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Abstract:

Analysis and control of human immunodeficiency virus (HIV) infection have attracted
the interests of mathematicians and control engineers during the recent years. In this
paper we study the basic properties of a 6-dimensional HIV model that describes the
interaction of HIV with two target cells, CD4+ T cells and macrophages. Besides model
inaccuracies that HIV models suffer from, some disturbances/uncertainties from
different sources may arise in the modelling. The disturbances are modelled in the HIV
model as additive bounded disturbances. Highly Active AntiRetroviral Therapy
(HAART) is used. The control input is defined to be dependent on the drug dose and
drug efficiency. We developed  a treatment schedules for HIV infected patients by using
robust multirate Model Predictive Control (MPC)-based method. The MPC is
constructed on the basis of the approximate discrete-time model of the nominal model.
We established a set of conditions, which guarantee that the multirate MPC practically
stabilizes the exact discrete-time model with disturbances. The proposed method is
applied to the stabilization of the uninfected steady state of the HIV model. The results
of simulations show that, after initiation of HAART with a strong dosage, the viral load
drop quickly and it can be kept under a suitable level with mild dosage of HAART.
Moreover, the immune system is recovered with some fluctuations due to the presence
of disturbances.
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1. Introduction:

Over the last decade a tremendous effort has been made in developing mathematical
models of the immunology dynamics under the attack of the human immunodeficiency
virus (HIV) and under the influence of antiretroviral therapies. HIV is responsible of
acquired immunodeficiency syndrome (AIDS). HIV is a retrovirus which infects the
CD4+ T cells and macrophages which are the crucial immune responses and play
important roles in phagocytosis. After infection, the CD4+ T cells lose their function and
become a virus factory, producing new virus particles until its death. Macrophages live
longer than the CD4+ T cell and it is an important source of virus after CD4+ T cell
depletion. When the number of CD4+ T cell reaches below 200 cell/mm3 of plasma, the
HIV infected patient is regarded as an AIDS patient.
     The treatment of HIV infected patients is of major importance in today's social
medicine. Currently, the most important categories of anti-HIV drugs are reverse
transcriptase inhibitors (RTI) drugs and protease inhibitors (PI) drugs. Reverse
transcriptase inhibitors prevent the HIV from infecting cells by blocking the integration
of the HIV viral code into the host cell genome. Protease inhibitors prevent already
infected host cells from producing infectious virus particles. Recently, Highly Active
AntiRetroviral Therapies (HAART) which consist of one or more RTI and a PI, can
suppress viral load below detectable levels and consequently prolong time to the onset
of AIDS.
     Optimal treatment scheduling of HIV infection using a control theoretic approach is
the subject of substantial research activity. In ([12], [22], [26], [8], [21], [1], [25] and
[36]), open-loop type optimal controllers are designed using the Pontryagin's Maximum
Principle. A major drawback of open-loop optimal controllers is their lack of robustness
against disturbances/model uncertainties. In fact, HIV dynamics are poorly known, this
leads to model inaccuracies and parameter uncertainties. Also, another sources of
disturbances may arise from immune system fluctuating or immune effect of a
coinfection, in addition to the measurements errors and estimation errors when using an
observer to estimate the unmeasured states. Therefore, the design of optimal treatment
schedules based on open loop optimal controller, may lead to undesired results. To
overcome this problem, we have to design a feedback controller, that inherits a certain
robustness to disturbances. Feedback control for HIV has been studied by [3]-[5]].
     In the last few years, model predictive control (MPC) method is developed for
determining optimal treatment schedules for HIV patients ([35], [10], [11], [37], [18],
and [15]). The MPC method obtains the feedback control by solving a finite horizon
optimal control problem at each time instant using the current state of the system as the
initial state for the optimization and applying “the first part” of the optimal control. The
study of stabilizing property of such schemes has been the subject of intensive research
in recent years (see e.g. [13], [2] and [27]).
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in recent years (see e.g. [13], [2] and [27]).
     In [37], the MPC is constructed on the basis of the discrete-time model where the
sampling period is chosen to be seven days (i.e., 7=τ ). However, the authors did not
consider the effect of the discretization of the differential equations on the stability
analysis. Moreover, for large sampling periods, the viral load and the CD4+ T cell count
could not be kept within baseline ranges (see [23]). Alternatively, the optimal control
problems can be solved by continuously varying drug levels in [35]. However,
continuous-time variation of the dose seems hard to apply in the clinical treatment of
patients. In [10] and [11], the HIV model is discretized with a suitable numerical
method with short sampling period, and the MPC is designed on the basis of the
approximate discrete-time model. For short sampling period, MPC is hard to  apply to
HIV model, because it requires the availability of blood measurements every sampling
instants ( ,...1,0, =iiτ ). A possible solution of this problem is to design a multirate
version of MPC, where the measurements is needed evey l  samplings ( ,...1,0, =ii lτ )
(see [15] and [16]). In [35] and [37], it is shown only by simulation that the applied
MPC have a certain degree of robustness to measurements and modeling errors.
     The aim of the present paper is to develop a treatment schedules for HIV infected
patients by using robust multirate MPC. The disturbances are modelled in the HIV
model as additive bounded disturbances. The construction of MPC is based on the
approximate discrete-time model of the nominal model. We have shown that under a
suitable conditions, the multirate MPC practically stabilizes the exact discrete-time
model with disturbances. These conditions have been verified for the HIV model. The
importance of approximate discrete-time design is supported by a series of counter-
examples (see e.g. [29], [28] and [14]), which show that even for disturbance-free
systems one can design a controller to stabilize the approximate model, but the original
model is destabilized by the same controller. In [37], the MPC method is applied to an
HIV model without verifying the stability conditions of the proposed method such as the
asymptotic controllability of the system and the delectability condition.
     The model of HIV infection we will use in this paper, considers the infection process
of the HIV with two target cells, CD4+ T cells and macrophages, which is a 6-
dimensional nonlinear ODEs model. The importance of considering such model is due
to the observation of Perleson el al., that after the rapid first phase of decay during the
initial 1-2 weeks of antiretroviral treatment, plasma virus levels declined at a
considerably slower rate [32]. This second phase of viral decay was attributed to the
turnover of  a longer-lived virus reservoir of infected cell population. Therefore,  the
two target cells model is more accurate than the one target cell model (see [33] and [7]).
Models used in ([35], [10], [11], [37] and [15]) do not capture the detailed viral
dynamics the occur in macrophages. In our paper, we studied the basic properties of the
6-dimensional HIV model with additive disturbances. Note that these basic properties of
the 6-dimensional HIV model are not well studied in the literature, compared with those
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of, say, the 4-dimensional model [31], and they are important for understanding the
associated characteristics of the HIV dynamics. This also helps us to verify the stability
conditions of the MPC method. The simulation results show that after initiating the
HAART, the viral load drop dramatically and it can be kept under a suitable level by
using a mild dosage of HAART. Moreover, the immune system returns near to the
normal status with some fluctuations due to the presence of disturbances.
The layout of the paper is as follows: In Section 2, we introduce the HIV model and
study its basic properties. In Section 3, we outline the robust multirate MPC design for
sampled-data nonlinear systems and summarize the main results obtained in [14] and
[9]. Application of robust MPC to the HIV model is given in Section 4. Section 5
presents the simulation results. The last section is the conclusion.

2. HIV model:

We shall use the mathematical model of HIV infection proposed by ([33] and [7]),
incorporating to allow some additive disturbances. This model describes two co-
circulation population of target cells, potentially representing CD4+ T cells and
macrophages. The model can simulate differential drug penetration into target cell co-
circulating in plasma, see [17]. After initiation of HAART which consists of RTI and PI
drugs the model can be written as:

1111 wTVTdsT +−−= β&                                                            (1)

21111111
1 wTTkTVeqT u +−−= − µβ&                                                (2)

32211122
1 wTTkTVeqT u +−+= − µβ&                                              (3)

4222 wMVMdsM +−−= β&                                                       (4)

5121
1 wMMVeqM u

M +−= − δβ&                                                      (5)

61221
22 wcVMpeTpeV uu +−+= −−&                                             (6)

The state variables describes the plasma concentrations of: T1, the uninfected CD4+ T
cells; T1, the latently infected CD4+ T cells; T2, the actively infected CD4+ T cells; M,
the uninfected macrophages; M1, the infected macrophages; and V, the free virus
articles.
The populations of the uninfected CD4+ T cells and macrophages are described by Eqs.
(1) and (4), respectively, where s1 and s2 represent, respectively, the rates of which new
CD4+ T cell and macrophages are generated from sources within the body, d1, d2 are the
death rate constants, and 21, ββ  are the infection rate constants. Here, the law of mass
action was used. Equation (2) describes the population dynamics of the latently infected
CD4+ T cells and shows that they convert to actively produce virus with a rate constant
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k1 and 1µ  is their death rate constant. Equation (3), describes the population dynamics of
the actively infected CD4+ T cells and shows that they die with rate constant 2µ .
Constants q1 and q2 are the probabilities that upon infection a CD4+ T cell become either
latent or actively producing virus. In equation (5), qM is the probability of successfull
infection, δ  is the death rate constant of the infected macrophages. The virus particles
are produced by the actively infected CD4+ T cells and infected macrophages with rate
constants p1 and 2p , respectively, and are cleared from plasma with rate constant c. We
emphasize that all the parameters of the model are positive and they differ form one
patient to another. For the estimation of HIV model parameters, we refer the reader to
the following papers ([38], [39], [20] and [40]). The effect of the RTI and PI drugs are
represented by the chemotherapy functions )(11 tme α− and )(22 tme α−  where 1α  and 2α  are the
efficiencies of RTI and PI drugs, respectively, and m1(t) and m2(t) are the drug dose at
time t (see [6]). We shall consider the control input as 2,1),()( == itmtu iii α .
In equations (1)-(6), )(twi describes model uncertainties/disturbances that may arise
from different sources such as, modelling errors, immune system fluctuation, immune
effect of a co-infection, measurement noise, estimation errors, and so on.
We assume that, the model uncertainties/disturbances satisfy the following bound

6,...,1,)( =≤ itw ii ε
We are now ready to present a study on the basic mathematical properties of the model.
2.1. Positive Invariance:
Now we show that under which conditions the nonnegative orthant 6

+R  is positively
invariant for (1)-6):

1111)0(
0 swifwsT

T
−≥≥+=

=
& ,

TVeqwifwTVeqT uu
T 112211)0(1

11

1
0 ββ −−

=
−≥≥+=& ,

,0 1112231112)0(2
11

2
TkTVeqwifwTkTVeqT uu

T
−−≥≥++= −−

=
ββ&

2442)0(
0 swifwsM

M
−≥≥+=

=
& ,

MVeqwifwMVeqM u
M

u
M 25522)0(1

11

1
0 ββ −−

=
−≥≥+=& ,

1221661221)0(
2222 0 MpeTpewifwMpeTpeV uuuu

V
−−−−

=
−−≥≥++=& ,                    (7)

with 0),,,,,( 121 ≥VMMTTT . This means that under the above conditions the
nonnegative orthant 6

+R  is positively invariant, namely, if a trajectory starts in the
nonnegative orthant, it remains there. We note that, the lower bound of the disturbances
has to satisfy the conditions in (7) only at the the boundary of 6

+R .
Proposition 1 If 1and121 ≤≤+ Mqqq , then there exists such positive numbers ,1L 2L
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and 3L  that the compact set
{ }321121121 0,,0,,,0:),,,,,( LVLMMLTTTVMMTTT ≤≤≤≤≤≤=Ω

is positively invariant.
Proof. Let 121 and, MMMTTTT tottot +=++= , then

,

,

2542

12542

13211

221113211

tot

tot

tot

tot

Ms
MMdwwsM

Ts
TTTdwwwsT

σεε
δ

σεεε
µµ

−++≤
−−++=

−+++≤
−−−+++=

&

&

where { } { }δσµµσ ,minand,,min 222111 dd == . Hence 1)(0 LtTtot ≤≤  for all 0≥t  if
1)0( LTtot ≤ , and 2)(0 LtM tot ≤≤  for all 2)0( LM tot ≤ ,  where 122111 /)( σεεε +++= sL

25422 /)( σεε ++= sL . It follows that 21121 )()(0and)()()(0 Lt,MtMLt,Tt,TtT ≤≤≤≤
for all 0≥t  if .)0()0(and)0()0()0( 21121 L,MML,T,TT ≤≤  On the other hand,

,)()( 62211 ε+−+≤ tcVLpLptV&
then )(0 3LtV ≤≤  for all 0≥t  if )0( 3LV ≤ where ./)( 622113 cLpLpL ε++=
Note that Ω contains all the biologically relevant states, thus we can restrict the state
space of the system to the compact set Ω . Since the drug doses cannot be arbitrarily
increased we may consider a compact control constraint set only.

2.2. Steady States:

We shall compute the steady states of system (1)-(6) under constant controller in the
absence of the disturbances, i.e., for 2,1,)( == jutu jj and ,0)( =twi ,6,...,2,1=i .0≥t
A steady state ),,,,,( 121 VMMTTT  satisfies

01111 =+−− wTVTds β ,                                                                                                (8)
02111111

1 =+−−− wTTkTVeq u µβ ,                                                                                   (9)
03221112

1 =+−+− wTTkTVeq u µβ ,                                                                                (10)
04222 =+−− wMVMds β ,                                                                             (11)
0512

1 =+−− wMMVeq u
M δβ ,                                                                                        (12)

061221
22 =+−+ −− wcVMpeTpe uu .                                                                               (13)

Solving 121 and, MTT  form equations (9), (10) and (12) in terms of TV and/or MV  and
inserting them into (13) we obtain

0)( 54 =−+ VcMaTa                                                         (14)

where [ ]
δ

β
µµ

µβ )(
22

5
112

)(
2111111

4

2121

,
)(

)( uu
M

uu eqpa
k

eqkqkpa
+−+−

=
+

++
= .
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The first solution of (14) is 0=V . Then substituting it in (8)-(12), we obtain the
uninfected steady state )0,0,,0,0,( 000 MTE =  where 220110 /and/ dsMdsT == . If

0≠V , then
054 =−+ cMaTa                                                               (15)

and by eleminating V from equations (8) and (10) we obtain
0123 =−− MaTMaTa                                                           (16)

where .,, 12312212211 ββββ saddasa =−==
We note that the coefficients 5431 and,, aaaa  are positive, while 2a  may be positive, or
negative, or equal zero.
 If 02 =a  then the solutions of (15) and (16) are given by

.,
5341

3*
0

5341

1*
0 aaaa

caM
aaaa

caT
+

=
+

=

If 02 ≠a , there are two possible solutions for (15) and (16)

,
2

4)()(

42

421
2

2534125341*

aa
caaacaaaaacaaaaa

T
+−++−+−

=+

),(1 *
4

5

*
++ −= Tac

a
M

,
2

4)()(

42

421
2

2534125341*

aa
caaacaaaaacaaaaa

T
+−+−−+−

=−

).(1 *
4

5

*
−− −= Tac

a
M

Now we have to determine the positive solutions. First, we show that the discriminate
,4)( 421

2
25341 caaacaaaaa +−+=∆ is positive

if ,02 >a ,04)( 421
2

25341 >+−+=∆ caaacaaaaa
if ,02 <a ,04)( 532

2
25341 >−++=∆ caaacaaaaa

it follows that if ,02 >a  then

,0
2

4)()(

42

421
2

2534125341* >
+−++−+−

=+ aa
caaacaaaaacaaaaa

T

and if ,02 <a  let 22 aa −=  and then

,0
2

4)()(

42

421
2

2534125341* >
−++−++

=+ aa
caaacaaaaacaaaaa

T

Similary, it is easy to see that



Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE058 - 8

.0and,00
,0and,00

,0and,00
,0and,00
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2

**
2
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2

<>⇒<

><⇒>

>>⇒<
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−−

++

++

MTa
MTa
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MTa

Then, the only positive solutions are **
+= TT  and **

+= MM . Substituting them in Eqs.
(8)-(12), we obtain the infected steady state which is given by

),,,,,( **
1

**
2

*
1

*
1 VMMTTTE =  where
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0if,
0if,
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0if,
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2
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2
*
0*
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2
*
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≠
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=
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T
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*
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1**
*
02*
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*
*
0
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2

*
*
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=

−

−−
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TdVM

M
MdeqM

T
T
T

k
deqTT

T
T

k
deqT

u
M

uu

βδ

µµµ
                      (17)

where 21111 )( qkqkq µ++= .
Let us define

{ }
211

)(
211022011

210 )(
)(),(

21

µµδ
µµβδβ

+
++

=
+−

kc
ekqMpqTpuuR

uu
Mc

Lemma 1 The infected steady state 1E  exists if and only if 10 >cR .
Proof. Assume that 10 >cR , we have shown already that 0* >T  and 0* >M , we have to
show the remaining components of 1E , i.e., **

1
*

2
*

1 ,,, VMTT are positive. We can see that
*T  and *M can be written as follows

0if,2
2

02

11

2

0

1
11

0

1* >+







−+−= a

Ra
Aa

R
ABB

R
AT ccc ,                                                      (18)

,0if,2
2

02

11

2

0

1
11

0

1* <−







+−+= a

Ra
Aa

R
ABB

R
AT ccc                                                         (19)

0if 2
0

0* == a
R
TT c ,                                                    (20)

0if,2
2

02

23

2

2
0

2
2

0

2* >−







+−+= a

Ra
AaB

R
AB

R
AM ccc ,                                                    (21)



Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE058 - 9

0if,2
2

02

23

2

0

2
22

0

2* <+







−+−= a

Ra
Aa

R
ABB

R
AM ccc ,                                                   (22)

0if 2
0

0* == a
R
MM c ,                                                  (23)

where, 221122 ,, BBBBaa −=−=−=  and

,)(
2

,
2
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2
1

1

211202
10

2

2
1

11

211022
01 







 +
+=
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+
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From equations (18)-(23), it can be seen that *T  and *M  are decreasing functions of
cR0 .

Now we show that if 10 =cR  then 0
* TT =  and 0

* MM = . Equations (18), (19), (21) and
(22) can be simplified to the following

( ) ,0

,
2

)(
2

20
2

10111

2
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211201
2
2

2

210
11

*

>=−++−=
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++−=

         aTATBB  A
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a
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,
2
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2
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2

01111

2
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2

2
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11

*
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         aTTBAB  A
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a
dTBAT M

δβ
µµββ

( ) ,0

,
)(22

20
2

02222

2

211222
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2

1

2
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         aMMBAB  A
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a
dMBAM

M µµβ
δββ
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,
)(22

20
2

02222

2
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2
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22
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a
dMBAM

M µµβ
δββ

From the above analysis we obtain the following:
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0,,,and,,1

0,,,and,0,01
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*
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*
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010
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VMTTMMTTR
VMTTMMTTR

EER

c

c

c

,

Now assume that the steady state 1E  exists then 0,,, **
1

*
2

*
1 >VMTT , from (17) we obtain

0
* TT <  and 0

* MM < . It follows from (18)-(23) that 10 >cR .
2.3. Local stability of 0E :

Theorem 1 If 10 <cR , then 0E is locally asymptotically stable for the nominal system.
Proof. Let us linearized the nominal system (1)-(6) with constant controllers around 0E .
The coefficient matrix is
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The characteristic equation is given by:
,0))()(()( 01

2
2

3
3

4
21 =++++++=− bbbbddIJDet λλλλλλλ

where,
{ }

),1()(

)()(

0211

211
)(

2110220110
21

c

uu
M

Rkc
kcekqMpqTpb
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++++−= +−
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21 µµδµδµµδββ ++++++++++−= +− kckkeqMpqTpb uu

M

2113 µµδ ++++= kcb .
We note that 1b  and 3b  are positive, then by using the condition 10 <cR  we can show the
following:

.0)()()(
0)(

11112112

1121

>++++++>
>+>

µµδµµδ
µδµ

kckkb
kb

Moreover, the Routh-Hurwitz criteria holds. Then, 0E  is locally asymptotically stable.
Remark 1 For the parameters given in Table 2, we can see that, when there is no
treatment, 46493.2

)0(0
21

=
==uu

cR , then 0E  is unstable. In contrast, when we linearized
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the nominal model around the infected steady state 1E  we found that all eigenvalues of
the jacobian matrix has a negative real part, this means that 1E  is locally asymptotically
stable.

2.4. Global stability of 0E

Theorem 2 If 10 ≤cR , then 0E globally asymptotically stable for the nominal system.
Proof By the method of Korobeinikov [24], we define a Lyapunov function for the
nominal system
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TTVMMTTTW
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M
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We note that W  is defined, continuous and positive definite for all
),,,,,( 121 VMMTTT >0. Also, the global minimum 0=W  occurs at the uninfected steady

state 0E . Further, it satisfies
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0
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−−= γγγ                (24)

Since the arithmetical mean is greater than or equal to the geometrical mean, then the
first two terms of (24) are less that or equal to zero. Therefore, if 10 ≤cR  then

0/ ≤dtdW  for all 0,, >VMT .
In fact, cR0  can be written as a sum of two parameters c

TR  and c
MR

c
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c
T

c RRuuR +=),( 210 ,

2
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,
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T δ

β
µµ

β +−+−

=
+

= .

We observe that c
TR  and c

MR  are the basic reproduction ratio of each T-cell and
macrophages dynamics separately. If 10 <cR  then it is sure that 1<c

TR  and 1<c
MR .  But

if one consider only the four dimensional model (1)-(3) and (6) and design a controller
such that 1<c

TR , then the whole system may be unstable around 0E , because 10 >cR .
This shows the importance of considering the effect of the macrophages in the HIV
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dynamics.
Proposition 2. The nominal system (1)-(6) is globally asymptotically controllable to 0E
with piecewise constant controllers.
Proof. Let 2211 )(and)( utuutu ==  with cuuu >+ 21 , where









+

++
=

211

211022011

)(
)(ln

µµδ
µµβδβ

kc
kqMpqTpu M

c ,

then 1),( 210 <uuRc , therefore the corresponding trajectory will tend to 0E  as ∞→t .
Remark 2 We observe that cu  is the minimum controller required to obtain a treatment
steady state viral load of zero. Also, by solving the equation for *V , the minimum drug
dose that is required to obtain a treatment steady state viral load below a specific value

supV , (e.g. -1
sup mLcopies50=V ) is given by












+
+

++
=>+

)())((
ln

2sup2

2022

111sup12

1011
sup21 βδ

β
µβµ

δβ
Vdc

dqMp
kVdc

dqTpuuu M

Remark 3 If one does not take into account the effect of macrophages cells, then our
stability results are also useful for the four dimensional model VTTT and,, 21 , by
putting 02222 ===== pds δβ  (see [31]).

2.5 Sensitivity analysis of the infected steady state

As we have shown in Remark 1 that in the absence of treatment the infected steady state
1E  is stable. Our aim is to design a treatment schedule to steer the system state near to

the uninfected steady state 0E  (i.e., to shift 1E  near to 0E ). Therefore, it is desirable to
predict how changes in the parameters will affect the infected steady state. Let

6,...,1,* =ixi , denote the infected steady state, then the sensitivity of *
ix  to parameters

pkrk ,...,2,1, = , is given by ki rx ∂∂ * . This is given in Table 1. For the parameters given
in Table 2, we can see that the infected steady state is more sensitive to the parameters

2121 and,, ddββ  while it is less sensitive to the parameters 1s , and 2s .
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Table (1). Ranked sensitivety of infected steady state to parameters.

3. Robust Multirate MPC for Sampled Data Systems

In this section, we outline the multirate MPC design for sampled-data nonlinear systems
in the presence of bounded disturbances and give a review on the results obtained in
[14] and [9]. We have shown in the preceding section that, the HIV system states can be
taken from a compact set. Moreover, since the drug dosage of HAART can not
arbitrarily increased, thus the controller can also be taken from a compact set. Therefore,
we give only a short outline of the proof of the main results of [9], when both the state
space of the system and the control constraint set are restricted to compact sets.
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Consider a continuous-time nonlinear control system with additive disturbances given
by

0)0(),())(),(()( zztwtutzftz =+=&                                    (25)
where pmn WtwUtutz RRR ⊂∈⊂∈∈ )(,)(,)(  are the state, control input and
disturbances, respectively, nn Uf RR →×: is continuous and Lipschitz continuous w.r.t
z in any compact set and 0)0,0( =f , U is compact and U∈0 , W is compact and W∈0
In what follows, the notation { }∆≤∈=∆ zzB l :R  will be used in pmn RRR and, and

KLKK and, ∞  denote the usual class-K, class- ∞K  and class-KL functions (see e.g. [29]).
The control is taken to be a piecewise constant signal

N∈+∈== iiituiutu i ),)1(,[for:)()( τττ
where 0>τ  is the control sampling period which is fixed.
We shall assume that state measurements can be performed at the time instants,

,...,1.0, =ii τl
,,...1,0),(: == iizyi τl

where l  is an integer which is fixed.
For a given function nw RR →≥0:  we use the following notation:

{ }))1(,[),(:][ τττ +∈= iittwiw  where N∈i . We denote the norm
)(sup.: 0 swessw s≥∞

= . We assume that there exists 0>µ  such that µBW ⊂ . Let us
define

{ }µµ ≤∞∈∈∈=
∞

∞
∞ w with),0[..)(:),0[ teaWtwLwW ,

{ }{ }.,...1,0,,]1)1[(],...,[)( =∈−+== iWwiwiwW i
ρττ

ρ lll w .
We shall assume that there is a compact set nX R⊂ containing the origin, which is
positively invariant with respect to system (25) for any Ww ∈(.)  and any piecewise
constant controller Uu ∈ . Let (.)),,;(],0[ wuztt EΦ∈ aτ  denote the solution of (25)
with given )0(and, zzwu = . Then the exact discrete-time model can be defined as

]),[,,(~
1 iwuzFz ii

E
i ττ=+                                                         (26)

where ),,,(:),,(~
τττ τ wuzwuzF EE Φ= .

Let { },..., )(
1

)(
0

)( iii uu −= lu , { }]1)1[(],...,[)( −+= ll iwiwi
ττw  and

( ) ( )wuwu ,,,,, ξτξ ll
EEF Φ= , then the exact l -step discrete-time model is given by

( ) 00
)()(

1 ,,, zF EiiE
i

EE
i ==+ ξξξ wul                                           (27)

We note that the exact discrete-time models (26) and (27) describe, respectively, the
behavior of the system at the time instants τi  and lτi  , ,....1,0=i .
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In this work, the construction of multirate MPC is based on the nominal prediction and
only small disturbances are allowed. The nominal system of (25) is given by

)0()0()),(),(()( zxtutxftx ==&                                          (28)
and its exact discrete-time model is given by

),(1 i
E
i

EE
i uxFx τ=+ ,                                                                    (29)

We note that, since f is typically nonlinear, EFτ  in (29) is not known in most cases,
therefore the controller design can be carried out by means of the nominal approximate
discrete-time model

),(,1 i
A
i

A
h

A
i uxFx τ=+ ,                                                                     (30)

where h is a modelling parameter, which is typically the step size of the underlying
numerical method. The applied numerical scheme approximation has to ensure the
closeness of the exact models in the following sense.
Assumption A1 There exists an 0* >h such that
(i) A

h
A
h FF ,, ,0)0,0( ττ =  is continuous in both variables uniformly in ],0( *hh ∈ , and

Lipschitz continuous w.r.t x in any compact set, uniformly in small h,
(ii) there exists a K∈γ  such that

),()()( , hx,uFx,uF A
h

E τγττ ≤−

for all ,Xx ∈  all Uu ∈  and ],0( *hh ∈ .
Assumption A2 There exists an 0* >h  such that the nominal exact discrete-time model
(29) is practically asymptotically controllable from X to the origin with piecewise
constant controllers for all ],0( *hh ∈  (See e.g. [14] for the definition).
For the solutions of (26), (29) and (30) with { } { },],...1[],0[,,..., 10 ττ wwuu == wu  and 0x

 we shall use the notations ),(and),(),,,( 000 uuwu xxx A
i

E
i

E φφΦ , respectively.
The following problem is to be solved : for given τ  and l  find a control strategy

44 344 21
l times

...: UUUXh ×××→v , { })(),...,()( 10 xuxuxh −= lv ,

using the nominal approximate discrete-time model (30), to practically stabilize the
exact discrete-time system (26).
Let N∈N  with l≥N  be given. Let (30) be subject to the cost function

,)(),(),,(
1

0
, ∑ +=

−

=

N

i

A
Ni

A
ihh xguxlxNJ ττ u                                                  (31)

{ },,..., 10 −= Nuuu ),( uxx A
i

A
i φ= , ,,...,1,0 Ni = glh and  are given functions, satisfying the

following assumptions.
Assumption A3 Let 11 BXX += , (i) R→1: Xg  is continous, positive definite, radially
unbounded and Lipschitz continuous in any compact set,
(ii) ),( uxlh  is continuous with respect to x and u, uniformly in small h, and Lipschitz
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continuous in any compact set,
(iii) there exist an 0* >h  and two class- ∞K  functions 1ϕ  and 2ϕ  such that the inequality

( ) ( ) ( ),),( 221 uxuxlx h ϕϕϕ +≤≤

holds for all ,1Xx ∈  all Uu ∈  and ],0( *hh ∈ .
Assumption A4 There exist 0* >h  and 0>η  such that for all { }ηη ≤=∈ )(: xgxGx
there exists a Ux ∈)(κ such that inequality

( ) ( )( ) )()(,)(, , xgxxFgxxl A
hh ≤+ κκτ τ                                               (32)

holds for all ],0( *hh ∈ .
We define the value function, which represents the optimal value of (31) for a given
initial condition, as

( ) }.:,,inf{)( , UuxNJxV ihN ∈= uτ

If this optimization problem has a solution denoted by { }*
1

*
0

* ,..., −= Nuuu , then the first
$\ell $ elements of *u  are applied at the state x, i.e.,

{ })(),...,()( *
1

*
0 xuxuxh −= lv .

Let *
0h  denote the minimum of the values *h  generated by Assumptions A1-A4. Let x∆

and u∆  be such numbers that ux ux ∆≤∆≤ ,  if UuXx ∈∈ , .
Theorem 3 ([14]) If Assumptions A1-A4 hold true, then (i) there exist an *

1h  with
*
0

*
10 hh ≤< , and a constant AVmax  independent of N, such that A

N VxV max)( ≤  for all Xx ∈ ,
],0( *

1hh ∈  and N∈N ,
(ii) there exist constants and,*

VVLN δ and functions ∞∈ K21,σσ  such that for all
*, NNXx >∈ , ],0( *

1hh ∈  and l,...,2,1=i
( ) ( )xxVx N 21 )( σσ ≤≤

( )( ) ( ),)()(, 1 xxVxxV Nh
A

iN τϕφ −≤−v

VyxXyx δ≤−∈  with,allforMoreover, 1

( ) ,)( yxLyVxV VNN −≤−

for all ],0( *
1hh ∈ .

Clearly { }A
N VxVxX max)(: ≤⊂ .

Theorem 4 Suppose that Assumptions A1-A4 are valid and N is chosen such that
*NN ≥ . Then, there exist KL∈β 0, * >∈ ∞ µθ K  and for any 0>δ  there exists an

0* >h  such that for any Xx ∈0  and ],0( *hh ∈ the trajectory of the l -step exact
discrete-time system
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( )( ),,, 00
)(

1 xF EiE
ih

E
i

EE
i ==+ wv ξξξ l                                              (33)

with the l -step MPC hv  and
*)( µ

lWi ∈w  satisfies
.0,)(),( *

0 ≥++≤ iixE
i δµθτβξ l

Proof. The proof can follow the same line as that of Theorem 2 in [9] and Theorem III.1
in [30] with small modifications due to the the global character of the statement (in the
sense that the whole state space X belongs to the basin of attraction). Moreover, because
of our assumptions of the positive invariance of X, we know that XxX EE

i ∈=∈ 00if ξξ .
Thus, we give only a short outline of the proof. Let fL  be the Lipschitz constant of f.

Using Assumption A1 and Gronwall's lemma, we can show that, there exists an 0*
2 >h

such that
,,...,1,0,)(),(),,( 0

(0)
0 l=+≤−Φ iLhxx h

A
ih

E
i µγφ vwv

for all Xx ∈0 , µ
lW∈)0(w  and ],0( *

2hh ∈ , where, ,
1
1)()(

−
−

= τ

τ

τγγ
f

f

L

L

e
ehh

l

1
1

−
−

= τ

τ
ττ

f

f
f

L

L
L

e
eeL

l

. Let 0>ν  be an arbitrary number. Let 21 and σσ  be given in

Theorem 3 and let ( ) VLLL 2and4/1
21 == − νσδ . Let 1

*
3 and0 µ>h  be such that

inequalities







<









<
4

3,)(min,
4

,
4

)(,
4

min)( 11
1

11 VV

VV LLL
h δδτϕ

µ
δδτϕν

γ

hold true for all ],0( *
3hh ∈ . Let { } { }1

**
3

*
2

*
1

* ,minand,,min µµµ == hhhh  and choose
νµ += *Ld . Using Theorem 3 and the definition of d , one can show in the same way

as in [9] that if XE
k ∈ξ and either dVdV E

kN
E
kN ≥≥+ )(or2/)( 1 ξξ  hold true, then

( ) ( )E
k

E
kN

E
kN VV ξϕ

τ
ξξ 11 4

)( −≤−+                                                          (34)

The construction of a suitable KL function is standard (see e.g. [29]).

4. Robust MPC for the HIV model:

In this section we apply the robust multirate MPC method proposed in section 3 to the
HIV model. We shall show that, with a suitable choice of N and functions g and hl , the
assumptions of the previous section can be satisfied. Introduce new variables by the
definition .,,,,, 61504231201 VzMzMMzTzTzTTz ==−===−=  In these new
variables the model (1)-(6) takes the form of (25) with
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u
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,                              (35)

and ),,,,,( 654321 ′= wwwwwww .
Let the compact set X be defined as

{
},0,0

,,,0,:

3625

02401320110
6

LzLz
MLzMLzzTLzTzX

≤≤≤≤
−≤≤−≤≤−≤≤−∈= R

where 21, LL  and 3L  are in Proposition 1.
With this definition, f satisfies all regularity assumptions, and according to Proposition
1, X is positively invariant if 1and121 ≤≤+ Mqqq . In what follows, we assume that

1and121 ≤≤+ Mqqq . Moreover, we consider both the controller and disturbances are
taken from compact sets.
To verify Assumptions A3 and A4, we linearized the nominal system (35) around the
origin in case of constant controllers, i.e., )2(

22
)1(

11 )(,)( cc uutuuutu >=>=  with

ccc uuu =+ )2()1( , where cu  is given in Proposition 2. Let CA  be the coefficient matrix of
the linearized system and ),,,,,( 10210 ′−−= VMMMTTTTx . Then the discrete-time
model for the linearized system is given by:

)()1( kxekx CA τ=+                                                      (36)
Let the sampling period be chosen to be 1=τ  and .221 == uu
The running cost and the terminal cost can be chosen as:

,)(2000)(100001.0),( 2)2(
2

2)1(
1 cch uuuuQxxuxl −+−+′=                        (37)

,)( Pxxxg ′=                                                                                            (38)
where P is a positive definite diagonal matrix given by

)001.0,1.0,01.0,1,1,001.0(diagP =
and Q is a positive definite symmetric matrix satisfying the Lyapunov equation for the
discrete-time system (36)

.),( τ
τττ

CAeAPPAAQ =−′−=
From (37)-(38), Assumption A3 is satisfied. It has been verified numerically by solving
a constrained minimization problem with several starting points that Assumption A4 is
satisfied over the whole set X. Assumption A2 follows from Proposition 2 and
Assumption A1 holds also true if we choose a suitable numerical integration scheme
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(e.g. the Runge-Kutta formula). Thus all Assumptions of the proposed method can be
satisfied with suitable choice of the parameters of the MPC method.

5. Numerical results:

We perform simulation studies using the parameter values taken from ([22], [34], [7]
and [3]). These values are listed in Table 2.

Table (2): The values of the paramters in the HIV model and the system states at the
initiation of the therapy

Parameter Value Variable Value
1s 410  mL-1 day-1 *T 5100385.4 ×  mL-1

1d 01.0  day-1 *
1T 2105.8 ×  mL-1

1β 8105.4 −×  mL day-1 *
2T 3106.6 ×  mL-1

1q 005.0 *M 410398.1 ×  mL-1

2q 55.0 *
1M 31061.1 ×  mL-1

1µ 01.0  day-1 *V 51028.3 ×  mL-1

1k 025.0  day-1

2µ 5.0  day-1

1p 240 cell-1 day-1

c 5  day-1

2β 81075.1 −×  mL day-1

δ 05.0  day-1

2p 35  cell-1 day-1

Mq 1
2s 150  mL-1 day-1

2d 005.0  day-1

We assume that the treatment is initiated during the asymptomatic stage of infection as
suggested by [19] (when the system is in the infected steady state 1E , see Table 2).
We assume that the state measurements are performed at the instants ,...1,0, =jj lτ . All
computations are carried out by MATLAB. In particular, the optimal control sequence
is computed by the fmincon code of the Optimization toolbox. To reduce the
computational complexity we chose horizon length N to be 8=N  and 4=l . The
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disturbances are simulated by ],[)( iii tw εη∈
,...1,0,6,...,1),)1([),()()()( ==++∈−+== jijjtjrjwtw iiiii ττηεη

where the parameters )( jr  are uniformly distributed random numbers on [0,1], and

ii εη −=  when the system states lie in the interior of the positive orthant 6
+R . At the

boundary of 6
+R , the lower bound iη  has to be chosen as the following:

{ }111 ,max εη −−= s ,
{ }2112 ,max 1 εβη −−= − TVeq u ,
{ }311123 ,max 1 εβη −−−= − TkTVeq u ,
{ }424 ,max εη −−= s ,
{ }525 ,max 1 εβη −−= − MVeq u

M ,
{ }612216 ,max 22 εη −−−= −− MepTep uu ,

to guarantee that the positive orthant 6
+R  is positively invariant.

Simulations for the continuous-time system are carried out using ode45 program in
MATLAB when .5,1,100,1,10,2000 654321 ====== εεεεεε
Figures 1-6 show the evolution of the HIV model variables under the application of
multirate MPC strategy in the presence of disturbances. Figures 1 and 4 show that, when
the MPC is applied, the number of uninfected CD4+ T cells is increasing as well as the
macrophages but with a slower rate than CD4+ T cells. This means that, the HAART
helps the immune system to recover with some fluctuations due to the presence of
disturbances. From figure 2, 3 and 5, we can see that the number of latently infected
CD4+ T cells, actively infected CD4+ T cells, and infected macrophages are decaying
during the treatment. Figure 6 shows that, after initiation of HAART, the viral load
drops quickly and it can be kept under a suitable level 130 copies/mL, with a small
controller, corresponding to rather mild dosage of HAART. The model predictive
controller as a function of the time is shown in figure 7. It is observed that, the treatment
is initiated with a stronger dosage of HAART, and sequentially decreasing over time.
Thus we can say that, when the multirate MPC strategy is applied in the presence of
bounded disturbances, the trajectory of the system tends to a ball around the uninfected
steady state 0E  and remains there (i.e., practical stability). The size of this ball depends
on the disturbances bound and the numerical errors.

6. Conclusions:

The basic properties of the 6-dimensional HIV model incorporating to allow some
additive disturbances were studied. The stabilizing property of multirate MPC for
nonlinear systems with additive disturbances via approximate discrete-time model of the
nominal system was proven. Highly Active AntiRetroviral Therapy (HAART) is used.
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The control input is defined to be dependent on the drug dose and drug efficiency. The
proposed MPC method is applied for determining HAART schedules and stabilizing the
HIV system around the uninfected steady state. The results of simulations show that the
proposed method can effectively be applied to eliminate some drawbacks of the
approaches previously published in the literature.
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