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Abstract 

      This paper discusses the Bayesian estimation for the 

parameters, survival, hazard rate and alternative hazard rate 

functions of the three unknown parameter of the discrete alpha 

power inverted Kumaraswamy distribution when the lifetimes are 

Type-II censored. The independent exponential prior for the alpha 

power parameter and the joint bivariate prior for the shape 

parameters of the inverted Kumaraswamy distribution is used to 

obtain the posterior distributions. The estimators are derived under 

squared error and linear-exponential loss functions. Credible 

intervals for the parameters, survival, hazard rate and alternative 

hazard rate functions are obtained. Bayesian prediction (point and 

interval) for the future observation is investigated under the two-

sample prediction Scheme. The efficiency of the Bayes estimates is 

investigated, through some measurements of accuracy for different 

sample sizes. Regarding the results of the simulation study, it 

seems to perform better when the sample size increases and the 

level of censoring decreases. Also, in most cases the results under 

the linear-exponential loss function is better than the corresponding 

results under squared error loss function. Two real data sets are 

applied to ensure the theoretical results and confirm its 
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applicability to real life applications.  to compare the efficiency of 

these estimators under different loss functions. 

Keywords: Alpha power inverted Kumaraswamy distribution; 

Bayes estimators; Squared error loss function; Linear-exponential 

loss function; Credible intervals; Bayesian prediction; Monte 

Carlo simulation. 

1. Introduction 

     Recently, probability distributions play an important role in 

modeling naturally occurring phenomena. In fact, the statistics 

literatures accommodate many of continuous distributions and 

their successful applications. However, there still remain many 

real-world phenomena involving data, which do not follow any of 

the traditional probability distributions. So, several attempts are 

introduced by many researchers to provide more flexibility to a 

family of distributions; for example, Marshall and Olkin (1997), 

Eugene et al. (2002), Cordeiro and Castro (2011) and Alzaatreh et 

al. (2013). For more details about methods of generating 

distributions see, Lee et al. (2013) and Jones (2015).  

     Mahdavi and Kundu (2016) added an extra parameter to a 

family of distributions functions to let the given family more 

flexible. They called the new method α-power transformation 

(APT) method, which can be used quite effectively for purposes of 

data analysis. They proposed α-power exponential distribution 

which has desirable properties, such as the cumulative distribution 

function (cdf) is appropriate for analyzing censored data since it 

can be written in explicit form. Also, the probability density 

function (pdf) and hazard rate function (hrf) of α-power 

exponential distribution acts like Weibull, Gamma or generalized 

exponential distributions. 



3 
 

 

     The cdf,  ( ) of the APT, which is the cdf of a continuous 

random variable , for   , is defined as follows: 

    ( )  { 
  ( )  

   
                          

 ( )                                      
                                   (1) 

and the corresponding pdf is 

    ( )  {
  ( )

   
 ( )  ( )                       

 ( )                                                   
                       (2) 

 

where α is a shape parameter.  

     Many researchers applied the APT method to many 

distributions, such as Nassar et al. (2017) presented the alpha 

power Weibull distribution. Dey et al. (2017) introduced the alpha 

power generalized exponential distribution. Nadarajah and Okorie 

(2018) studied the moment properties of the alpha power 

generalized exponential distribution. Mead et al. (2019) obtained 

some statistical properties of the APT family and considered the 

alpha power exponentiated Weibull distribution. Also, Nassar et al. 

(2020) discussed the parameter estimation of the alpha power 

exponential distribution using nine methods of estimation. 

Although it is common in reliability lifetime modeling, to deal 

with failure data as continuous, indicating some degree of accuracy 

in measurement, practically; failures are observed at fixed 

inspection intervals, happened in a discrete procedure or are simply 

recorded in boxes. In survival analysis, the survival function (sf) 

may be a function of discrete random variable which is a discrete 

version of base continuous random variable. Such as, the survival 
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time of patients is counted by number of days or weeks or the 

length of stay in an observation ward is counted by number of 

days. Also, in real life, the reliability data are measured in terms of 

the numbers of runs, cycles or shocks the device sustains before it 

fails. For example, the number of times the devices are switched 

on/off, the lifetime of the switch is a discrete random variable. 

Also, the number of voltage fluctuations; which an electrical or 

electronic item can withstand before its failure, the life of 

equipment is measured by the number of completed cycles or the 

number of times it operated before failure, or the life of weapon is 

measured by the number of rounds fired prior to failure. 

     Some known discrete distributions such as geometric, Poisson, 

binomial, beta binomial, multinomial, hypergeometric, negative 

binomial etc., have limited applicability as models for failure 

times, reliability and counts. Therefore, it is realistic and suitable 

to model the discrete failure time by an appropriate discrete 

lifetime distribution generated from the base continuous 

distribution keeping one or more important characters of the 

continuous distribution. [For more details see, Lai (2013) and 

Chakraborty and Chakravorty (2016)]. 

     Several discrete lifetime distributions are constructed by 

discretizing their conjugate continuous models using several 

methods. [see, Bracquemond and Gaudoin (2003) and Chakraborty 

(2015)]. The general approach of discretization of some known 

continuous distributions have been attracting great interest for use 

as lifetime distributions by many researchers [see, Nakagawa and 

Osaki (1975), Khan et al. (1989), Inusah and Kozubowski (2006), 

Krishna and Pundir (2009), Jazi et al. (2010), Gomez-Deniz and 

Calderin-Ojeda (2011) and Nekoukhou et al. (2012)]. Recently, 
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many authors considered Bayesian estimation and prediction for 

several discrete distributions. [see Migdadi (2014), Kamari et al. 

(2016), Ashour and Muiftah (2019), Hegazy et al. (2021), and  

El-Morshedy et al. (2021)]. 

     AL-Dayian et al. (2023) derived Discrete alpha power inverted 

Kumaraswamy (DAIKum) distribution and is denoted by 

DAPIKum (     ) distribution using the general approach of 

discretization of a continuous distribution. They obtained some 

important distributional, reliability properties and ML estimators 

for the DAPIKum distribution. The probability mass function 

(pmf) of DAIKum distribution is given by 
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2.  Bayesian Estimation  

     Bayesian estimation approach has received a lot of attention in recent 

times for analyzing failure time data, which has mostly been proposed as 

an alternative to that of the traditional methods. When prior knowledge 

about the parameter is not available, it is possible to make use of the non-

informative prior in Bayesian analysis. But when the prior knowledge is 

available, it is better to use the informative prior than the non-

informative. In such a context, the estimation of unknown 

parameters of the DAPIKum (     ) will be discussed under the 

Bayesian framework.  

Suppose that  ( )   ( )     ( ) is a Type-II censored sample 

of size r obtained from a life-test on n items whose lifetimes have 

DAPIKum distribution, and then the likelihood function is  

 (   )  {∏  ( ( ))
 
   }[ ( ( ))]

   
                                        (8)                                                   

where  ( ) and  ( )are given, respectively, by (3) and (5).  

The  ( ) s are ordered times for          .   
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which can be written as  
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In a Bayesian framework, the unknown parameters in any model 

are handled as random variables rather than fixed constants. This is 

a reasonable assumption because the parameters of any population 

cannot remain constant throughout the research. Assuming prior 

distributions of unknown parameters as   independent prior density 

for   as               ( ) and     has joint bivariate prior 

density function that was used by AL-Hussaini and Jaheen (1992). 

The priors of       are  

  ( )   
                                                               (12) 

  (   )    (   )  ( )                                                  (13) 

where  

  (   )  
  

 ( )
        ,          ,                               (14) 

and 

  ( )  
  

 ( )
                                                              (15) 

The joint prior density of  ,   and   can be written as 

 ( )                (   )      

                                                                            (16) 

where                                                          

are the hyper parameters which assumed to be chosen in which 

have minimal or no effect on posterior distribution 

The joint posterior distribution   can be derived by combining the 

likelihood function in (10) and the joint prior distribution in (16) as 

follows:  
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which is a normalizing constant, ∫   
 

∫ ∫ ∫  
   

and            . 

The marginal posterior distributions of the parameters   can be 

expressed as follows: 

 (    )  ∫  (   )
  

   ,                   .                     (20)   

               

a. Point estimation 

     The Bayes point estimators of the parameters, sf, hrf and ahrf are 

considered based on informative prior and two different loss functions: 

squared error (SE) and linear-exponential (LINEX) loss functions. 

I. Bayesian estimation under squared error loss function 

     One of the most used loss functions is the SE loss function.  It is 

commonly used with the Bayesian estimation because it does not 

need extensive numerical computation. It is a symmetric loss 

function that assigns equal weight to overestimation as well as 

underestimation. The Bayes estimator under SE loss function is the 

posterior mean. Thus, the Bayes estimator   of  (     ) (any 

function of parameters      ) under the SE loss function, can be 

derived as  
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Under the SE loss function, the Bayes estimators of each  

          are the means of their marginal posteriors and are 

defined by 
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where                   .    

 

Since the posterior distributions in (22) cannot be obtained in 

explicit form, therefore, numerical methods should be used. 

     Also, the Bayes estimators of the sf, hrf and ahrf under SE loss 

function can be obtained using (5)-(7) and (18) as follows: 
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II. Bayesian estimation under linear-exponential loss function 

The SE loss function as a symmetric loss function has probably 

been the most popular loss function, that gives equal weight to 

over- and under- estimation of the parameters under consideration. 

Therefore, the use of a symmetric loss function might be 

inappropriate for different estimation problems. However, in life 

testing, over estimation may be more serious than under estimation 

or vice versa. 

Under the LINEX loss function, the Bayes estimators for the 

parameters  ,   and   are given, respectively, by 
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where   is constant and    . 

     Similarly, the Bayes estimators of the sf, hrf and ahrf under 

LINEX loss function can be obtained using (5)-(7) and (18) as 

follows: 
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The Bayes estimates of the parameters, sf, hrf and ahrf can be  

obtained by evaluating (22)- (29) numerically. 

b. Credible interval 

     In general, a two-sided 100(1 − 𝜔) % credible interval of the 

parameters   is given by  

 [ ( )       ( )]  ∫  (    )   
 ( )

 ( )
  1−𝜔,                (30) 
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where  ( ) and  ( ), are the lower limit (LL) and upper limit 

(UL).  

     From the marginal posterior distributions of the parameters   in 

(20), the 100(1 − 𝜔) % credible interval for    are given by 
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Also, a 100 (1- 𝜔) % credible interval for     is (  ( ),   ( )) and 

can be obtained respectively as follows:    
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 Furthermore, a 100 (1- 𝜔) % credible interval for S( ), h( ) and ah( ) 

are given respectively as follows: 

  [ ( )      ( )]  ∫  (   )   
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where  (   )  (   )       (    ) re the posterior distribution of sf, 

hrf and  hrf which can be obtained numerically.  

     To obtain the two-sided a 100 (   ) % credible interval for  , 

sf, hrf and  hrf (  ) to (  ) should be solved numerically. 

 

3. Bayesian Prediction Based on Two-Sample Prediction 

     Considering that   ( ( )   ( )     ( )) are the first r 

ordered life times in a random sample of n components(Type II 
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censoring) whose failure times are identically distributed as 

DAPIKum (     ) distribution; informative sample, and 

   (          ) is a second independent random sample 

of size m of future observables from the same distribution; the 

future sample. Our aim is to predict the    order statistic in the 

future sample based on the informative sample. For the future 

sample of size m, let  ( ) denotes the     order statistic,  1 ≤   ≤ 𝑚.  

The conditional pmf of  ( )can be obtained as follows: 
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     Assuming that   (     ) are unknown, then the Bayesian 

predictive mass function (BPMF) of   ( ) given   is given by  

  ( ( )| )  ∫    ( ( )| )   ( | )    ,      

                                    ( )                  𝑚           (42) 

     Therefore, The BPMF of   ( ) given   can be obtained by 

substituting (18) and (41) into (42), then the BPMF of the future 

order statistic ( )           𝑚   is given by  
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a. Point prediction  

     Based on Type II censoring, two-sample Bayesian prediction is 

considered under two types of loss functions SE loss function, as a 

symmetric loss function, and LINEX loss function, as an 

asymmetric loss function. 

I. Bayesian prediction based on squared error loss function  

     The Bayes predictor (BP) for the future observation  ( ), under 

the SE loss function can be derived using (43) as follows: 
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II. Bayesian prediction based on linear-exponential loss 

function  

The BP for the future observation  ( ), under the LINEX loss 

function can be obtained using (43) as given below 
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Special cases:  

 

I. If      , in (44) and (45), one can predict the 

minimum observable,  ( ); which represents the first 

failure time in the future sample of size 𝑚, given that r 

components had already failed in the informative 

sample of size n. Hence, under the SE and LINEX loss 

functions, one gets 
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II. If      , in (44) and (45), one can predict the 

maximum observable,  ( ); which represents the largest 

failure time in the future sample of size 𝑚, given that r 

components had already failed in the informative 

sample of size n. Hence, under the SE and LINEX loss 
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b. Bayesian predictive bounds 

     A 100 (1- )% Bayesian predictive bounds (BPB) for the future 

observation  ( ), such that 

 [ ( )( )   ( )    ( )( )  ]  ∑    ( ( )| )
 ( )( )
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The lower and upper bounds [ ( )( )  ( )( )] can be obtained by 

evaluating 
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4. Numerical Illustration 

      This section aims to investigate the precision of the theoretical 

results of the Bayesian estimation and prediction based on 

simulated and real data.  

4.1 Simulation study  

     In this subsection, a simulation study is conducted to illustrate 

the performance of the presented Bayes estimates based on 

generated data from the DAIKum distribution. Bayes averages and 

credible intervals of the parameters, sf, hrf and ahrf based on Type 

II censoring are computed. Also, two sample Bayes predictors 

(point and interval) for a future observation from the DAIKum 

distribution based on Type II censored data are computed. 

Simulation studies are performed using R programming language 

for illustrating the estimation and prediction results obtained.  

Simulation algorithm  

 A combination of the population parameter values for     

and   are used to generate several data sets from DAIKum 

distribution. Also, for samples of size n=30, 60 and 120 

using number of replications (NR)=10000 for each sample 

size. 

  The samples are drawn from the population distribution, in 

the complete sample case and when the data are censored at 

the 60% and 80% level, for each sample size.  

 The random samples are generated from the DAPIKum 

(      ) distribution using the following transformation 
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                   ⌈[  *
  [(   )    ]

  ( )
+
   

]
    

   ⌉                 

where     are random samples from the uniform distribution (0,1), 

and then taking the ceiling. 

 After the estimates  ̂   ̂      ̂ are obtained, then the sf, hrf 

and ahrf for different values are estimated. 

 Some measurements of accuracy are considered to evaluate 

the performance of the Bayes estimators, 

 ̂   ̂  ̂  ̂(  )  ̂(  )       ̂(  ). In order to study the 

variation and precision of the Bayes estimates is studied 

through the variance, the relative absolute bias  

 Relative absolute biases(   ) 

                                        
                               

                    
,  

and  

the relative error (  )  
√                 (        )

                    
 . 

The results are displayed in Tables 1-3.  

 

4.2 Applications 

     In this subsection, two real data sets are provided to 

demonstrate the importance of the DAIKum distribution and how 

it can be used in real life. The estimates and their corresponding 

standard errors (se) of the parameters, sf, hrf, ahrf for the two real 

data sets are given in Tables 5 and 6. 

Application 1  

     The first data set is considered by Lawless (2011). This dataset 

is the failure times for a sample of 15 electronic components in an 

acceleration life test. The data observations are: 1.0, 5.0, 6.0, 11.0, 

12.0, 19.0, 20.0, 22.0, 23.0, 31.0, 37.0, 46.0, 54.0, 60.0 and 66.0.  
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Application 2 

The second data set of this application is obtained from  

Freireich et al. (1963). It represents the remission times (in weeks) 

for 21 patients who treated with placebo from 97 patients with 

acute leukemia participated in a clinical trial investigating the 

effect of 6-mercaptopurine. The remission times for the n = 21 

patients treated with placebo were 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 

11, 11, 12, 12, 15, 17, 22, and 23 weeks. 

     Kolmogorov-Smirnov goodness of fit test is performed for each 

data set, to check the validity of the fitted model, and the p values 

are, respectively, 0.6781 and 0.5860. In each case, the p value 

shows that the model fits the data very well.  

4.3 Concluding remarks 

 It is noticed from Tables 1,2 and 3 that the RABs and REs 

of the Bayes averages; for the parameters, sf, hrf and ahrf, 

under LINEX loss function have less values than the 

corresponding results under the SE loss function. 

 As expected, it is observed that better estimates are 

obtained when the sample sizes increases and level of 

censoring decreases, which is obvious from comparing the 

RABs and REs of the estimates. This confirms that more 

information provided by the sample, increases the accuracy 

of the estimates.  

 The two-sided 95% credible intervals distribution become 

narrower as the sample size increases. 

 Regarding the results in Tables 4 and 7, both Bayes 

predictive estimates and credible intervals of the future 
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observations; for simulated and real data, under SE and 

LINEX loss functions are very close. 

 Also, the lengths of the credible intervals under LINEX 

loss function are shorter than the lengths under SE loss 

function. 
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Appendix 

Table 1 

Bayes averages, relative absolute biases, relative errors, and 95% CIs for the parameters           based on Type-II censoring 

(              ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n r Par 
SE LINEX(𝜈 = 0.5) 

Average RAB RE UL LL Length Average RAB RE UL LL Length 

30 

18 
  

 
0.5143 0.0286 0.0822 0.5661 0.4597 0.1064 0.5090 0.0181 0.0329 0.5403 0.4814 0.0589 

 
  

 
5.0458 0.0091 0.8416 5.0944 5.0021 0.0923 4.9551 0.0089 0.8034 4.9961 4.9211 0.0750 

   
10.0261 

 
0.0026 0.2740 10.0610 9.9797 0.0813 10.007 0.0008 0.0237 10.0354 9.9757 0.0597 

24 
  

 
0.4652 0.0285 0.0424 0.5073 0.4291 0.0781 0.4955 0.0089 0.0080 0.5111 0.4786 0.0324 

30 

  

 
5.0095 0.0018 0.0364 5.0357 4.9729 0.0628 4.9909 0.0018 0.0330 5.0012 4.9777 0.0234 

  

 
10.0192 0.0019 0.1480 10.0585 9.9892 0.0693 9.9942 0.0005 0.0131 10.0076 9.9801 0.0275 

  

 
0.4901 0.0197 0.0391 0.5061 0.4669 0.0391 0.5059 0.0057 0.0032 0.5122 0.4960 0.0162 

  

 
5.0294 0.0015 0.0218 5.0495 5.0050 0.0445 5.0007 0.0005 0.0021 5.0090 4.9961 0.0129 

  

 
9.9715 0.0011 0.0084 10.0035 9.9446 0.0588 9.9974 0.0004 0.0077 10.0012 9.9936 0.0076 

60 36 

  

 
0.5087 0.0174 0.0302 0.5170 0.5004 0.0165 0.4985 0.0028 0.0008 0.5008 0.4960 0.0047 

  

 
5.0065 0.0013 0.0171 5.0163 5.0006 0.0156 5.0053 0.0010 0.0115 5.0094 4.9998 0.0096 

  

 
10.0057 0.0006 0.0133 10.0153 9.9993 0.0159 9.9983 0.0002 0.0011 10.0012 9.9951 0.0061 
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Table 1. Continued 

Bayes averages, relative absolute biases, relative errors, and 95% CIs for the parameters           based on Type-II censoring 

(              ) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 
r Par 

SE LINEX(𝜈 = 0.5) 

Average RAB RE UL LL Length Average RAB RE UL LL Length 

60 

48 

  

 

0.4929 0.0140 0.0198 0.5002 0.4861 0.0140 0.4989 0.0021 0.0005 0.5002 0.4969 0.0033 

  

 

4.9958 0.0008 0.0067 5.0011 4.9894 0.0116 5.0023 0.0005 0.0022 5.0039 5.0009 0.0030 

  

 
9.9988 0.0001 0.0005 10.0027 9.9958 0.0068 9.9974 0.0001 0.0005 10.0000 9.9956 0.0043 

60 

  

 

0.5012 0.0025 0.0006 0.5027 0.4995 0.0032 0.5011 0.0023 0.0005 0.5018 0.5002 0.0016 

  

 

4.9975 0.0005 0.0024 5.0002 4.9947 0.0055 5.0009 0.0001 0.0003 5.0013 5.0003 0.0010 

  

 
10.0012 0.0001 0.0006 10.0030 9.9994 0.0036 9.9988 0.0001 0.0005 10.0004 9.9974 0.0029 

120 

72 

α 

 
0.5018 0.0037 0.0018 0.5034 0.4995 0.0039 0.4978 0.0024 0.0002 0.4994 0.4961 0.0033 

λ 

 
5.0021 0.0004 0.0017 5.0057 4.9982 0.0074 5.0018 0.0003 0.0013 5.0034 4.9998 0.0036 

β 

 
10.0033 0.0003 0.0046 10.0064 9.99910 0.0074 10.0024 0.0002 0.0010 10.0045 10.0000 0.0045 

96 

α 

 
0.4991 0.0030 0.0010 0.5007 0.4978 0.0029 0.4999 0.0001 

8.0285 
     

0.5009 0.4984 0.0025 

λ 

 
4.9986 0.0003 0.0007 5.0003 4.9970 0.0032 4.9994 0.0001 0.0001 5.0010 4.9983 0.0027 

β 

 
10.0008 

8.8438 
     

0.0003 10.0016 10.0001 0.0015 9.9993 
6.2238 
     

0.0001 9.9998 9.9986 0.0012 

120 

α 

 
0.5000 0.0001 

3.7181 
     

0.5002 0.4998 0.0004 0.4999 
9.1137 
     

8.3060 
     

0.5000 0.4998 0.0002 

λ 

 
4.9999 

1.3612 
     

1.8530 
     

5.0001 4.9996 0.0005 5.0000 
1.0956 
     

1.2005 
      

5.0000 4.9999 0.0001 

β 

 
9.9999 

6.3068 
     

1.5910 
     

10.0000 9.9997 0.0003 9.9999 
4.9281 
     

9.7145 
     

10.0000 9.9998 0.0001 
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Table 2 

Bayes averages, relative absolute biases, relative errors, and 95% CIs for the sf, hrf and ahrf based on Type-II censoring 

(             ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n r Par SE LINEX(𝜈 = 0.5) 

30 

18 

 Average RAB RE UL LL Length Average RAB RE UL LL Length 

 (  ) 
 

0.8786 0.0422 0.5074 0.9131 0.8452 0.06783 0.8507 0.0091 0.0239 0.8694 0.8248 0.0445 

 (  ) 
 

0.1115 0.4666 0.8122 0.2036 0.0323 0.1713 0.2032 0.0287 0.0144 0.2287 0.1812 0.0475 

  (  ) 
 

0.2172 0.0743 0.1218 0.2870 0.1535 0.1335 0.2258 0.0378 0.0315 0.3014 0.1862 0.3014 

24 

 (  ) 
 

0.8664 0.0278 0.2203 0.8893 0.8461 0.04322 0.8324 0.0039 0.0044 0.8485 0.8174 0.0311 

 (  ) 
 

0.2016 0.0361 0.0228 0.2263 0.1815 
 

0.0448 
0.2135 0.0206 0.0074 0.2158 0.2098 0.0060 

  (  ) 
 

0.2192 0.0659 0.0957 0.2443 0.1963 0.0479 0.2378 0.0134 0.0039 0.2415 0.2327 0.0088 

30 

 (  ) 
 

0.8227 0.0239 0.1633 0.8449 0.8108 0.0341 0.8456 0.0031 0.0027 0.8517 0.8385 0.0132 

 (  ) 
 

0.1987 0.0254 0.0113 0.2177 0.1811 0.0366 0.2083 0.0126 0.0028 0.2114 0.2056 0.0058 

  (  ) 
 

0.2441 0.0401 0.0355 0.2687 0.2213 0.0474 0.2296 0.0118 0.0031 0.2344 0.2256 0.0088 

60 

36 

 

 (  ) 
 

0.8570 0.0167 0.0794 0.8774 0.8292 0.0481 0.8524 0.0060 0.0106 0.8632 0.8441 0.0191 

 (  ) 
 

0.2049 0.0206 0.0742 0.2208 0.1859 0.0349 0.2020 0.0104 0.0103 0.2110 0.1930 0.0179 

  (  ) 
 

0.2247 0.0426 0.0401 0.2457 0.2029 0.0427 0.2418 0.0302 0.0202 0.2466 0.2340 0.0126 

48 

 (  ) 
 

0.8556 0.0149 0.0638 0.8783 0.8369 0.0414 0.8482 0.0031 0.0028 0.8540 0.8436 0.0104 

 (  ) 
 

0.2033 0.0194 0.0139 0.2125 0.1931 0.0194 0.2121 0.0140 0.0035 0.2171 0.2063 0.0108 

  (  ) 
 

0.2403 0.0237 0.0124 0.2516 0.2305 0.0210 0.2384 0.0158 0.0056 0.2414 0.2344 0.0070 

60 

 (  ) 
 

0.8411 0.0045 0.0059 0.8476 0.8332 0.0143 0.8391 0.0022 0.0013 0.8433 0.8333 0.01000 

 (  ) 
 

0.2067 0.0118 0.0024 0.2115 0.2014 0.0101 0.2083 0.0042 0.0003 0.2108 0.2059 0.0049 

  (  ) 
 

0.2301 0.0194 0.0083 0.2347 0.2238 0.0109 0.2331 0.0066 0.0010 0.2357 
0.2300

1 
0.0056 
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 Table 2. Continued 

Bayes averages, relative absolute biases, relative errors, and 95% CIs for the sf, hrf and ahrf based on Type-II censoring 

(              ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n r Par SE LINEX(𝜈 = 0.5) 

120 

 

 

72 

 Average RAB RE UL LL Length Average RAB RE UL LL Length 

 (  ) 
 

0.8388 0.0049 0.0070 0.8444 0.8341 0.0103 0.8419 0.0012 0.0004 0.8456 0.8380 0.0076 

 (  ) 
 

0.2104 0.0057 0.0006 0.2159 0.2051 0.0107 0.2100 0.0040 0.0003 0.2147 0.2046 0.0100 

  (  ) 
 

0.2234 0.0481 0.0510 0.2333 0.2149 0.0183 0.2354 0.0028 0.0002 0.2382 0.2318 0.0064 

 

 

96 

 (  ) 
 

0.8398 0.0038 0.0040 0.8436 0.8367 0.0069 0.8421 0.0010 0.0003 0.8453 0.8387 0.0066 

 (  ) 
 

0.2082 0.0048 0.0004 0.2107 0.2060 0.0047 0.2087 0.0022 8.5863      0.2105 0.2056 0.0049 

  (  ) 
 

0.2315 0.0134 0.0040 0.2351 0.2269 0.0082 0.2344 0.0012 3.0661      0.2378 0.2316 0.0062 

 

 

120 

 (  ) 
 

0.8408 0.0025 0.0018 0.8438 0.8383 0.0055 0.8423 0.0008 0.0001 0.8432 0.8413 0.0018 

 (  ) 
 

0.2082 0.0044 3.4187      0.2099 0.2069 0.0030 0.2090 0.0007 9.2114      0.2097 0.2085 0.0011 

  (  ) 
 

0.2328 0.0080 0.0014 0.2350 0.2310 0.0040 0.2344 0.0011 2.7518      0.2365 0.2326 0.0039 
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Table 3 

Bayes averages, relative absolute biases, relative errors, and 95% CIs for the parameters           based on complete sample 

 (NR= 10000) 

  

n Par SE LINEX(𝜈 = 0.5) 

50 

 Average RAB RE UL LL Length Average RAB RE UL LL Length 

    
 

 
2.0226 

0.0113 0.2050 2.1008 1.9391 0.1617 2.0093 0.0046 0.0352 2.0221 1.9898 0.0323 

    
 

3.0192 
0.0064 0.1486 3.0868 2.9613 0.1255 3.0058 0.0019 0.0136 3.0183 2.9946 0.0236 

    
 

 

5.0383 
0.0076 0.5869 5.0695 5.0017 0.0678 4.9933 0.0013 0.0178 5.0114 4.9789 0.0324 

100 

    
 

 

2.0053 
0.0027 0.0115 2.0237 1.9895 0.0341 1.9978 0.0010 0.0019 2.0051 1.9931 0.0120 

    
 

2.9970 
0.0009 0.0034 3.01300 2.9805 0.03246 3.0015 0.0005 0.0009 3.0052 2.9971 0.0080 

    
 

 
5.0056 

0.0011 0.0128 5.0348 4.9914 0.0433 5.00478 0.0010 0.0091 5.0086 5.0009 0.0076 

200 

    
 

 
1.9993 

0.0003 0.0002 2.0013 1.9971 0.0042 1.9994 0.0002 0.0001 2.0001 1.9987 0.0014 

    
 

2.9994 
0.0002 0.0001 3.0012 2.9973 0.0038 3.0003 0.0001 5.6687      3.00069 2.9999 0.0007 

    
 

 

4.9988 
0.0002 0.0006 5.0004 4.99678 0.0037 4.9988 0.0002 0.0005 5.0000 4.9981 0.0018 

50 

    
 

4.9667 0.0066 0.4424 5.0262 4.9326 0.0935 4.9921 0.0015 0.0246 5.0202 4.9650 0.05520 

    
 

2.980 
0.0065 0.1523 3.0744 2.8720 0.2024 3.0133 0.0044 0.0712 3.0362 2.9869 0.0493 

     
 

9.9699 
 

0.0030 0.3606 10.0109 9.9286 0.0822 10.0070 0.0007 0.0199 10.019 9.9934 0.0258 

 

100 
 

 

 

    
 

4.9600 0.0059 0.2381 4.9940 4.9137 0.0803 5.0040 0.0008 0.0067 5.0069 5.0008 0.0061 

    
 

2.9932 
0.0026 0.0182 3.0168 2.9738 0.0429 3.0078 0.0022 0.0148 3.0170 2.9991 0.0179 

     
 

10.0286 0.0028 0.3277 10.0523 9.9968 0.0555 9.9972 0.0002 0.0029 10.0027 9.9895 0.0131 

200 

    
 

 

5.0016 
0.0003 0.0011 5.0061 4.9949 0.0111 5.0010 0.0002 0.0004 5.0045 4.9980 0.0065 

    
 

3.0060 
0.0020 0.0144 3.0106 3.0012 0.00931 2.9977 0.0007 0.0020 2.9995 2.9962 0.0032 

     
 

 
9.9828 

0.0017 0.1181 9.9976 9.9758 0.0217 9.9988 0.0001 0.0005 10.0021 9.9945 0.0076 
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Table 4 

Bayes predictors and bounds of the future observation  

based on Type II censoring under two-sample prediction 

 (                       𝑚    ) 

 

s SE LINEX(     ) 
 ̃( ) UL LL Length  ̃( ) UL LL Length 

1 0.9899 0.9985 0.9808 0.0177 1.0062 1.0120 1.0009 0.0111 

10 6.9989 7.0055 6.9926 0.0128 7.0036 7.0074 7.0010 0.0064 

20 8.9917 8.9976 8.9879 0.0097 8.9967 9.0001 8.9930 0.0071 

25 15.0062 15.0166 14.9973 0.01922 14.9987 15.0021 14.9959 0.0061 

 

Table 5 

Bayes estimates and standard errors of the parameters for the real 

data sets based on Type-II censoring 

Applications       

SE LINEX(     ) 

Estimates 
standard 

errors 
Estimates 

standard 

errors 

 

 

 

 

I 

 

 

 

 

15 

9 

 

 

  

  

  

0.4993 0.0099 0.4992 0.0087 

0.4973 0.0129 0.5009 0.0075 

3.0007 0.0130 2.9982 0.0101 

12 

  

  

  

0.5000 0.0092 0.5000 0.0047 

0.4994 0.0080 0.4995 0.0052 

3.0015 0.0088 2.9990 0.0055 

15 

  

  

  

0.5017 0.0073 0.5000 0.0031 

0.5000 0.0062 0.4998 0.0043 

3.0006 0.0059 2.9999 0.0037 

 

 

 

 

I I 

 

 

 

21 

 

13 

  

  

  

3.0028 0.0124 2.9988 0.0071 

2.0007 0.0078 2.0014 0.0061 

13.0010 0.0086 13.0005 0.0074 

 

17 

  

  

  

2.9989 0.0061 3.0000 0.0053 

1.9995 0.0043 2.0010 0.0057 

12.9998 0.0071 13.0006 0.0040 

 

21 

  

  

  

2.9984 0.0057 2.9998 0.0033 

1.9997 0.0044 1.9994 0.0037 

12.9985 0.0053 13.0002 0.0028 
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Table 6 

Bayes estimates and standard errors of the sf, hrf and ahrf for the real data  

sets based on Type-II censoring 

 

Applications       

SE LINEX(     ) 

Estimates 
standard 

errors 
Estimates 

standard 

errors 

I 15 

9 

 (  ) 
 (  ) 
  (  ) 

 

0.8989 

0.0722 

0.0739 

0.0115 

0.0126 

0.0113 

0.8987 

0.0699 

0.0743 

0.0076 

0.0080 

0.0078 

12 

 (  ) 
 (  ) 
  (  ) 

 

0.8967 

0.0732 

0.0745 

0.0074 

0.0092 

0.0076 

0.8982 

0.0712 

0.0737 

0.0054 

0.0050 

0.0047 

15 

 (  ) 
 (  ) 
  (  ) 

 

0.8973 

0.0734 

0.0732 

0.0068 

0.0078 

0.0051 

0.8981 

0.0719 

0.0735 

0.0037 

0.0041 

0.0040 

I I 21 

13 

 (  ) 
 (  ) 
  (  ) 

 

0.8303 

0.0621 

0.0657 

0.0149 

0.0114 

0.0123 

0.8332 

0.0648 

0.0683 

0.0059 

0.0080 

0.0054 

17 

 (  ) 
 (  ) 
  (  ) 

 

 

0.8364 

0.0659 

0.0702 

0.0097 

0.0065 

0.0094 

0.8352 

0.0657 

0.0688 

0.0050 

0.0051 

0.0053 

21 

 (  ) 
 (  ) 
  (  ) 

 

0.8326 

0.0661 

0.0687 

0.0058 

0.0042 

0.0041 

0.8337 

0.0666 

0.0687 

0.0050 

0.0043 

0.0042 

 

 

Table 7 

Bayes predictors and bounds of the future observation based on Type II 

censoring under two-sample prediction for two real data sets 

 

Applications s 
SE LINEX(     ) 

 ̃( ) UL LL Length  ̃( ) UL LL Length 

I 

1 1.0033 1.0094 0.9975 0.0119 1.0025 1.0042 0.9997 0.0044 

5 2.9932 2.9988 2.9891 0.0096 2.9976 2.9994 2.9964 0.0029 

10 6.9973 7.0019 6.9922 0.0097 7.0008 7.0019 6.9994 0.0025 

II 

1 1.0066 1.0124 0.9993 0.0130 0.9942 0.9985 0.9910 0.0074 

8 4.9999 5.0027 4.9959 0.0068 5.0030 5.0052 5.0000 0.0052 

15 9.9986 10.0015 9.9945 0.0069 10.0033 10.0057 10.0007 0.0050 

 


