Proceedings of the 6" | CEENG Conference, 27-29 May, 2008 \ EEQ058 - 1

6" International Conference
on Electrical Engineering
|CEENG 2008

Military Technical College
Kobry El-Kobbah,
Cairo, Egypt

HIV dynamics: Analysisand robust multirate MPC-based treatment
schedules

By
Ahmed M. Elaiw* X. Xia*
Abstract:

Anaysis and control of human immunodeficiency virus (HIV) infection have attracted
the interests of mathematicians and control engineers during the recent years. In this
paper we study the basic properties of a 6-dimensional HIV model that describes the
interaction of HIV with two target cells, CD4" T cells and macrophages. Besides mode!
inaccuracies that HIV models suffer from, some disturbances/uncertainties from
different sources may arise in the modelling. The disturbances are modelled in the HIV
model as additive bounded disturbances. Highly Active AntiRetroviral Therapy
(HAART) is used. The control input is defined to be dependent on the drug dose and
drug efficiency. We developed a treatment schedules for HIV infected patients by using
robust multirate Model Predictive Control (MPC)-based method. The MPC is
constructed on the basis of the approximate discrete-time model of the nominal model.
We established a set of conditions, which guarantee that the multirate MPC practically
stabilizes the exact discrete-time model with disturbances. The proposed method is
applied to the stabilization of the uninfected steady state of the HIV model. The results
of simulations show that, after initiation of HAART with a strong dosage, the viral load
drop quickly and it can be kept under a suitable level with mild dosage of HAART.
Moreover, the immune system is recovered with some fluctuations due to the presence
of disturbances.
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1. I ntroduction:

Over the last decade a tremendous effort has been made in developing mathematical
models of the immunology dynamics under the attack of the human immunodeficiency
virus (HIV) and under the influence of antiretroviral therapies. HIV is responsible of
acquired immunodeficiency syndrome (AIDS). HIV is a retrovirus which infects the
CD4" T cells and macrophages which are the crucial immune responses and play
important roles in phagocytosis. After infection, the CD4" T cells lose their function and
become a virus factory, producing new virus particles until its death. Macrophages live
longer than the CD4" T cell and it is an important source of virus after CD4™ T cell
depletion. When the number of CD4" T cell reaches below 200 cell/mm?® of plasma, the
HIV infected patient is regarded as an AIDS patient.

The treatment of HIV infected patients is of mgor importance in today's socia
medicine. Currently, the most important categories of anti-HIV drugs are reverse
transcriptase inhibitors (RTI) drugs and protease inhibitors (Pl) drugs. Reverse
transcriptase inhibitors prevent the HIV from infecting cells by blocking the integration
of the HIV viral code into the host cell genome. Protease inhibitors prevent already
infected host cells from producing infectious virus particles. Recently, Highly Active
AntiRetroviral Therapies (HAART) which consist of one or more RTI and a PI, can
suppress viral load below detectable levels and consequently prolong time to the onset
of AIDS.

Optimal treatment scheduling of HIV infection using a control theoretic approach is
the subject of substantial research activity. In ([12], [22], [26], [8], [21], [1], [25] and
[36]), open-loop type optimal controllers are designed using the Pontryagin's Maximum
Principle. A mgor drawback of open-loop optimal controllers is their lack of robustness
against disturbances/model uncertainties. In fact, HIV dynamics are poorly known, this
leads to model inaccuracies and parameter uncertainties. Also, another sources of
disturbances may arise from immune system fluctuating or immune effect of a
coinfection, in addition to the measurements errors and estimation errors when using an
observer to estimate the unmeasured states. Therefore, the design of optimal treatment
schedules based on open loop optimal controller, may lead to undesired results. To
overcome this problem, we have to design a feedback controller, that inherits a certain
robustness to disturbances. Feedback control for HIV has been studied by [3]-[5]].

In the last few years, model predictive control (MPC) method is developed for
determining optimal treatment schedules for HIV patients ([35], [10], [11], [37], [18],
and [15]). The MPC method obtains the feedback control by solving a finite horizon
optimal control problem at each time instant using the current state of the system as the
initial state for the optimization and applying “the first part” of the optimal control. The
study of stabilizing property of such schemes has been the subject of intensive research
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in recent years (see e.g. [13], [2] and [27]).

In [37], the MPC is constructed on the basis of the discrete-time model where the
sampling period is chosen to be seven days (i.e.,, t =7). However, the authors did not
consider the effect of the discretization of the differential equations on the stability
analysis. Moreover, for large sampling periods, the viral load and the CD4" T cell count
could not be kept within baseline ranges (see [23]). Alternatively, the optimal control
problems can be solved by continuousy varying drug levels in [35]. However,
continuous-time variation of the dose seems hard to apply in the clinical treatment of
patients. In [10] and [11], the HIV model is discretized with a suitable numerical
method with short sampling period, and the MPC is designed on the basis of the
approximate discrete-time model. For short sampling period, MPC is hard to apply to
HIV model, because it requires the availability of blood measurements every sampling
instants (it, 1 =0,...). A possible solution of this problem is to design a multirate
version of MPC, where the measurements is needed evey | samplings (itl, i =01,...)
(see [15] and [16]). In [35] and [37], it is shown only by ssmulation that the applied
MPC have a certain degree of robustness to measurements and modeling errors.

The aim of the present paper is to develop a treatment schedules for HIV infected
patients by using robust multirate MPC. The disturbances are modelled in the HIV
model as additive bounded disturbances. The construction of MPC is based on the
approximate discrete-time model of the nominal model. We have shown that under a
suitable conditions, the multirate MPC practically stabilizes the exact discrete-time
model with disturbances. These conditions have been verified for the HIV model. The
importance of approximate discrete-time design is supported by a series of counter-
examples (see e.g. [29], [28] and [14]), which show that even for disturbance-free
systems one can design a controller to stabilize the approximate model, but the origina
model is destabilized by the same controller. In [37], the MPC method is applied to an
HIV model without verifying the stability conditions of the proposed method such as the
asymptotic controllability of the system and the delectability condition.

The model of HIV infection we will use in this paper, considers the infection process
of the HIV with two target cells, CD4" T cells and macrophages, which is a 6-
dimensional nonlinear ODES model. The importance of considering such model is due
to the observation of Perleson € d., that after the rapid first phase of decay during the
initial 1-2 weeks of antiretroviral treatment, plasma virus levels declined at a
considerably slower rate [32]. This second phase of viral decay was attributed to the
turnover of a longer-lived virus reservoir of infected cell population. Therefore, the
two target cells model is more accurate than the one target cell model (see [33] and [7]).
Models used in ([35], [10], [11], [37] and [15]) do not capture the detailed viral
dynamics the occur in macrophages. In our paper, we studied the basic properties of the
6-dimensional HIV model with additive disturbances. Note that these basic properties of
the 6-dimensional HIV model are not well studied in the literature, compared with those
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of, say, the 4-dimensional model [31], and they are important for understanding the
associated characteristics of the HIV dynamics. This also helps us to verify the stability
conditions of the MPC method. The smulation results show that after initiating the
HAART, the vira load drop dramatically and it can be kept under a suitable level by
using a mild dosage of HAART. Moreover, the immune system returns near to the
normal status with some fluctuations due to the presence of disturbances.

The layout of the paper is as follows: In Section 2, we introduce the HIV model and
study its basic properties. In Section 3, we outline the robust multirate MPC design for
sampled-data nonlinear systems and summarize the main results obtained in [14] and
[9]. Application of robust MPC to the HIV model is given in Section 4. Section 5
presents the simulation results. The last section is the conclusion.

2. HIV model:

We shall use the mathematical model of HIV infection proposed by ([33] and [7]),
incorporating to allow some additive disturbances. This model describes two co-
circulation population of target cells, potentialy representing CD4"™ T cells and
macrophages. The model can simulate differential drug penetration into target cell co-
circulating in plasma, see [17]. After initiation of HAART which consists of RTI and PI
drugs the model can be written as:

F=s-dT-bTV+w (1)
-&1 =qe lJlblTV B k1T1 - mT +w, 2
= q,e b, TV +kT, - mT, +w, (3)
M =s,-d,M-b,MV+w, (4)
M, =q,e"b,MV - dM, +w, (5)
V=epT, +ep,M, - cV+w, (6)

The state variables describes the plasma concentrations of: T, the uninfected CD4"™ T
cells, Ty, the latently infected CD4" T cells; T, the actively infected CD4" T cells; M,

the uninfected macrophages; M, the infected macrophages; and V, the free virus

articles.

The populations of the uninfected CD4™ T cells and macrophages are described by Egs.
(1) and (4), respectively, where s; and s, represent, respectively, the rates of which new
CD4" T cell and macrophages are generated from sources within the body, d;, d, are the
death rate constants, and b,, b, are the infection rate constants. Here, the law of mass

action was used. Equation (2) describes the population dynamics of the latently infected
CD4" T cells and shows that they convert to actively produce virus with a rate constant
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ki and r, is their death rate constant. Equation (3), describes the population dynamics of
the actively infected CD4" T cells and shows that they die with rate constant r,.
Constants g, and g, are the probabilities that upon infection a CD4" T cell become either
latent or actively producing virus. In equation (5), qu is the probability of successfull
infection, d is the death rate constant of the infected macrophages. The virus particles
are produced by the actively infected CD4" T cells and infected macrophages with rate
constants p; and p,, respectively, and are cleared from plasma with rate constant c. We
emphasize that all the parameters of the model are positive and they differ form one
patient to another. For the estimation of HIV model parameters, we refer the reader to
the following papers ([38], [39], [20] and [40]). The effect of the RTI and PI drugs are

represented by the chemotherapy functions € ™" and e *2™" where a, and a, are the
efficiencies of RTI and Pl drugs, respectively, and my(t) and my(t) are the drug dose at
timet (see [6]). We shall consider the control input as u. (t) =a.m (t),i =12.

In equations (1)-(6), w:(t)describes model uncertainties/disturbances that may arise

from different sources such as, modelling errors, immune system fluctuation, immune
effect of a co-infection, measurement noise, estimation errors, and so on.
We assume that, the model uncertainties/disturbances satisfy the following bound

w®)|£e, i=1..6

We are now ready to present a study on the basic mathematical properties of the model.
2.1. Positive Invariance:

Now we show that under which conditions the nonnegative orthant R® is positively
invariant for (1)-6):

‘(T:O)=Sl+wl3 0 if w3 -s,
* o~ 4€ b, TV +w, 3 0 if w,® - ge b, TV,
-&2‘(3:0) =0,€ b, TV + KT +w, 3 0 if W, 3 - e b, TV - kT,
‘(M:0)=52+W430 if W, % -s,,
1‘(M =0) =0,€ "b,MV +w; 3 0 if W ® - gy € *b,MV,
vy SE P HEEDM W2 0 if w3 e pT,- €M, (7

with (T,T,,T,,M,M V)3 0. This means that under the above conditions the
nonnegative orthant R® is positively invariant, namely, if a trajectory starts in the
nonnegative orthant, it remains there. We note that, the lower bound of the disturbances
has to satisfy the conditionsin (7) only at the the boundary of RS .

Proposition 1 If ¢, +q, £1 and q,, £1, then there exists such positive numbers L, L,
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and L, that the compact set
W={(T,T,T,,M,M,V): 0£T,T, T, £EL,0£ M,M, £L,,0£V £L,}
IS positively invariant.
Proof. Let T, =T+T, +T,,andM =M +M,, then

-I&tot =S TW W, +W, - le - rrlTl' n}Tz

£S1+e1+e2+e3' Sthot’

Mtot =S, W, + W - dzM - dMl
£ S, +€, +6&;- SZMtot’
where s, =min{d,,n,,m,}ands, =min{d,,d}. Hence OE£T_(t)£L, for al t3 0 if
T4OE£L,and OEM () EL, foral M, (0)EL,, whereL, =(s +e, +e,+e,)/s;
L, =(s,+e, +e;)/s,. It followsthat O£ T(t),T,(t),T,(t)EL andO£ M (t),M, () £L,
foral t3 Oif T(0),T,(0),T,(0) £ L, and M (0),M,(0) £ L,. On the other hand,

V() £ pL, + p,L, - V(D) +e,

then OEV(t)EL, foral t3 Oif V(0) £L, where L, =(p,L, + p,L, +&;)/c.
Note that Wcontains all the biologically relevant states, thus we can restrict the state

space of the system to the compact set W. Since the drug doses cannot be arbitrarily
increased we may consider a compact control constraint set only.

2.2. Steady States:

We shall compute the steady states of system (1)-(6) under constant controller in the
absence of the disturbances, i.e., for u,(t) =0,, j =12 and w (t) =0, i =12,...6, t 3 Q.

A steady state (T,T,,T,,M,M V) satisfies

s, -dT-DbTV+w =0, (8)
€ b, TV - kT, - mT, +w, =0, 9)
0,€ b, TV +kT, - mT, +w, =0, (10)
s, - d,M - b,MV +w, =0, (11)
q, € “b,MV - dM, +w, =0, (12)
e*pT,+e“p,M, - cV+w, =0. (13)

Solving T,, T, and M, form equations (9), (10) and (12) in terms of TV and/or MV and

inserting theminto (13) we obtain
(a,T+a;M - c)V =0 (14)

b,[ka + (k + m)g,Je @
my(k, +m)

where a, = By
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The first solution of (14) is V =0. Then substituting it in (8)-(12), we obtain the
uninfected steady state E, =(T,,0,0,M,,00) where T,=s/d,andM,=s,/d,. If
V10, then

al+aM-c=0 (15)
and by eleminating V from equations (8) and (10) we obtain
a,l-alM-aM=0 (16)

where &, =sb,, a,=b,d,- b,d,, a,=s,b,.
We note that the coefficients a,, a,,a, and a; are positive, while a, may be positive, or
negative, or equal zero.
If &, =0 then the solutions of (15) and (16) are given by

= AC M= 3¢

a8, + 8,8 aa, + a8

If a,* 0O, there are two possible solutions for (15) and (16)
1o (@A +aa - a,0) + (e, +aa - a,0)° +4aaac
i 2a,a, ’

M=t (c-aT),
a5

1 -7 (@8, +aas- a,0)- \J(aa, +aa - a,0)° +4a,8,8,C
' 2a,a, ’

M’ =i(c— a,T).
ag

Now we have to determine the positive solutions. First, we show that the discriminate

D=(aa, +a,a, - a,c)° +4a,a,a,C, is positive

if a,>0, D=(aa, +aa;- ac)” +4aa,a,c>0,

if a,<0, D=(aa,+aa; +a,C) - 48,83a,C>0,

it follows that if a, >0, then

(a1a4 + ;s - azc) + \/(a1a4 + a,8; - a2C)2 + 4a1a2a4c >0
2a,a,

andif a, <O, let a, =-a, and then

1 (@a,raas+a,0)- (aa, +a,a, +3,0)° - 43ac

i 2a,a,
Similary, it is easy to see that

T =-

+
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a,>0P T, >0,and M’ >0,
a,<0P T, >0,and M >0,
a,>0p T <0,and M’ >0,
a,<0p T >0,and M’ <0.
Then, the only positive solutions are T =T, and M~ =M. . Substituting them in Egs.

(8)-(12), we obtan the infected steady state which is given by
=(T",T,,T,,M",M;,V") where

|T0, if a,=0 M = IMO, if a,=0
ST if a,t 0 M, if a1 0
e d, &, . ge "d, &,
s =4 G g’ 191, N g’ 191
k,+m éT g m(k,+m)éT g )
U1 s
MI— d ﬁ\ﬂo 19'\/|*, V* d gT l_
d el\/l [} b, &T [/}
where g =Kk,q, +(k, +m,)q,.
Let us define

Re(, 1) = LPPITad + Pab Mg, (K, +m)me &7

cd(k, + m)m,
Lemma 1 Theinfected steady state E, existsif and only if R; >1.
Proof. Assume that RS >1, we have shown already that T" >0 and M~ >0, we have to
show the remaining components of E,, i.e., T,, T,, M;, V" are positive. We can see that
T  and M’ can be written as follows

T*:%-Bl+\/g81- %B a?R?’ it a,>0, (18)
T*:%+§l-\/g§1+%g-2§j‘i$, it a,<0, (19)
T*:% it a, =0, (20)
M :%wz-\/ge%ng-?%, if a >0, (21)
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A J% AS 2ah
M'=—=2-B,+ ——=, if a, <0, (22
R :VE R &R
. M .
M~ = CO if a,=0, (23)
Ry
where, a,=-a,, B,=-B, B, =- B, and
A =17 4+ PePMoly (g +m)m B, =2 er + M9, d, (k1+m)n}ld
2 2p1db1q 2aze pldq u
A =% T pb, Todq , B, = b_§|\/| o, + p,d,T,dq lL'j
P,0,0y (k1 + I’Q)I’Q 2a2 e P.Qy, (k1 + ”l)”& u

From equations (18)-(23), it can be seen that T and M~ are decreasing functions of
R;.

Now we show that if RS =1then T" =T, and M~ = M,. Equations (18), (19), (21) and
(22) can be simplified to the following

.2
T*:pl_ Bl+\/§_bd bzzdlMopqu(kﬁm)W&g,
28, 2a, p,b,dq @

= Ai'Bl+\/Bl+To'Ai)2=To az>0’

2a, 2a,p,b,dq 5
Bl-\/(A_+§1-TO)2:TO a2<0’

2
=A+B- \/aﬁ-obldz 4 b2diMopyqy (K + m)m 0
= A+

E 2a,  2a,p,b,qy(k,+m)m g
= A2+Bz'\/Az+Bz'Mo) =|\/Io az>0
2
M*:A2-§2+\/m0k_)2dl b;d,T,p,dq g
2a, 2a,p,b,qy(k,+m)m g

= Az'§2+\/(§2'Az+Mo) :Mo a2<0-
From the above analysis we obtain the following:

) 2
M*=A2+Bz_\/aEMbd bidTpdd ¢
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R =1P E =E,

RE>1p 0<T <T,, 0<M’ <M, andT,,T,,M;,V >0,

R<1p T >T,, M >M,,andT,,T,,M,;,V <0
Now assume that the steady state E, existsthen T, ,T,,M,,V" >0, from (17) we obtain
T <T,and M™ <M,. It follows from (18)-(23) that RS >1.
2.3. Local stability of E,:

Theorem 11f R; <1, then E, islocally asymptotically stable for the nominal system.
Proof. Let us linearized the nominal system (1)-(6) with constant controllers around E, .
The coefficient matrix is

ed 0O 0 0 O -Tb, U
0 -k-m 0 0 0 ge“Th, Y
] =2 0 K, -m 0 0 0,e " Tyb, ld
S0 0 0 -d, 0 -Mpb, ¢
eo 0 0 0 -d  gu€"Myb,U
g 0 pe* 0 pe*  -c g

The characteristic equation is given by:
Det(J- 11)=(1 +d,)(I +d,)(1“+bJ > +bl > +bl +b)=0,
where,
b, = - {Pb,To0T + p,b,Ma, (K, + m)mje ™ +cd (k, + m)m
=cd(k, +m)m(1- Ry),
b, =-{p.b,To(@+da,) + p,b, M@, (K, +m +m)le @™ +cd (k +m +m)
+my(c+d)(k, +m),
b, =-{pbToq, + p,b,Mqa, J& ™ +d(k +m) +m(d +k +m) +c(d +k +m+m),
b,=c+d +k +m +nm,.
We note that b, and b, are positive, then by using the condition R; <1 we can show the
following:
by >dm,(k +m) >0
b, >d(k, + m)+m(d +k +m)+c(k, +m) >0.
Moreover, the Routh-Hurwitz criteria holds. Then, E, islocally asymptotically stable.
Remark 1 For the parameters given in Table 2, we can see that, when there is no
treatment, R; - 2.46493, then E; is unstable. In contrast, when we linearized

(U, =0,=0
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the nominal model around the infected steady state E, we found that all eigenvalues of
the jacobian matrix has a negative real part, this means that E, is locally asymptotically
stable.

2.4. Global stability of E,

Theorem 2If R £1, then E, globally asymptotically stable for the nominal system.

Proof By the method of Korobeinikov [24], we define a Lyapunov function for the
nominal system

elvl &M o U
wW(T,T,T,,M,M V) =q,T OeT— In —Oﬂ- 1ﬂ+g2 eMo Ing'\/I B_lb'.
+9,T, +9,T, +g;M, +gvV
with,
g, =€ "™ pda, g, =€ " p,qy (k, +m)m,
,=e%pdk, g, =€ pd(k +m),

gs =€ p,my(k, +m), gs =dm,(k, +m).
We note that W is defined, continuous and positive definite for al
(T,T,T,,M,M_,,V)>0. Also, the globa minimum W =0 occurs at the uninfected steady

state E,. Further, it satisfies

dw e, T T,u M,
_ MM V. 24
ry 918132 T TU gzszeZ Mo M U @JGC(F?0 ) (24)

Since the arithmetical mean is greater than or equal to the geometrical mean, then the
first two terms of (24) are less that or equal to zero. Therefore, if R;£1 then
dW/dt£0 foral T,M,V >0.

Infact, R} can be written as a sum of two parameters Ry and R},

Ry (U, 0,) = RY + Ry,
Re = PiDisge &7 Re = PoDsS0ue 4
cd, (k; +m)m cdd,

We observe that RY and R;, are the basic reproduction ratio of each T-cell and

macrophages dynamics separately. If RS <1 thenitissurethat Rf <1 and R}, <1. But
if one consider only the four dimensional model (1)-(3) and (6) and design a controller
such that R; <1, then the whole system may be unstable around E,, because R; >1.
This shows the importance of considering the effect of the macrophages in the HIV
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dynamics.

Proposition 2. The nomina system (1)-(6) is globally asymptotically controllable to E,
with piecewise constant controllers.

Proof. Let u,(t) =0, and u,(t) =0, with 0, + 0, >u,, where

= |nZPb.Tdd + p,b, My (k, +m)m &
cd (k; +m)m, o
then R} (U,,U,) <1, therefore the corresponding trajectory will tendto E, ast® ¥ .
Remark 2 We observe that u, is the minimum controller required to obtain a treatment
steady state viral load of zero. Also, by solving the equation for V', the minimum drug
dose that is required to obtain a treatment steady state viral load below a specific value

V. (9. V,, =50copiesmL™) is given by

01 + 02 S Uy, = Ing plblTOdqdl + pzszqu dz g

cmy(d, +Vg,by)(k +m) - cd(d, +Vy,b,) 5
Remark 3 If one does not take into account the effect of macrophages cells, then our
stability results are aso useful for the four dimensional model T, T, T,andV, by
putting s, =d, =b, =d = p, =0 (see[31]).

u

C

2.5 Sensitivity analysis of the infected steady state

As we have shown in Remark 1 that in the absence of treatment the infected steady state
E, is stable. Our aim is to design a treatment schedule to steer the system state near to

the uninfected steady state E, (i.e., to shift E, near to E;). Therefore, it is desirable to
predict how changes in the parameters will affect the infected steady state. Let
X ,i=1..,6, denote the infected steady state, then the sensitivity of x to parameters
. kK=12,..,p, is given by ﬂ){/ﬂrk . Thisis given in Table 1. For the parameters given
in Table 2, we can see that the infected steady state is more sensitive to the parameters
b,,b,,d, and d, whileit isless sensitive to the parameters s, and s, .
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Table (1). Ranked sensitivety of infected steady state to parameters.

i Bay e . Az, _w . Az
i ‘o B, z; Ty Brs €T T Br,
T* o 8.86 x 1012 f 11 7.22 x 10% M* k1 8948
v i 4.79 » 1012 iy dy 5.7 » 104 i}, k1 806.18

3 5.03 x 10 My d 4.9 x 10 P2 539.84
M* Ba 4.38 x 1011 i k1 3.93 x 10* M* qnr 420,94
T Ba 3.60 x 1011 My ) 3.20 x 104 iy ) 396.2
M* 3 1.00 3 1011 i k1 2.80 x 104 T P2 396.2
Ty & 9.81 = 107 T {1 2.44 x 10* M} c 251.31
M} Ba 4.38 x 1010 T k1 2,43 x 104 M} 20 223.7
¥ 5 1.27 x 100 M* 142 2,43 x 104 6 ans 153.53
M} e 1.09 x 107 i {2 2.19 x 10* ¥ 52 125.96
T3 i 4.08 % 10° M* 72 2,19 x 104 T c 115.8
T a2 5.27 x 103 B g2 1.98 x 10* T 52 92.45
ik dy 2.15 x 107 ¥ qn 1.89 x 10* M* s2 90.23
% do 1.76 s 109 M* 0 1.57 x 10% M} ky 80.48
i dg 1.29 x 108 i da 1.43 x 104 Vv 51 53.33
M* ds 1.26 = 109 i qa 1.39 = 104 M* P 50.57
¥ fig 1.06 x 108 f I a1 1.14 x 10% T qar 19.81
v g9 9.63 x 10° M* 4 8.6 x 10° /- P 18.06
T* 2 7.83 x 10° i i ) 3.07 x 103 M* P2 12.3
i b o 7.07 x 10° M} fig 2.43 x 103 M} So 10.98
A q1 6.88 x 10° M* c 2.25 % 103 M} P 5.06
i i q1 5.05 x 10° M* (11 2.24 x 103 T P2 4.39
[ dy 5.02 x 10° v P 2.22 x 103 Ty P 2.33
M* dy 4.9 x 10° My q2 2.19 x 103 b 51 1.42
T3 dy 4.42 x 108 i (1 2.02 x 103 M} P2 1.23
1% ) 3.78 x 10° /7y dy 1.84 3 10? M* 51 1.21
T* ) 2.77 % 10° My anr 1.65 3 10° T s1 1.09
iy 71 1.71 x 108 v i p1 1.63 ¢ 10° s s2 1.02
M} ds 1.53 x 10° M} a1 1.57 x 10° T Do 0.57
L c 1.1 % 10° by 42 1.12 x 10° { by s1 0.14
% {1 0.83 x 104 T? g2 1.01 = 10° 4 Fy 52 0.13
i e 8.1 3 104 T e 807.42 M, 1 0.12

3. Robust Multirate MPC for Sampled Data Systems

In this section, we outline the multirate MPC design for sampled-data nonlinear systems
in the presence of bounded disturbances and give a review on the results obtained in
[14] and [9]. We have shown in the preceding section that, the HIV system states can be
taken from a compact set. Moreover, since the drug dosage of HAART can not
arbitrarily increased, thus the controller can also be taken from a compact set. Therefore,
we give only a short outline of the proof of the main results of [9], when both the state
gpace of the system and the control constraint set are restricted to compact sets.
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Consider a continuous-time nonlinear control system with additive disturbances given
by

a(t) = f(z(t),u(t)) +w(t), z(0) =z (25)
where z(t)T R", u()T Ul R™, w(t)I WI R? ae the state, control input and
disturbances, respectively, f :R"" U ® R"is continuous and Lipschitz continuous w.r.t
z in any compact set and f(0,0) =0, U is compact and Ol U, Wis compact and 0T W
In what follows, the notation B, ={zi R':|Z|£ D} will be used in R", R™ and R®and
K,K, and KL denote the usual class-K, class- K, and class-KL functions (see e.g. [29]).
The control is taken to be a piecewise constant signal i

u(t)=u(it)=u, for tI [it,(i+1t), il N

wheret >0 isthe control sampling period which is fixed.

We shall assume that state measurements can be performed at the time instants,
ilt,i=0.1,...,

yi = Z(Ilt )’ I =0,1,...,

where | isan integer which is fixed.

For a given function w:R,,® R" we wuse the following notation:
w [i]:={w(t), tT [it,(i+1t)} where il N. We denote the norm
|W, = ess.supg,|w(s)|. We assume that there exists m>0 such that W1 B,. Let us
define

W, ={WT Lioy, :W(T W ae tT [0,¥) with |w], £ r‘r‘}
W ={w® ={w [il],...w [ +D1- 1}, wi W,,i=01,..}.
We shall assume that there is a compact set X I R"containing the origin, which is
positively invariant with respect to system (25) for any w()T W and any piecewise
constant controller ul U. Let tT [0t]&aF f(t;z,u,w(.)) denote the solution of (25)
with given U, W and z = z(0) . Then the exact discrete-time model can be defined as

. z.. = RE(z, U, w i), (26)
where F5(z,u,w ) :=F 5 (t,zu,w).
Let u® ={u,...u®}, w® ={w [il],....w [(i +DI - 11} and
F.E(x,u,w)=FE(tl,x,u,w), then the exact | -step discrete-time model is given by
T SRTURVE) S A (27)

We note that the exact discrete-time models (26) and (27) describe, respectively, the
behavior of the system at thetime instants it and itl , i =01,.....
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In this work, the construction of multirate MPC is based on the nominal prediction and
only small disturbances are allowed. The nominal system of (25) is given by

A(t) = £(x(t),u(t)),  x(0)=2(0) (28)
and its exact discrete-time model is given by
X = REOE,W), (29)

We note that, since f is typically nonlinear, 5 in (29) is not known in most cases,

therefore the controller design can be carried out by means of the nomina approximate
discrete-time model

X = RL0OM W), (30)
where h is a modelling parameter, which is typically the step size of the underlying

numerical method. The applied numerical scheme approximation has to ensure the
closeness of the exact models in the following sense.

Assumption A1 There existsan h” > 0such that
(i) F’.(00)=0, R’ is continuous in both variables uniformly in hi (0,h'], and
Lipschitz continuous w.r.t X in any compact set, uniformly in small h,
(ii) thereexistsa gl K such that
|RE(xu)- RA ()| £tg(h),
forall xT X, dl ul U and h1 (0O,h"].
Assumption A2 There exists an h™ >0 such that the nominal exact discrete-time model
(29) is practically asymptotically controllable from X to the origin with piecewise
constant controllers for al hT (0,h'] (See e.g. [14] for the definition).
For the solutions of (26), (29) and (30) with u={u,,u,,..}, w ={w [0],w [1],...}, and x,
we shall use the notations F = (x,,u,w), f ©(x,,u) andf *(x,,u), respectively.
The following problemisto be solved : for givent and 1 find a control strategy

Vi X® 4 Mo48 . v, (X) ={uy(%),...,u,_, (X},

I times
using the nominal approximate discrete-time model (30), to practically stabilize the
exact discrete-time system (26).
Let NI N with N 3 I begiven. Let (30) be subject to the cost function

3 a(Nox,u) = &t 1, (% u) +g0xd), (3)

u={u,,...uy_}, x*=fA(x,u), i=04..,N, I andg are given functions, satisfying the
following assumptions.

Assumption A3 Let X, =X +B,, (i) g: X, ® R is continous, positive definite, radially
unbounded and Lipschitz continuous in any compact set,

(i) 1, (x,u) is continuous with respect to x and u, uniformly in small h, and Lipschitz
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continuous in any compact Set,
(iii) there exist an h™ >0 and two class-K, functions , and j , such that the inequality

i ()£, 0w £5 5 (x)+ 5 (ul)
holds for all xI X, al ul U and h1 (0,h'].
Assumption A4 There exist h" >0 and h >0 such that for dl x1 G, ={x:g(x) £h}
there exists a k (x)T U such that inequality
t1,(xk (%)) +g(F 4 (xk(x)))£ g(x) (32)
holds for all hl1 (0,h].
We define the value function, which represents the optimal value of (31) for a given

initial condition, as
Vy (¥) =inf{J, ,(N,x,u): u T U}.
If this optimization problem has a solution denoted by u’ ={u0uNl} then the first
$\ell $ elementsof u” are applied at the state x, i.e.,
v, (%) ={U5 (0., ().
Let h, denote the minimum of the values h™ generated by Assumptions A1-A4. Let D,
and D, be such numbersthat |X| £ D,, |u| £ D, if xI X, ul U.
Theorem 3 ([14]) If Assumptions A1-A4 hold true, then (i) there exist an h, with
O<h £hy, and a constant V2 independent of N, such that V, (x) £V, for al xI X,
hi (O,h] and NT N,
(i) there exist constants N°, L, andd, and functions s ,s,1 K, such that for all
xI X,N>N", hl (O,h]] andi=12,..1
s, (X)) £V (0 £s (X))
Vi 200 (9))- Vi ) £ 4 ()

Moreover, for all x,yl X, with|)x- y|£d,
Vy (%)- Vi ()| £ Ly %= ¥,
for al hi (0,h].
Clearly X1 {x:V,(x) EVA }.
Theorem 4 Suppose that Assumptions Al-A4 are valid and N is chosen such that
N3 N°. Then, there exist bT KL gl K,,m >0 and for any d >0 there exists an

h">0 such that for any x,1 X and hl (0,h"]the trajectory of the I-step exact
discrete-time system
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xE = FExS,v, kE)w®), &8 =x, (33)
withthe I -step MPC v, and w1 W™ satisfies
x| £b(x,ilt)+q(m)+d, iz 0.
Proof. The proof can follow the same line as that of Theorem 2 in [9] and Theorem I11.1

in [30] with small modifications due to the the global character of the statement (in the
sense that the whole state space X belongs to the basin of attraction). Moreover, because

of our assumptions of the positive invariance of X, we know that xT X if x =x,1 X.
Thus, we give only a short outline of the proof. Let L, be the Lipschitz constant of f.

Using Assumption A1 and Gronwall's lemma, we can show that, there exists an h, >0
such that

IF E (% Vv W) - £ A0, v,)| EG(H) +Lm i =0L...1,

Litl

for dl x1 X, w2 w" and hil (0h], where, q(h)ztg(h)im—_i,
eLftI 21

L=te™ = 1 Let n>0 be an arbitrary number. Let s, ands, be given in
e’ -

Theorem 3 and let d,=s;'(h/4)and[=2LL,. Let h;>0andm be such that
inequalities
g(h) < minl'L,M,d—VU, m < mini—A,—
4L, AL, T4 P
hold true for all hi (0,h;]. Let h" =min{n,,h,h;}andm =minfmm} and choose
d =Lm +n . Using Theorem 3 and the definition of d , one can show in the same way
asin[9] that if x°T X and either V, (x.5,) 3 d/2o0rV, (x°) 3 d hold true, then

t.
VN (XkE+1)' VN (XkE) £ - ZJ 1G‘XkE H) (34)
The construction of a suitable KL function is standard (see e.g. [29]).

4. Robust MPC for the HIV mode!:

In this section we apply the robust multirate MPC method proposed in section 3 to the
HIV model. We shall show that, with a suitable choice of N and functions g andl, , the

assumptions of the previous section can be satisfied. Introduce new variables by the
definition z=T-T,,2=T,2=T,,Zz=M-M,, zZz=M,, 7z =V. In these new
variables the model (1)-(6) takes the form of (25) with
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ees - d1(21+T0)' b1(21+T0)26 9

c€ b, (2 +T)z - kz,- mz, -

(20 :nge'“lbl(zl”o)ze +k 2z, - razg‘ (35)
cC S- dzM - b2(24+|\/|0)26
g qu-Ulb2(24+ MO)ZG - dZS
é € Pz +€"pz - cz

and w = (W, W,, Wy, W,, W, W, ).

Let the compact set X be defined as

X={zl R*:-T,£2£L,- T, 0£2,2EL, - MyEZEL,- M,,
0£z£L,, O£z £L,},

Q-

where L, L, and L, arein Proposition 1.

With this definition, f satisfies all regularity assumptions, and according to Proposition
1, X is positively invariant if g, +q, £1andq,, £1. In what follows, we assume that
g,+0, £1and g, £1. Moreover, we consider both the controller and disturbances are

taken from compact sets.
To verify Assumptions A3 and A4, we linearized the nomina system (35) around the
origin in case of constant controllers, i.e, u/(t)=u >u®, u,(t)=0,>ul® with
u® +u? =u_, where u_ is given in Proposition 2. Let A. be the coefficient matrix of
the linearized system and x=(T- T,,T,,T,,M - M,,M,V)(. Then the discrete-time
model for the linearized system is given by:

x(k +1) = e x(Kk) (36)

Let the sampling period be chosento bet =1 and u, =u, = 2.
The running cost and the terminal cost can be chosen as:
|, (X,u) = 0.01x®x +1000(u, - u?)? +2000(u, - u?)?, (37)
g(x) = x®x, (38)

where P is a positive definite diagonal matrix given by
P =diag(0.00%, 1, 1, 0.01, 0.1, 0.001)
and Q is a positive definite symmetric matrix satisfying the Lyapunov equation for the
discrete-time system (36)
Q=-(APA-P), A=e".

From (37)-(38), Assumption A3 is satisfied. It has been verified numerically by solving
a constrained minimization problem with several starting points that Assumption A4 is
satisfied over the whole set X. Assumption A2 follows from Proposition 2 and
Assumption Al holds aso true if we choose a suitable numerical integration scheme



Proceedings of the 6" | CEENG Conference, 27-29 May, 2008 | EE058-19 |

(e.g. the Runge-Kutta formula). Thus all Assumptions of the proposed method can be
satisfied with suitable choice of the parameters of the MPC method.

5. Numerical results:

We perform simulation studies using the parameter values taken from ([22], [34], [7]
and [3]). These values are listed in Table 2.

Table (2): The values of the paramters in the HIV model and the system states at the
initiation of the therapy

Parameter Value Variable Value
S, 10* mL™* day™ T 4.0385" 10° mL™*
d, 0.01 day™ T 8.5 10° mL™
b, 45 10°° mL day™ T, 6.6" 10° mL™
h 0.005 M’ 1.398" 10" mL™
d, 0.55 M, 1.61° 10° mL™
m 0.01 day™ V' 3.28" 10° mL
K, 0.025 day™
m, 0.5 day™
P, 240 cell™* day™
C 5 day™
b, 1.75" 10°° mL day™
d 0.05 day™
P, 35 cell* day™
Ol 1
S, 150 mL™ day™
d, 0.005 day™

We assume that the treatment is initiated during the asymptomatic stage of infection as
suggested by [19] (when the system isin the infected steady state E,, see Table 2).

We assume that the state measurements are performed at the instants jtl, j =01,.... All
computations are carried out by MATLAB. In particular, the optimal control sequence
iIs computed by the fmincon code of the Optimization toolbox. To reduce the
computational complexity we chose horizon length N to be N=8 and 1=4. The
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disturbances are smulated by w, ()T [h,,e ]
w () =w(j)=h +(&-h)r(j), tI[jt+(j+Dt), i=1..6 j=0L..
where the parameters r(j) are uniformly distributed random numbers on [0,1], and
h. =-e when the system states lie in the interior of the positive orthant R°. At the
boundary of R¢, the lower bound h; hasto be chosen as the following:

h, =max{- 5-e},

hz-max{ o€ *b,TV,-e }

h3 = max{ € "b,TV - kT,,- 63},
n, = maxf- s,-e,},
h = max{ e "b,MV,- es},

he = max{ p.€ usz - P ule" ee}’
to guarantee that the positive orthant R® is positively invariant.

Simulations for the continuous-time system are carried out using ode45 program in
MATLAB when e, =2000, e, =10, e, =1, e, =100, e, =1, e, =5.

Figures 1-6 show the evolution of the HIV model variables under the application of
multirate MPC strategy in the presence of disturbances. Figures 1 and 4 show that, when
the MPC is applied, the number of uninfected CD4" T cells is increasing as well as the
macrophages but with a slower rate than CD4" T cells. This means that, the HAART
helps the immune system to recover with some fluctuations due to the presence of
disturbances. From figure 2, 3 and 5, we can see that the number of latently infected
CD4" T cells, actively infected CD4™ T cells, and infected macrophages are decaying
during the treatment. Figure 6 shows that, after initiation of HAART, the vira load
drops quickly and it can be kept under a suitable level 130 copiesmL, with a small
controller, corresponding to rather mild dosage of HAART. The model predictive
controller as a function of the time is shown in figure 7. It is observed that, the treatment
Is initiated with a stronger dosage of HAART, and sequentially decreasing over time.
Thus we can say that, when the multirate MPC strategy is applied in the presence of
bounded disturbances, the trgectory of the system tends to a ball around the uninfected
steady state E, and remains there (i.e., practical stability). The size of this ball depends

on the disturbances bound and the numerical errors.

6. Conclusions:

The basic properties of the 6-dimensiona HIV model incorporating to allow some
additive disturbances were studied. The stabilizing property of multirate MPC for
nonlinear systems with additive disturbances via approximate discrete-time model of the
nominal system was proven. Highly Active AntiRetrovira Therapy (HAART) is used.
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The control input is defined to be dependent on the drug dose and drug efficiency. The
proposed MPC method is applied for determining HAART schedules and stabilizing the
HIV system around the uninfected steady state. The results of simulations show that the
proposed method can effectively be applied to eliminate some drawbacks of the
approaches previously published in the literature.

4 [ [ [ [
0 100 200 300 400 500 600 700 800

Time (days)



Proceedings of the 6" | CEENG Conference, 27-29 May, 2008 | EE058-22 |

1000 x \

700 n

per mBORI¢
500

T cdl cour
300

0 100 200 300 400 500 600 700 800
Time (days)

[ | I

100 200 300 400 500 600 700
Time (days)

ActiygCD
0



Proceedings of the 6" | CEENG Conference, 27-29 May, 2008 | EE058-23 |

4
x 10
3.2 \ \ \

3
2.8

2.6

per M4
2.2

2

1.8

1.6

147 :
M acrophagescell count
1.2O ‘

| | | [ [ [

100 200 300 400 500 600 700 800
Time (days)

nh ﬁi

500 600 700 800
Time (days)




Proceedings of the 6" | CEENG Conference, 27-29 May, 2008 | EE058-24 |

] 1
10 ¢ 5

3
10
copiggp

10'
Viral log

0
10 | Hi1al | | | | | | |
0 100 200 300 400 500 600 700 800

Time (days)

T e E i

0 100 200 300 400 500 600 700 800
time (days)

References:



Proceedings of the 6" | CEENG Conference, 27-29 May, 2008 | EE058-25 |

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

B.M. Adams, H.T. Banks, M. Davidian, H-D. Kwon, H.T. Tran, S.N. Wynne,
E.S. Rosenberg, HIV dynamics: modeling, data analysis, and optimal treatment
protocols, J. Comput. Appl. Math. Vol. 184, P. 10-49, 2005.

F. Allgower, T.A. Badgwell, J.S. Qin, JB. Rawlings, S.J. Wright, Nonlinear
predictive control and moving horizon estimation-an introductory overview, in ,
Advances in Control (P.M. Frank, (Ed.)), P. 391-449, Springer, Berlin, 1999.

J. Alvarez-Ramirez, M. Meraz, J.X. Velasco-Hernandez, Feedback control of the
chemotherapy of HIV, Int. J. Bifurcat. Chaos, Vol. 10, No. 9, P. 2207-2219, 2000.

H.T. Banks, H-D. Kwon, JA. Toivanen, H.T. Tran, A state-dependent Riccati
eguation-based estimator approach for HIV feedback control, Optim. Contr.
Appl. Meth., Vol. 27, P. 93-121, 2006.

M.E. Brandt, G. Chen, Feedback control of a biodynamical model of HIV-1, IEEE
Trans. Biom. Engrg., Vol. 48, P. 754-759, 2001.

M.A.L. Caetano, T. Yoneyama, Short and long period optimization of drug doses
in the treatment of AIDS, Anais da Academia Brasileira de Ciencias, Vol. 74, P.
589-597, 2002.

D.S. Calaway, A.S. Perelson, HIV-1 infection and low steady state viral loads,
Bull. Math. Biol., Vol. 64, P. 29-64, 2002.

R.V. Culshaw, S. Ruan, R.J. Spiteri, Optimal HIV treatment by maximising
immune response, J. Math. Biol., Vol. 48, No. 5, P. 545-562, 2004.

A.M. Elaw, Multirate sampling and input-to-state stable receding horizon
control for nonlinear sampled-data systems, Nonlinear Analysis, Vol. 67, P.
1637-1648, 2007.

A.M. Elaiw, Receding horizon control method applied to antiviral treatment of
AIDS, Miskolc Math. Notes, Vol. 5, P. 173-186, 2004.

AM. Elaw, K. Kiss, M.A.L. Caetano, Sabilization of HIV/AIDS model by
receding horizon control, J. of Appl. Math. Computing, Vol. 18, No. 1-2, P. 95-
112, 2005



Proceedings of the 6" | CEENG Conference, 27-29 May, 2008 | EE058-26 |

[12] K.R. Fister, S. Lenhart, J.S. McNally, Optimizing chemotherapy in an HIV model,
Electr. J. of Differ. Egs., Vol. 1998, P. 1-12, 1998.

[13] E. Gyurkovics, Receding horizon control via Bolza-type optimization, Systems
Contr. Lett., Vol. 35, No. 3, P. 195-200, 1998.

[14] E. Gyurkovics, A.M. Elaiw, Sabilization of sampled-data nonlinear systems by
receding horizon control via discrete-time approximations, Automatica, Vol. 40
No. 12, P. 2017-2028, 2004.

[15] E. Gyurkovics, A.M. Elaiw, A Sabilizing sampled-data | -step receding horizon
control with application to a HIV/AIDS model, Differ. Egs. Dynamic. Systems,
Vol.14, No. 3-4, P. 323-352, 2006.

[16] E. Gyurkovics, A.M. Elaiw, Conditions for MPC based stabilization of sampled-
data nonlinear systems via discrete-time approximations, Lecture notes in Control
and Information Sciences, Vol. 358, P. 35-48, 2007.

[17] A.M. Jeffery, X. Xia, |.K. Craig, Sructured treatment interruptions. A control
mathematical approach to protocol design, J. Process Contr. Vol. 17, P. 571-594
2007.

[18] A.M. Jeffery, A control theoretic approach to HIV/AIDS drug dosage design and
timing the initiation of therapy, PhD thesis, deparment of of electrical, electronic
and computer engineering, university of Pretoria 2006.

[19] A.M. Jeffrey, X. Xia, |.K. Craig, When to initiate HIV therapy: A control
theoretic approach, IEEE Trans. Biom. Engrg., Vol. 50, P. 1213-1220, 2003.

[20] A.M. Jeffrey, X. Xia, Identifiability of HIV/AIDS models, in: Wai- Yuan Tan,
Hulin Wu (Eds.), Deterministic and Stochastic Models of AIDS Epidemics and
HIV Infections with Intervention, World Scientific Publishing, Singapore, P. 255-
286, 2005.

[21] H.R. Joshi, Optimal control of an HIV immunology model, Optim. Contr. Appl.
Meth., Vol. 23, P. 199-213, 2002.

[22] D. Kirschner, S. Lenhart, S. Serbin, Optimal control of the chemotherapy of HIV,
J. Math. Biol., Vol. 35, P. 775-792, 1997.



Proceedings of the 6" | CEENG Conference, 27-29 May, 2008 | EE058-27 |

[23] J. H. Ko, W.H. Kim, C.C. Chung, Optimized structured treatment interruption for
HIV therapy and its performance analysis on controllability, IEEE Trans. Biom.
Engrg., Vol. 53, No. 3, P. 380-386, 2006.

[24] Korobeinikov, Global properties of basic virus dynamics models, Bull. Math.
Biol. Vol. 66, P.879-883, 2004.

[25] H-D. Kwon, Optimal treatment strategies derived from a HIV model with drug-
resistant mutants, Appl. Math. Comput. Vol. 188, P. 1193-1204, 2007.

[26] U. Ledzewicz and H. Schattler, On optimal controls for a general mathematical
model for chemotherapy of HIV, Proceedings of American Control Conference,
Donver, P. 3454-3459, 2003.

[27] D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained model
predictive control: Sability and optimality, Automatica, Vol. 36, No. 6, P. 789-
814, 2000.

[28] D. Nesic and A.R. Tedl, A framework for stabilization of nonlinear sampled-data
systems based on their approximate discrete-time models, IEEE Trans. Automat.
Contr., Vol. 49, No. 7, P. 1103-1122, 2004.

[29] D. Nesic, A.R. Tedl, P.V. Kokotovic, Sufficient conditions for stabilization of
sampled-data nonlinear systems via discrete-time approximation, Systems Contr.
Lett. Vol. 38, No. 4-5, P. 259-270, 1999.

[30] D. Nesic, D.S. Laila, A note on input-to-state stabilization of sampled-data
nonlinear systems, |EEE Trans. Automat. Contr., Vol. 47, P. 1153-1158, 2002.

[31] A. S. Perelson, D. Kirschner, R. De Boer, Dynamic of HIV infection of CD4" T
cells, Math. Biosci., Vol. 114, No. 1, P. 81-125, 1993.

[32] A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M.
Markowitz, D.D. Ho, Decay characteristics of HIV-1- infected compartments
during combination therapy, Nature, Vol. 387, P. 188-191, 1997.

[33] A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,
SIAM Review, Vol. 41, No. 1, P. 3-44, 1999.



Proceedings of the 6" | CEENG Conference, 27-29 May, 2008 | EE0S8-28 |

[34] A. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurleyel, et. a., Rapid production
and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma
apheresis, Lancet, Vol. 354, No. 20, P. 1782-1785, 1999.

[35] H. Shim, SJ. Han, |I.S. Jeong, C.C. Chung, SW. Nam, JH. Seo, Optimal
scheduling of drug treatment for HIV infection: Continuous dose control and
receding horizon control, Int. J. Contr., Autom. and Sys., Vol 1, P. 401-407, 2003.

[36] L.M. Wein, SA. Zenios, M.A. Nowak, Dynamic multidrug therapies for HIV: A
control theoretic approach, J. Theor. Biol., Vol. 185, P. 15-19, 1997.

[37] R. Zurakowski, A.R. Teel, A model predictive control based scheduling method
for HIV therapy, J. Theor. Biol., Vol. 238, P. 368-382, 2006.

[38] X. Xia, Estimation of HIV/AIDS parameters, Automatica, Vol. 39, P. 1983-1988,
2003.

[39] X. Xia, C.H. Moog, ldentifiability of nonlinear systems with application to
HIV/AIDS models, |EEE Trans. Automat. Contr., Vol. 48, P. 330-336, 2003.

[40] X. Xia, Modelling of HIV infection: Vaccine readiness, drug effectiveness and
therapeutical failures, J. Process Contr., Vol. 17, P. 253 — 260, 2007.





