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ABSTRACT 

In this study, low cost and safe quantum dots sensitized solar cells QDSSCs were formulated. Two structures of alloy quantum 

dots (QDs) (i.e., core and core/shell) were investigated for titanium dioxide (TiO2) based QDSSCs. The synthesizing of CuInS 

(CIS) core QDs and CuInS/ZnS (CIS/ZnS) core/shell QDs were formulated via inorganic method. Using the core/shell 

structure CIS/ZnS for sensitizing TiO2 photoanode has a significant impact on the QDSSCs overall parameters such as open 

circuit voltage, short circuit current density and cell efficiency. This is because electrons injecting from the conduction band 

of the CIS/ZnS to that of TiO2 is easier than that from CIS to TiO2 nanoparticles and charge recombination reduction occurs 

at the interface between photoanode and electrolyte. The J-V curves suggest that the TiO2/ CIS/ZnS QDSSC exhibits the best 

photoelectric performance with Voc = 0.17 V, Jsc= 5.89 mAcm-2 and ɳ = 0.23% which are significantly higher than those of 

CIS/ TiO2 QDSSC. 

.

1. Introduction In recent years, alternative sources of energy gain significant 
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interest owing to the global warming. Solar cells are the most 

favored option among the alternative energy sources because 

of its simple handling devices, low cost, and lack of carbon 

dioxide emission [1]. Quantum dot-sensitized solar cell 

(QDSSCs), a third generation photovoltaic technology, seem 

to have good potentiality for future implications [2–9] due to 

their various intrinsic advantages, including elevated 

absorption coefficient [10], tunable band gap [11–13], easy 

and cheap production [14] but, the QDSSC performance is 

depending mainly on the choice of sensitizers and electrolyte 

[15], Consequently, improving QDSSC performance 

attracted the attention of several researchers. A standard 

QDSSC resembles dye sensitized solar cells that comprise a 

photoanode sensitized with semiconductor, a counter 

electrode and an electrolyte inserted between both electrodes. 

Iodide/triiodide (I−/I3
−) electrolyte redox couple has 

extensive applications within dye-sensitized solar cells [16]. 

But, this couple (I−/I3
−) seems to be not appropriate for 

QDSSCs, where it induces quantum dots (QDs) corrosion 

and photodegradation [17,18]. Therefore, polysulfide redox 

couples (S2−/Sn
2-) are commonly utilized for QDSSCs to 

attain satisfactory photon-to-current conversion efficiency 

with no QDs degradation [19–21]. The photoanode accounts 

for a conducting glass characterized by having a mesoporous 

TiO2 layer connected to QDs sensitizer. There are several 

semiconductor materials utilized in QDs as sensitizers 

including, CdS [22], CdSe [23], Ag2S [24], CuInS2 [25], and 

PbS [26]. Copper indium sulfide (CIS) QDs are triple 

compound semiconductors characterized by being free toxic 

of metal ions [27,28]. QDs exhibit photoluminescence (PL) 

emission that spans from the visible into the near-infrared 

range, providing a broad spectrum of light emission [29]. It 

could tolerate band gap via governing the doping process and 

the copper-to-indium ratio [30]. Wide band gap ZnS may be 

utilized as shells to coat and provide protection to CIS QDs 

because of the coincidence between the lattice parameters 

and lowered toxicity [31]. The QDSSC has a straightforward 

mechanism. Upon illumination, the QD undergoes the 

electron-hole pairs creation. The excited electrons underwent 

shift into the QD conduction band but the hole still presents 

within the valence band. Afterwards, the electrons are 

released out the QD conduction band into the TiO2 

conduction band. The electrons infiltrate additionally within 

the TiO2 network till reaching to the conductive glass and 

move further throughout the external load and close the 

circuit at the end via returning at the counter electrode [32]. 

Unfortunately, charge recombining at the QDs electrolyte 

interface and recombining in the photoanode/electrolyte 

interface prevent the electrons from taking its normal bath 

way and subsequently the QDSSC efficiency decreases. As 

charge recombining at the interface of the electrolyte and 

photoanode considers the key aspect influencing the QDSSC 

photovoltaic performance negatively, it is critical to eradicate 

this type of recombination. The approaches adopted for this 

purpose include passivating the surface of the photoanode 

with ZnS [33], utilizing various TiO2 nanoparticles sizes 

[34], deposition of a scattering layer [35], and treating via 

titanium tetra chloride [36]. In this work, ZnS shells were 

introduced to cover CIS QDs forming core/shell structure. 

Both CIS core and CIS/ZnS core/shell structure were studied 

and a positive effect in performance was observed by using 

the core /shell structure than using only core structure. 

Thorough investigations on the optical, structured 

characteristics and morphology of the fabricated 

photoanodes have been reported.  

 

2. Materials and Methods 
 

2.1 Materials 

    Across organic company provided Indium chloride 

tetrahydrate (97.90%), Copper chloride (99%), and 1-

mercapto acetic acid (MAA) (99%) for the experiment. 

Sodium sulfide was obtained from a chem-lab. Zinc acetate 

dehydrate (98.5%) was obtained from oxford company. 

Titanium (IV) oxide, anatase nano powder having particles < 

25 nm, 99.7% and Acetic acid were supplied from Sigma 

Aldrich. Ethyl cellulose, ethoxyl content 48% 10 cpc. Alpha-

terpineol 97%, and Sulfer, 99.5+%, refined were obtained 

from New Jersey, USA. Potassium chlorate, sodium 

hydroxide, and copper II acetate were supplied from El-Nasr 

Company. Alalmia company supplied isopropanol with a 

purity of 99.5%, while the international company for sup. & 

med. Industries provided ethanol with a purity of 99.9%. The 

transparent glass coated with fluorine-doped SnO2 (FTO), 

measuring 2.2 mm in thickness and having a sheet resistance 

of 14 Ω /sq, was purchased from SOLARNIX in Switzerland. 

 

2.2 Preparation of CuInS and CuInS/ZnS QDs  

 

    CuInS QDs formulation involved a straightforward 

aqueous solution procedure. In brief, 0.6 ml Cl34H2O stock 

solution (0.1M) was mixed within deionized water (10 ml). 

In addition, 1 ml MAA (45mM) were admixed with CuCl2 

(0.1ml, 0.1M) 0.5 ml MAA (45mM) within deionized water 

(10 ml). To eradicate the solution turbidity, 9.0 PH was 

maintained by 1M NaOH. The CuCl2 solution was inserted 

into InCl3 solution and stirred for 3 min. afterwards; the Na2S 

solution (0.5 ml, 0.04 mmol) underwent admixing with the 

abovementioned reaction solution within room temperature 

and stirred vigorously for 5 min. Then, the CIS core structure 

is being ready to use. In order to attain CIS/ZnS core/shell 

structure QDs, the reaction mixture underwent heating 

(90˚C) for 30 minutes and 1ml of 0.04 M zinc acetate 

dehydrate was then supplied wisely and stirred continuously 

for 5 min. The reaction mixture color had altered gradually 

from colorless through yellowish and finally it became 

brown.  

 

2.3 Preparation of TiO2 /CuInS and TiO2 /CuInS/ZnS 

sensitized photoanodes  

 

    The TiO2 photoanodes were synthesized on ultrasonically-

cleaned FTO glass slides. The cleaning process of the FTO 
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substrates take placed through four steps. Firstly, sonication 

within a soap solution; secondly, sonicating within a 

deionized water, thirdly, sonicating within isopropanol and 

finally, by sonicating within ethanol for 30 min in every time. 

Subsequently, substrates undergo heat treatment (150 oC) for 

30 minutes and set aside until cooling occurred. To formulate 

TiO2 paste, 0.5 gm of well ground TiO2 powder underwent 

dispersing with ethyl cellulose (0.25 gm) in 1.5 mL Alpha-

terpineol and 0.1 mL acetic acid and some ethanol drops. The 

resulting paste was then implemented on the FTO and 

sintered for 30 min at 450 oC. After cooling down to room 

temperature, some substrates underwent soaking within the 

prepared CuInS QDs solutions and the other were immersed 

in the prepared CuInS/ZnS QDs solutions for 24 hours. After 

that the photoanodes were rinsed by deionized water and left 

for drying within room temperature. 

 

2.3 Electrolyte and Counter electrode 

  

    A polysulfide electrolyte was formulated from 0.05 M 

KCl, 0.1 M S, and 0.5 M Na2S aqueous solutions. Cu2S 

counter electrode was formulated via spin coating the FTO 

substrates with aqueous solutions of 200 µL copper acetate 

(0.5M) and 100 µL of Na2S (0.5M) at a speed of 1000 rpm 

for 30 sec alternatively, within room temperature, and then 

annealed thermally at 300 oC for 5 min. 

 

2.4 Characterization 

 

The UV-Vis spectrophotometer (Evaluation 600 double 

beam scanning spectrophotometer, Thermo scientific, USA) 

was employed to acquire the spectra of the optical absorption. 

The scanning of the light source wavelength ranged from 400 

to 1000 nm. A 543 nm excitation wavelength was employed 

to stimulate the prepared QDs. The x-ray diffraction (XRD) 

was employed for evaluating the synthesized QDs in terms of 

crystallinity and crystallite size. High resolution Scanning 

Electron Microscopy (SEM) technique was adopted for 

studying the structural morphology and surface of the 

prepared samples. The FEI Quanta FEG 250 instrument was 

utilized to perform the analysis experiments. The 

photovoltaic cells' current density-voltage curves have been 

evaluated using Autolab potentiostat (origaflex, OGFOSA, 

France) controlled by Origamaster 5software. A bias voltage 

is swept typically from -0.5 V to 1.0 V. A Xenon lamp having 

a 100 mWcm-2 light intensity was used as an illumination 

source. The cells active area attained 0.19 cm2. From I-V 

curves, efficiency, short circuit current density, open circuit 

voltage, and fill factor were computed. 

 

3. Results and discussion 

    Figure 1 expresses UV-visible spectrum of CIS and 

CIS/ZnS but no well-defined excitonic peak have revealed. 

Such criteria are distinctive for Zn–Cu–In–S quaternary sets, 

mainly accompanied with sub-bandgap optical transitions 

including point defects [37,38].  

Therefore, the optical bandgap energy of CuInS and 

CuInS/ZnS QD utilizing Tauc’s plot (Figure 2) is appraised 

from the subsequent formula [39]:  

α =  2.303 
𝐴

𝑑
                                                                      (1) 

in Eq.1, α denotes the energy-dependent absorption 

coefficient, A and d refer to the absorbance, and the specimen 

thickness, respectively. To apply Tauc's relation, a curve is 

plotted by correlating the photon’s energy and (αhυ)2, 

utilizing the subsequent equation [40].  

𝛼ℎ𝜈 = 𝐵(ℎ𝜈 −  𝐸𝑔)𝑛                                                        (2) 

in Eq.2, B is a constant, h signifies the Planck’s constant, Eg 

refers to the optical band gap energy, n signifies a factor 

linked to the electron transitions regime. The values of "n" 

vary according to the specific type of band gap: 1/2 refers to 

direct band gaps, 2 refers to indirect band gaps, 3/2 refers to 

direct allowed band gaps, and 3 refers to indirect forbidden 

band gaps.  The Eg values for CIS and CIS/ZnS QDs attained 

3.07 eV and 3.20 eV, respectively, as observed from Figure 

2.a and Figure 2.b.  

 
Figure 1: UV-visible spectrum for a) CIS and b) CIS/ZnS 

QDs 

 
Figure 3 illustrates the CIS and CIS/ZnS QDs PL spectrum 

which refers to a maximum intensity at 663 nm for CIS/ZnS 

QDs and 750 nm for CIS QDs which indicates blue shift 

towards higher energy for the CIS/ZnS (core/shell) structure 

than CIS (core structure). This blue shift of CIS/ZnS QDs is 

attributed to the effect of ZnS shell which have high energy 

gap = 3.7 eV on the CIS core [41].   
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Figure 2: Tauc’s plot for a) CIS and b) CIS/ZnS QDs 

Figure 3: The PL spectrum for a) CIS and b) CIS/ZnS QDs 
The X-ray diffraction (XRD) patterns of the prepared CIS 

and CIS/ZnS QD are shown in Figure 4-a and Figure 4-b 

respectively. The characteristic peaks of these QDs matched 

well with the XRD references (JCPDS 32-0339, CuInS2 and 

JCPDS 10–0434, ZnS) which confirms the tetragonal 

chalcopyrite structure [42–44]. The reflection peaks at 27.5°, 

47.4°, and 55.3° are designated to the (111), (202), and (311) 

planes respectively. It was also observed that, both CIS and 

CIS/ZnS QDs peaks are broad which indicate their small 

sizes. while the peak intensities are increased with the growth 

of ZnS shell due to the enhancement of the crystallinity 

resulted from the diffusion of Zn2+ ions into the CIS core in 

the vacancies sites [45]. 

 

Figure 4: XRD patterns of a) CIS and b) CIS/ZnS QDs 

 

The surface morphology of TiO2, TiO2/ CIS and TiO2/ 

CIS/ZnS photoanodes were inspected utilizing SEM as 

demonstrated in Figure 5 (a, b, and c). The TiO2 layer has 

relatively high pores as seen in Figure 5.a, which signifies an 

increased surface area and favorable environment for CIS 

and CIS/ZnS QDs adsorption. Figure 5.b. illustrates the 

adsorbed CIS QDs on TiO2 surface with some cracks at the 

surface of the film. Figure 5.c. represents a homogeneous 

dispersion of CIS/ZnS QDs over the TiO2 film surface. 

Additionally, the film exhibits a homogeneous structure 

without aggregations or cracks. 
To examine the samples elemental composition, furthermore, 

the energy dispersive x-ray spectroscopy (EDX) was 

adopted. Figure 6 and Table 1 show EDX analysis (a) of 

TiO2, (b) CIS/TiO2 and (c) CIS/ZnS/ TiO2 photoanodes. The 

analysis reveals that the prepared samples exclusively 

contain the elements Ti, O, S, In, Cu, Sn, and Zn. This 

observation suggests that the samples are pure and accurately 

prepared. 
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Figure 5: FESEM micrographs of: (a) TiO2 photoanode,  

(b) TiO2/CIS photoanode and (c) TiO2/CIS/ZnS photoanode.  

 

 

 

 

 

 

Figure 6: EDX of: (a) TiO2, (b) CIS/ TiO2 and (c) CIS/ZnS/ 

TiO2 photoanodes respectively. 

Table 1: EDX-based weight percentage for TiO2, TiO2 /CIS 

and TiO2/CIS/ZnS photoanode. 

 

Figure 7 illustrates the curves of the photocurrent density 

voltage (J-V) of CIS/TiO2 and CIS/ ZnS/ TiO2 QDSSCs. 

Photovoltaic characteristics were evaluated within single sun 

(100 mw cm-2) conditions and the corresponding parameters 

(Voc, Jsc, FF and ɳ) were recorded in table 2. The photoanodes 

have an effective area of 0.19 cm2.  
                                                               

 
Figure 7: J-V curves for TiO2/ CIS QDSSCs and TiO2/ 

CIS/ZnS QDSSCs 

 

     It was found that, the Jsc, Voc, and PCE also revealed an 

increase from 4.21 mAcm-2, 0.14 V, and 0.13% to 5.9 mAcm-

2, 0.17 V, and 0.23% for CIS (core) and CIS/ZnS (core shell) 

QDSSCs, respectively. The increase in the photovoltaic 

parameters is attributed to core shell CuInS/ZnS QDs 

structure which increase energy gap from 3.07 eV to 3.20 eV 

as seen from Uv-vis spectroscopy and Tauc’s plots. Also 

from SEM images, the surface homogeneity of core shell 

CuInS/ZnS QDs and absence of crakes provide direct bath 

ways and facilitate injecting excited electrons from 

CuInS/ZnS QDs conduction band into the TiO2 conduction 

band and FTO then to counter electrode (CE). Also, the 

reduction of charge recombining at the interface between 
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electrolyte and photoanode because ZnS shell which prevent 

leaping of electrons into reduced electrolyte from CIS/ZnS 

and TiO2 conduction band which lead to an increment in both 
photocurrent density and cell efficiency. On the other hand, 

FF showed little variation with respect to the QDs structure, 

as it is primarily determined by the electrolyte stability and 

solar cell's shunt and series resistances [46,47].      

 

Table 2: Photovoltaic parameters for TiO2/ CIS and TiO2/ 

CIS /ZnS QDSSCs  

 

Sample Photovoltaic parameters 

Voc (v) J sh 

(mAcm-2) 

FF η% 

CIS 

 

0.14 4.21 0.23 0.13 

CIS/ZnS 

 

0.17 5.9 0.21 0.23 

 
    

Conclusions 

In this study, low cost and safe QDSSCs were 

formulated. Cu - In - S (CIS) and Cu - In - S / ZnS (CIS/ZnS) 

QDs were used as a sensitizer on TiO2 thin film. We also 

examined how the prepared solar cells efficiency was 

influenced by the core and core/shell structure. The results 

indicated that the utilization of the core/shell structure with 

CIS/ZnS QDs led to an improved photocurrent density and 

effectiveness. These findings indicate better contact between 

CIS/ZnS QDs and TiO2 nano particles and suppressing the 

electron recombination in CIS/ZnS TiO2 QDSSC. The J-V 

curves suggest that the TiO2/ CIS/ZnS QDSSC exhibits the 

best photoelectric performance with Voc = 0.17 V, Jsc= 5.89 

mAcm-2 and ɳ = 0.23% which are significantly higher than 

those of CIS/ TiO2 QDSSC. 
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