
001.01

5.0sin
5.0

xx

xx
xF

++

−+
−=

2 [-100, 100]2 10-5

The optimal solution for all functions is equal to 0

Also, as illustrated in figure 1, all the algorithms, except CPSO3 and PSO with the parameter set1 and 15 particles, have

reached a function value below the goal of the sphere function with both parameter sets. That means the number of
particles affects the convergancy of the CPSO3 and PSO algorithms for such problems type.

None of the algorithms, with the exception of the CPSO3 with both parameter sets and 15 particles and PSO with
parameter set2 and 15 particles, had any difficulty reaching the goal of the Rosenbrock function (F1) during any of the runs.
Table 3 shows the expected number of function evaluations for all the algorithms required for solving the Rosenbrock
function (F1) with the CPSO1 algorithm requiring the fewest function evaluations overall. Also, fig. 2 illustrates that the
CPSO1 and CPSO2 reached a value below the function goal while CPSO3 and PSO stacked near the function goal.

Table 4 shows that the CPSO1 and CPSO2 algorithms perform admirably on the Rastrigin function (F2), but the CPSO3
and PSO algorithms are less robust on the same function.

Note that the CPSO1 algorithm is doing very well on this problem, delivering the best overall performance for the
Rastrigin function where it reached the goal on approximately 60 iterations and reached the optimal solution in
approximately less than 400 iterations as illustrated in fig. 3.

Concerning the effects of the parameter sets on the algorithms performance on Rastrigin function (F2), there is no
significant difference between the algorithms performance with both the parameter sets except the performance of CPSO2
algorithm with parameter set1 is a little mach better than its performance with parameter set2 as shown in figure 3.

http://www.pdffactory.com

Table 2. Average number, median, minimum, maximum, and success rate of required iterations, and
expected number of function evaluations, for the test function F0

Number of algorithm iterations to achieve the goal

Average Median Minimum Maximum
Success Rate Ex. # of Fn.

Evaluation Fun.
of
Part.
N

Algorithm

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2
CPSO1 125 168 126 173 69 102 161 216 1 1 1874 2516
CPSO2 320 471 316 457 249 358 373 613 1 1 4804 7065
CPSO3 632 720 635 699 461 500 903 1313 0.45 1 21070 10796

15

PSO 769 764 722 731 523 586 1377 1275 0.40 1 28838 11460
CPSO1 131 180 127 179 103 137 161 221 1 1 3917 5396
CPSO2 300 404 296 396 259 296 352 528 1 1 9006 12126
CPSO3 311 358 306 360 246 315 499 434 1 1 9323 10739

30

PSO 344 395 333 395 266 330 457 572 1 1 10320 11850
CPSO1 118 157 120 159 90 123 132 185 1 1 7083 9423
CPSO2 264 346 254 346 221 301 302 389 1 1 15816 20760
CPSO3 224 281 222 285 197 245 254 310 1 1 13431 16854

F0

60

PSO 252 314 252 313 214 269 309 368 1 1 15120 18840

Figure 1. Average best fitness curves for sphere function (Fo)

Griewank’s function (F3) proves to be hard to solve for all the algorithms except CPSO1 CPSO2 algorithms, as can be
seen in Table 5. Only the CPSO1 and CPSO2 algorithms consistently reached the goal during all runs with both parameter
sets and they are candidate to reach the optimal solution (see fig. 4) while PSO and CPSO3 did not reach the goal during
some runs (see Table 5).

The CPSO3 failed almost completely to reach the goal for solving Griewank function (F3) with parameter set1 and 15
particles, as can be seen in Table 5 while it reached the goal in almost 11 out of 20 runs. Fig. 4. illustrates the effects of the
parameter sets on the performance of CPSO3 and PSO algorithms. Note that both the CPSO3 and PSO algorithms failed
almost completely to reached the goal with parameter set1 in 1000 runs but they did with parameter set2 in less than 350
runs, while the CPSO1 and CPSO2 algorithms managed to solve the same function consistently with both the parameter
sets. That means CPSO3 and PSO algorithms are very fast in algorithming the solution but making a bridging – zigzagging-
near the optimal solution.

http://www.pdffactory.com

Table 3. Average number, median, minimum, maximum, and success rate of required iterations, and expected
number of function evaluations, for the test function F1

Number of algorithm iterations to achieve the goal

Average Median Minimum Maximum
Success Rate Ex. # of Fn.

Evaluation Fun.
of
Part.
N

Algorithm

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2
CPSO1 88 112 89 105 62 63 119 160 1 1 1318 1673
CPSO2 288 484 276 463 199 281 516 760 1 1 4324 7260
CPSO3 587 753 490 666 325 416 1147 1403 0.50 0.80 17601 14118

15

PSO 531 1430 523 729 413 452 695 9476 0.50 1 15930 21450
CPSO1 84 105 81 105 67 74 110 127 1 1 2520 3149
CPSO2 257 392 258 395 204 253 336 771 1 1 7701 11771
CPSO3 450 477 401 417 212 249 961 1051 1 1 13500 14315

30

PSO 614 900 383 408 239 298 3718 4642 1 1 18420 27000
CPSO1 77 102 76 101 64 80 89 124 1 1 4623 6138
CPSO2 227 309 218 298 174 234 468 430 1 1 13590 18561
CPSO3 263 356 230 280 170 215 531 775 1 0.85 15768 25138

F1

60

PSO 337 611 284 311 189 219 916 4450 1 1 20220 36660

Figure 2. Average best fitness curves for Rosenbrock function (F1)

http://www.pdffactory.com

Table 4. Average number, median, minimum, maximum, and success rate of required iterations, and
expected number of function evaluations , for the test function F2

Number of algorithm iterations to achieve the goal

Average Median Minimum Maximum
Success Rate Ex. # of Fn.

Evaluation Fun.
of
Part.
N

Algorithm

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2
CPSO1 57 81 51 71 23 47 139 147 1 1 857 1217
CPSO2 264 548 220 517 157 145 698 1357 0.90 1 4402 8214
CPSO3 122 169 120 156 80 105 194 309 0.85 1 2145 2671

15

PSO 172 299 147 292 102 123 208 299 0.35 0.8 7371 5606
CPSO1 48 68 44 63 32 37 83 145 1 1 1451 2054
CPSO2 281 443 233 348 121 159 857 955 0.95 1 8862 13283
CPSO3 106 155 100 148 66 104 192 212 0.90 1 3522 4641

30

PSO 140 182 128 174 104 123 208 299 0.90 0.95 4667 5747
CPSO1 60 69 55 62 39 34 132 127 1 1 3603 4152
CPSO2 265 517 209 414 144 215 633 1526 1 1 15906 31026
CPSO3 91 127 87 120 62 80 136 193 1 1 5457 7614

F2

60

PSO 122 166 116 164 84 119 168 214 0.95 1 7705 9960

Figure 3. Average best fitness curves for Rastrigin function (F2)

Concerning the Schaffer’s function (F6): Table 6 illustrates that only the CPOS1 and CPSO2 algorithms reached the goal

in all runs with both parameter sets, while CPSO3 and PSO algorithms had some difficulties in reaching the goal.

http://www.pdffactory.com

Table 5. Average number, median, minimum, maximum, and success rate of required iterations, and
expected number of function evaluations, for the test function F3

Number of algorithm iterations to achieve the goal

Average Median Minimum Maximum
Success Rate Ex. # of Fn.

Evaluation Fun.
of
Part.
N

Algorithm

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2
CPSO1 132 215 131 205 84 89 191 470 1 1 1982 3218
CPSO2 364 581 314 522 254 329 731 1403 1 1 5465 8714
CPSO3 - 508 - 487 0 438 0 702 - 0.55 - 13845

15

PSO 689 755 580 608 443 470 1589 1755 0.35 0.6 29529 18875
CPSO1 131 168 130 165 79 57 229 293 1 1 3929 5046
CPSO2 342 440 293 431 227 330 720 667 1 0.95 10257 13910
CPSO3 266 312 265 301 235 270 327 505 0.85 0.90 9386 10387

30

PSO 313 365 304 361 257 319 401 455 0.90 0.90 10433 12167
CPSO1 113 152 109 148 72 115 199 198 1 1 6753 9117
CPSO2 325 421 268 370 188 301 853 718 1 1 19494 25245
CPSO3 211 251 208 248 178 216 240 286 1 1 12681 15084

F3

60

PSO 226 287 224 280 202 266 250 238 0.95 1 14274 17220

Figure 5. Average best fitness curves for Schaffer function F6

Note that, only the MPOS1 and CPSO2 algorithms reached below the goal and the optimal values in less than 350

iterations on average with both parameter sets while CPSO3 and PSO algorithms had stacked before the goal with both
parameter sets in 1000 iterations (see fig. 5).

7. Discussion

Overall, as far as robustness is concerned, the CPSO1 algorithm appears to be the winner, since it achieved a perfect

score in all the test cases as represented in boldface (see Tables 2-6).
The CPSO2, algorithm is less robust, followed closely by the CPSO3 and PSO algorithms. The standard PSO algorithm

was fairly unreliable on this set of problems.

http://www.pdffactory.com

As a result, the PSO must be executed several times to ensure good results, whereas one run of CPSO1 and the CPSO2
usually sufficient.

Note that in the set1 case, there is a little difference between the performance of the algorithms with parameter set1 and
with parameter set2 of where the algorithms' conversances are faster with parameter set1 than with parameter set2.

CPSO3 and PSO are more sensitive to parameter changes than the other algorithms. When changing the problem, one
probably needs to change parameters as well to sustain optimal performance.

Regarding convergence speed, CPSO1 is always the fastest followed by CPSO2, whereas the CPSO3 or PSO are always
the slowest. Especially on the all functions, CPSO1 has a very fast convergence (2-5 times faster than PSO). This may be of
practical relevance for some real-world problems where the evaluation is computationally expensive and the search space is
relatively simple and of low dimensionality.

Overall, CPSO1 is clearly the best performing algorithm in this study. It finds the lowest fitness value for most of the
problems, which emphasized in boldface, see figures 1-5.

Regarding the parameter sets: in general, the performance of all algorithms are best with parameter set1 than the
performance with parameter set2, while all of them need less number of iterations to reach the specified goal with set1 than
with parameter set2. That means parameter set2 slows the algorithms and don’t make a bredging phenomina while
parameter set1 accelerate the algorithms but somewhile make a bredging phenomina.

Looking at the number of function evaluations, the CPSO1was in the lead, followed by the CPSO2 algorithm, as shown
in boldface (see Tables 1-5)

Considering, the above mentioned point that CPSO1 had no difficulty in reaching the goal and all its solutions are
below their corresponding goals more than the other algorithms. So, we can conclude that CPSO1 is more superior to the
other algorithms. That means we can consider it as a best alternative algorithm for solving optimization problems.

Table 6. Average number, median, minimum, maximum, and success rate of required iterations, and expected
number of function evaluations, for the test function F6

Number of algorithm iterations to achieve the goal

Average Median Minimum Maximum
Success Rate Ex. # of Fn.

Evaluation Fun.
of
Part.
N

Algorithm

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2
CPSO1 198 232 183 201 57 63 473 498 1 1 2971 3476
CPSO2 231 254 207 225 72 99 522 631 1 1 3461 3813
CPSO3 286 307 177 273 64 114 704 613 0.40 0.55 10720 8366

15

PSO 583 1203 138 126 63 91 3706 5853 0.45 0.4 19433 45113
CPSO1 122 148 98 134 55 57 307 397 1 1 3668 4434
CPSO2 144 163 126 163 57 87 439 298 1 1 4322 4893
CPSO3 348 401 271 234 73 111 1252 1769 0.65 0.60 16047 20025

30

PSO 161 350 120 157 74 102 595 1264 0.75 0.60 6440 17500
CPSO1 93 112 76 110 42 73 206 193 1 1 5559 6708
CPSO2 112 147 94 128 52 53 232 422 1 1 6726 8841
CPSO3 402 305 217 146 72 75 1727 1378 0.85 0.95 28385 19257

F6

60

PSO 169 319 91 119 40 83 854 2361 0.90 0.95 11267 20147

http://www.pdffactory.com

Figure5. Average best fitness curves for Schaffer function F6

8. Conclusion

This paper has proposed a new variation of the particle swarm optimization algorithm called a combined PSO,

introducing a new term into the velocity component update equation: each particle is moved toward a new position
according its best previous position and the point resulted from the combination of the best previous global position and the
former best previous global position. The implementation of this idea is simple, based on storing the provious positions. The
new algorithm outperfoms PSO on many benchmark functions, being less susceptible to premature convergence, and less
likely to be stuck in local optima.

In this study, the CPSO1 has shown its worth on tested problems, and it outperformed CPSO2, CPSO3 and PSO on all
the numerical benchmark problems as well. Among the tested algorithms, the CPSO1 can rightfully be regarded as an
excellent first choice, when faced with a new optimization problem to solve.

To conclude, the performance of CPSO1 is outstanding in comparison to the other algorithms tested. It is simple, robust,
converges fast, and finds the optimum in almost every run. In addition, it has few parameters to set, and the same settings
can be used for many different problems.

Future work includes further experimentation with parameters of CPSO, testing the new algorithm on other benchmark
problems, and evaluating its performance relative to Evolutionary Algorithms.

9. References

[1] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory”, in Proc. 6th Int. Symp. Micro Machine

and Human Science, Nagoya, Japan, (1995) 39–43.
[2] Y. Shi and R. Eberhart, “A Combined Particle Swarm Optimizer”, In: Proceedings of IEEE World Congress on

Computational Intelligence, (1998) 69–73.
[3] V. Tandon, “Closing The Gap Between CAD/CAM and Optimized CNC and Milling”, Master thesis, Purdue School

of Engineering and Technology, Indiana University Purdue University Indianapolis, 2000.
[4] Abido M.A., “Optimal Power Flow Using Particle Swarm Optimization”, Electri Power and Energy Syst 2002; 24:

563–71.
[5] Jiang Chuanwen, Etorre Bompard, “A Hybrid Method Of Chaotic Particle Swarm Optimization and Linear Interior

For Reactive Power Optimization”, Mathematics and Computers in Simulation 68 (2005) 57–65.
[6] N. Shigenori, G. Takamu, Y. Toshiku, F. Yoshikazu, “A Hybrid Particle Swarm Optimization For Distribution State

Estimation”, IEEE Transactions on Power Systems 18 (2003) 60– 68.
[7] R. C. Eberhart and Y. Shi, “Comparing Inertia Weights and Constriction Factors In Particle Swarm Optimization” in:

Proc. CEC, San Diego, CA, (2000) 84–88.
[8] Ioan Cristian Trelea, “The Particle Swarm Optimization Algorithm: Convergence Analysis And Parameter Selection”,

Information Processing Letters 85 (2003) 317–325.
[9] R. Eberhart and Y. Shi, “Comparison between Genetic Algorithms and Particle Swarm Optimization”, The 7th Annual

Conference on Evolutionary Programming, 1998, San Diego, USA.

http://www.pdffactory.com

[10] M. Clerc and J. Kennedy, “The Particle Swarm: Explosion, Stability, And Convergence In A Multi-Dimensional
Complex Space”, IEEE Trans. Evol. Comput. 6,(2002) 58–73.

[11] A. Carlisle and G. Dozier, “Adapting Particle Swarm Optimization to Dynamic Environments”, Proceedings of
International Conference on Artificial Intelligence, Las Vegas, Nevada, USA, (2000) 429-434.

[12] S. Tsumoto et al. (Eds.), “A Guaranteed Global Convergence Particle Swarm Optimizer”, RSCTC, (2004) 762–767.
Springer-Verlag Berlin 2004.

[13] Van den Bergh, F., Engelbrecht, A. P., “Effects of Swarm Size on Cooperative Particle Swarm Optimizers”, Genetic
and Evolutionary Computation Conference, San Francisco, USA, 2001.

[14] M. Lovbjerg and T. Krink, “Extending Particle Swarm Optimizers with Self-Organized Criticality”, Proceedings of
Fourth Congress on Evolutionary Computation, (2002) 1588-1593.

[15] Xiao-Feng Xie, Wen-Jun Zhang, Zhi-Lian Yang, “Hybrid Particle Swarm Optimizer with Mass Extinction”,
International Conf. on Communication, Circuits and Systems (ICCCAS), Chengdu, China, 2002.

[16] Xiao-Feng Xie, Wen-Jun Zhang and Zhi-Lian Yang, “A Dissipative Particle Swarm Optimization”, IEEE Congress on
Evolutionary Computation, Honolulu, Hawaii, USA, 2002.

[17] Jacques Riget and Jakob S. Vesterstorm, “A Diversity-Guided Particle Swarm Optimizer - The ARPSO” , EVALife
Technical Report no. 2002-02.

[18] M. Clerc, “The Swarm And The Queen: Towards A Deterministic and Adaptive Particle Swarm Optimization”, in:
Proc. ICEC, Washington, DC, (1999), 1951–1957.

[19] F. van den Bergh, “An Analysis Of Particle Swarm Optimizers,” Ph.D. dissertation, Dept. Comput. Sci., Univ.
Pretoria, Pretoria, South Africa, 2002.

[20] Frans van den Bergh and Andries P. Engelbrecht, “A Cooperative Algorithm To Particle Swarm Optimization”, IEEE
Transactions on Evolutionary Computation, 8(3), (2004) 225-239.

http://www.pdffactory.com

