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ABSTRACT 

Herein, novel basis orthogonal polynomials have developed. These developed polynomials have been used to find the 
approximation solutions for some types of linear and non-linear ordinary differential equations by direct numerical 
method. This numerical method depends on the Chebyshev polynomials’ derivatives. We shall present these solutions 
in the form of a finite sum of the Chebyshev polynomials’ derivatives and unknown coefficients involving these 
polynomials. By substituting into the differential equation, the given differential equation will be converted into a system 
of algebraic equations. The obtained algebraic system can be solved easily to get the values of the spectral expansion 
constant. In addition, an algorithm for the approximated process has been designed to be easily used in the coding 
process. Consequently, some ordinary differential equations have been solved via the introduced Chebyshev 
polynomials’ derivatives. Finally, the approximated solutions have been compared with exact and other methods 
solutions to illustrate the efficiency and accuracy of the used method. 

 

1. Introduction 

    Ordinary differential equations (ODEs) underpin many 

applications in fields such as engineering, biology, and 

fluid dynamics [1–4], such that some of the problems in 

these fields and others can be represented as ODEs. Many 

researchers use numerical methods for solving these 

equations such that analytical techniques cannot treat 

some problems. Numerical methods like spectral, finite 

element, and finite difference methods can give 

approximation solutions for many types of differentials 

and integrodifferential equations [5–8]. The approximation 

solution is semi-analytical using spectral methods, unlike 

finite difference and finite element methods. Spectral 
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methods give accurate solutions to many types of 

differential and integral equations. The fundamental idea 

behind these methods is choosing suitable linear 

combinations of different special functions, often 

orthogonal polynomials.  

The spectral method uses different types of orthogonal 

polynomials, which are called basis functions, such as 

Chebyshev polynomials [9, 10] or their derivatives [11], 

Legendre polynomials [12] or their derivatives [13–15], and 

Ultraspherical polynomials [16]. Spectral methods can solve 

ordinary differential equations by representing the unknown 

function in these equations as a finite series of well-known 

polynomials. This representation leads to an approximate 

solution. We can represent the solution as follows: 

𝑢(𝑡) ≈ 𝑢𝑛(𝑡) = ∑𝑎𝑘∅𝑘(𝑡)

𝑛

𝑘=0

, 

 

where ∅𝑘(𝑡) represents the choice basis functions and 

𝑎𝑘 is a set of constants. After applying spectral 

methods, the differential equation will be converted to 

a system of algebraic equations with unknown 

constants. This system can be solved by any numerical 

techniques, such as the Gauss elimination method in 

linear systems and Newton Raphson’s approximation for 

non-linear systems, to get the values of 𝑎𝑘  that we can 

use. As a result, this set of constants is employed to 

get the approximate solution. Spectral methods 

categorically fall into three primary classes, namely, 

Galerkin, tau, and pseudo-spectral methods. The authors 

in [11–12,17–19] used tau and pseudo-Galerkin methods 

to solve higher-order ODE, while the authors in [20, 21] 

used the pseudo-spectral method. In this study, we will 

extend this approach by Chebyshev polynomials’ 

derivatives as basis functions to improve the results. 

This paper has been organized as follows: In the 

second section, the essential relations of Chebyshev 

polynomials will be presented. In the third section, the 

method used for finding the approximation solution will 

be discussed. Then, the linear and non-linear differential 

equations will be solved to show the proposed method’s 

efficiency in the fourth section. Finally, the paper’s 

concluding remarks were included in the fifth section. 

 2. Preliminaries 

      The essential concepts and relations for Chebyshev 

polynomials (CHPs) will be introduced.   Consider that 

the Chebyshev polynomial is denoted by 𝑇𝑗(𝑡) which 

has degree 𝑗 and  𝑡𝜖[−1,1].  

CHPs are eigenfunctions for the Sturm-Liouville problem 

[22]: 

  (1 − 𝑡2)𝑇𝑗
′′(𝑡) − 𝑡 𝑇𝑗

′(𝑡) + 𝑗2 𝑇𝑗(𝑡) = 0,     𝑡𝜖[−1,1]. (1)  

The recurrence relations for CHPs are: 

𝑇𝑗+1(𝑡) = 2𝑡 𝑇𝑗(𝑡)−𝑇𝑗−1(𝑡),                                   (2) 

2𝑇𝑗(𝑡) =
1

𝑗 + 1
 𝑇′𝑗+1(𝑡) −

1

𝑗 − 1
𝑇′𝑗−1(𝑡),                    (3) 

where 𝑇0(𝑡) = 1, 𝑇1(𝑡) = 𝑡, and 𝑗 = 1,2,3, …. 

CHPs and their derivatives satisfied the following 

relations: 

    |𝑇𝑗(𝑡)| ≤ 1,                                                                   (4) 

|𝑇′𝑗(𝑡)| ≤ 𝑗2,                                                                    (5) 

𝑇′𝑗(𝑡) =∑     
1

𝑐𝑖
 2 𝑗 𝑇𝑖(𝑡)

𝑗−1

𝑖=0

,         (𝑖 + 𝑗)𝑜𝑑𝑑,             (6) 

𝑇′
′
𝑗(𝑡) = ∑ 

1

𝑐𝑖
 (𝑗 + 1)[(𝑗 + 1)2 − 𝑖2]𝑇𝑖(𝑡),

𝑗−1

𝑖=0

   (7) 

                                                                    (𝑖 + 𝑗)𝑜𝑑𝑑,  

and   𝑐𝑖 = {
2,                𝑖 = 0,
1,    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

 

CHPs and their derivatives have boundary values: 

𝑇𝑗(±1) = (±1)
𝑗 ,                                                              (8) 

𝑇′𝑗(±1) = (±1)
𝑗−1 𝑗2,                                                   (9) 

𝑇′′𝑗(±1) =
1

3
(±1)𝑗 𝑗2(𝑗2 − 1).                                 (10) 

CHPs can be presented in power series form as: 

𝑇𝑗(𝑡) = ∑  (−1)𝑖  2𝑗−2𝑖−1  
𝑗

𝑗 − 𝑖
 (
𝑗 − 𝑖
𝑖
) 𝑡𝑗−2𝑖 ,

⌊𝑗/2⌋

𝑖=0

     (11) 

such that, ⌊𝑗/2⌋ is the integer part of 𝑗. 
      In the following section, we will present an explanation 

of the method used for finding approximation  

solutions to various types of ordinary differential equations. 

 

3. The suggested method and problem 

formulation 

Let the following is the form ODE: 

𝑓(𝑎𝑟(𝑡)𝑦
(𝑟)(𝑡), 𝑎𝑟−1(𝑡)𝑦

(𝑟−1)(𝑡), 𝑎𝑟−2(𝑡)𝑦
(𝑟−2)(𝑡), … , 𝑎0(𝑡)𝑦(𝑡) )

= 0,   𝑡𝜖[−1,1],                                                                           (12) 
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with the initial and the boundary conditions: 

  {

𝑦(−1) = 𝛽0,       𝑦(1) = 𝛾0,             

𝑦′(−1) = 𝛽1,       𝑦
′(1) = 𝛾1,               

⋮                                     
𝑦(𝑚)(−1) = 𝛽𝑚 ,     𝑦

(𝑚)(1) = 𝛾𝑚.

(13) 

 

The set {𝑎𝑖(𝑡)}𝑖=0
𝑟  is the real-valued function, {𝛽𝑖}𝑖=0

𝑚  and 

{𝛾𝑖}𝑖=0
𝑚  are constants whose number is equal to the order of 

the ODE.  

 

    The following is the approximation solution to the given 

ODE: 

𝑦(𝑡) ≈ 𝑦𝑛(𝑡) = ∑𝑎𝑘𝑇𝑘+2
′′ (𝑡)

𝑛

𝑘=0

,

𝑦′(𝑡) ≈ 𝑦′
𝑛
(𝑡) = ∑𝑎𝑘𝑇𝑘+2

′′′ (𝑡)

𝑛

𝑘=0

,

⋮

𝑦(𝑟)(𝑡) ≈ 𝑦𝑛
(𝑟)(𝑡) = ∑𝑎𝑘𝑇𝑘+2

(𝑟+2)(𝑡)

𝑛

𝑘=0

,

                         (14) 

since 𝑎𝑘 are constants. 

 

     Eqs. (14) will be applied to Eq. (12) and 

conditions in Eq. (13), to get the results: 

 

𝑓

(

 
 
 
𝑎𝑟(𝑡)∑𝑎𝑘𝑇𝑘+2

(𝑟+2)(𝑡)

𝑛

𝑘=0

, 𝑎𝑟−1(𝑡)∑𝑎𝑘𝑇𝑘+2
(𝑟+1)(𝑡)

𝑛

𝑘=0

,

, … , 𝑎0(𝑡)∑𝑎𝑘𝑇𝑘+2
′′ (𝑡)

𝑛

𝑘=0 )

 
 
 
= 0, (15) 

 

where −1 ≤ 𝑡 ≤ 1 and the conditions: 

{
 
 
 
 

 
 
 
  ∑𝑎𝑘𝑇𝑘+2

′′ (−1)

𝑛

𝑘=0

= 𝛽0 ,       ∑𝑎𝑘𝑇𝑘+2
′′ (1)

𝑛

𝑘=0

= 𝛾0,             

      ∑𝑎𝑘𝑇𝑘+2
′′′ (−1)

𝑛

𝑘=0

= 𝛽1 ,          ∑𝑎𝑘𝑇𝑘+2
′′′ (1)

𝑛

𝑘=0

= 𝛾1,

⋮                                     

∑𝑎𝑘𝑇𝑘+2
(𝑚+2)(−1)

𝑛

𝑘=0

= 𝛽𝑚 ,        ∑𝑎𝑘𝑇𝑘+2
(𝑚+2)(1)

𝑛

𝑘=0

= 𝛾𝑚 ,

(16) 

 

Eqs. (15) and (16) yield a system of equations 

characterized by unknown coefficients. These coefficients 

will subsequently be determined through the application 

of a numerical method and using the Mathematica 

program. As a result, the approximate solution will rely 

on the derivatives of Chebyshev polynomials.  

 

The following algorithm shows the steps of the solution: 

Algorithm 1 Algorithm Steps for Approximating 

ODE by second derivative CHP  

Step 1: Enter n ∈ N, 

Step 2: The independent variable will be shifted 

from a defined domain to [−1, 1] 

Step 3: Choose the collocation points. 

Step 4: Substitute into the ODE (15-16). 

Step 5: Solve the system from step 4 to find ak 

Step 6: Use the finding constants from step 5 to 

obtain the approximation solution. 

  

4. Numerical examples 

    In this section, we will work on solving four examples 

to showcase how well the proposed method works in 

terms of accuracy and efficiency. These examples 

involve the Lane-Emden equations, the fourth-order 

differential equation, and the Bratu equation. 

Example 4.1. Consider the Lane-Emden equation, 

which is non-homogeneous as follows [23]: 

𝑦′′(𝑡) +
8

𝑡
𝑦′(𝑡) + 𝑡 𝑦(𝑡) = 𝑡5 − 𝑡4 + 44𝑡2 − 30𝑡    (17) 

where 0 < 𝑡 < 1 with conditions 𝑦(0) = 0, 𝑦′(0) =
0, and the exact solution is 𝑦(𝑡) = 𝑡4 − 𝑡3. After applying 
our method for solving example (4.1) and shifting the 
domain from (0,1) to (−1,1),  from Eq. (14), we have: 

𝑦(𝑡) ≈ 𝑦4(𝑡) = ∑𝑎𝑘𝑇𝑘+2
′′ (𝑡)

4

𝑘=0

= 𝑎0𝑇2
′′(𝑡) + 𝑎1𝑇3

′′(𝑡) + 𝑎2𝑇4
′′(𝑡)

+ 𝑎3𝑇5
′′(𝑡) + 𝑎4𝑇6

′′(𝑡), 
with algebraic system: 

 

24𝑎1 − 192𝑎2 + 840𝑎3 − 2688𝑎4 = 0                        (18) 

4𝑎0 − 24𝑎1 + 80𝑎2 − 200𝑎3 + 420𝑎4 = 0                  (19) 

𝑎0 + 1533𝑎1 − 5374𝑎2 + 3845𝑎3 + 13044𝑎4 = −
4867

1024
   (20) 

  𝑎0 + 384𝑎1 + 380𝑎2 − 1920𝑎3 − 2295𝑎4 = −
129

64
       (21) 

  3𝑎0 + 521𝑎1 + 2822𝑎2 + 6385𝑎3 + 4828𝑎4 =
2223

1024
     (22) 

  

file:///C:/Users/dell/Downloads/Marwa_small_paper.docx%23_bookmark3
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The solution of this system is: 𝑎0 = −
15

1024
, 𝑎1 =

−
5

1536
, 𝑎2 = 𝑎3 =

1

2560
, 𝑎4 =

1

15360
. 

So,  

𝑦4(𝑡) =
−15

1024
(4) +

−5

1536
(24𝑡) +

1

2560
(96𝑡2 − 16)

+
1

2560
(320𝑡3 − 120𝑡) 

+
1

15360
(960𝑡4 − 576𝑡2 + 36)

= (
1 + 𝑡

2
)
4

− (
1 + 𝑡

2
)
3

. 

This is equivalent to the exact solution for 𝑡 𝜖 (−1,1)  at 

n = 4. 

Compared with other methods, the maximum absolute 

error was e-07 at n = 30 in [24] and 

e-11 at n = 8 in [25]. In contrast, the approximation 

solution by our method was equivalent to the exact 

solution at small n. This confirms that our method is 

more accurate and efficient. 

 

Table 1: Point-wise absolute error for example 

(4.2) 
 

 

 

Example 4.2. Consider the Lane-Emden equation, 

which is non-linear as follows [26–28] 

𝑦′′(𝑡) +
1

𝑡
𝑦′(𝑡) + 𝑒𝑦(𝑡) = 0     (23) 

where  0 < 𝑡 < 1 with conditions 𝑦′(0) = 0, 𝑦(1) =

0, and the exact solution is 𝑦(𝑡) = 2 ln (
4−2√2

(3−2√2) 𝑡2+1
).  

Table(1) shows the point-wise absolute error at n = 14 

for the interval [0, 1]. Also, Figure (1) and Figure (2) 

show the point-wise absolute error at n = 14 and n = 16, 

while Figure (3) compares the approximation solution 

with the exact solution at n = 16. 

 

 
 

Figure 1: Point-wise absolute error for example (4.2) 

at n = 14. 

Figure 2: Point-wise absolute error for example   

(4.2) at n=16. 

 

t 
Suggeste

d method 

n = 14 

[26] 

n = 14 

[27] 

n = 14 

[28] 

n = 14 

0.0 2.44e-13 5.79e-12 - 6.72e-08 

0.1 1.57e-13 3.60e-12 3.14e-10 6.69e-08 

0.2 1.18e-13 2.61e-12 3.07e-10 7.87e-09 

0.3 9.46e-14 2.01e-12 2.99e-10 6.92e-09 

0.4 7.66e-14 1.57e-12 2.88e-10 2.87e-08 

0.5 6.17e-14 1.21e-12 2.82e-10 7.40e-10 

0.6 4.92e-14 8.93e-13 2.14e-10 6.32e-08 

0.7 3.77e-14 6.22e-13 1.51e-10 6.95e-08 

0.8 2.75e-14 3.77e-13 9.45e-11 3.38e-09 

0.9 1.82e-14 1.62e-13 7.35e-11 7.85e-08 

1.0 4.08e-17 8.69e-17 - 6.63e-08 
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Figure 3: A comparison of the approximate and exact 

solutions for example (4.2) at n = 16. 

 

Table 2: Point-wise absolute error for example (4.3). 

 

Example 4.3. Consider the Bratu equation as follows 

[29]: 

  𝑦′′(𝑡) − 2𝑒𝑦(𝑡) = 0,                          0 ≤ 𝑡 ≤ 1,            (24) 

with conditions 𝑦(0) = 0, 𝑦′(0) = 0  and the exact 

solution is 𝑦(𝑡) = 2 ln(cos 𝑡). 

Table (2) shows the point-wise absolute error for the 

interval [0, 1]. Figure (4) compares the approximation 

solution with the exact solution at n = 16. 

 

Table 3: Point-wise absolute error for example (4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A comparison of the approximate and exact 

solutions for example (4.3) at n = 16. 

 

Example 4.4. Consider the fourth-order one-

dimensional equation [32]: 

 

32 𝑦(4)(𝑡) − 8𝑦(2)(𝑡) − 2𝑦(𝑡)

= (1 − 𝑡)𝑒
1+𝑡

2 ,     𝑡 𝜖 (−1,1)     (25) 

 

with 𝑦(−1) = 1, 𝑦′(−1) = 0, 𝑦(1) = 0,   𝑦′(1) −
𝑒

2
   and 

T Suggested 

method 
[29] [30] [31] 

0.0 3.63e-17 - - - 

0.1 1.87e-08 4.20e-08 1.78e-07 2.99e-04 

0.2 4.06e-08 1.72e-07 4.51e-07 0 

0.3 6.33e-08 4.05e-07 7.19e-07 1.69e-04 

0.4 8.74e-08 7.65e-07 1.01e-06 1.11e-04 

0.5 1.14e-07 1.34e-07 1.32e-06 0 

0.6 1.43e-07 2.07e-06 1.67e-06 0 

0.7 1.76e-07 3.20e-06 2.06e-06 7.77e-05 

0.8 2.16e-07 4.88e-06 2.06e-06 0 

0.9 2.64e-07 7.36e-06 3.12e-06 3.47e-03 

1.0 3.19e-07 - - - 

 

t 
Suggested 

method 

[32] 

n = 13 n = 16 n = 14 

-1 5.95e-14 2.22e-16 0 

-0.6 6.74e-14 3.33e-16 2.17e-14 

-0.2 6.67e-14 4.44e-16 3.46e-14 

0.2 5.42e-14 3.89e-16 5.28e-14 

0.6 2.72e-14 4.44e-16 1.23e-14 

1.0 1.87e-15 4.62e-16 0 
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the exact solution is 𝑦(𝑡) =
(1−𝑡)

2
 𝑒

1+𝑡

2 . 

Table(3) shows the point-wise absolute error at n = 

14, n = 16 for the interval [−1, 1]. Also, 

Figure (5) shows the point-wise absolute error at n = 16, 

which proves the efficiency and accuracy 

of our method. 

 

Figure 5: Point-wise absolute error for example (4.4) at 

n = 16. 

 

Conclusions 

This paper explores a novel trial function for solving both 

linear and non-linear ordinary differential equations using 

the spectral expansion method. Then, the suggested 

method presents solutions in the form of a finite sum of 

the Chebyshev polynomials’ derivatives and unknown 

coefficients. Also, examples such as the Lane-Emden 

problem, the Bratu equation, and the fourth-order 

differential equation are solved to demonstrate the 

effectiveness of the suggested method. 
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