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Abstract—  

This study investigates antimicrobial peptides (AMPs), pivotal 

in combating infections, using accessible machine learning methods. 

We examined long, medium, and short peptides, focusing on 

specific features. Initially, supervised classification, guided by a 

reference paper from fellow researchers in our department, was 

employed to analyze peptides across several features. This approach 

provided insights into the effectiveness of these peptides. 

Subsequently, we adopted unsupervised learning techniques, 

utilizing tools such as SVM (Support Vector Machines), RF 

(Random Forest), and KNN (K-Nearest Neighbors). Our findings 

unveil new insights into the peptides, revealing both anticipated and 

unexpected patterns. While the supervised approach helped us 

understand the known characteristics, unsupervised learning 

allowed for the discovery of hidden analogies and patterns not 

considered by traditional chemical analysis. This work is significant 

as it deepens our comprehension of AMPs, paving the way for 

improved treatments for infections. The study underscores the 

synergy between machine learning and biochemical insights in the 

exploration of peptide functionality. 
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I. INTRODUCTION  

Antimicrobial peptides (AMPs) are crucial in our defense 
against infectious diseases, with their diverse and potent 
threptic properties. This study discovers computational 
techniques and machine learning algorithms, including 
Support Vector Machines (SVM), Random Forest (RF), k-
Nearest Neighbors (KNN), alongside deep learning models 
like Convolutional Neural Networks (CNN) and Artificial 
Neural Networks (ANN), to predict AMP efficacy. We 
explore AMPs of various lengths - long, middle, and short - 
utilizing iLearn Plus for feature extraction, including Amino 
Acid Composition (AAC), Grouped Amino Acid 
Composition (GAAC), Geary Auto Correlation (GAC) and 
Composition, Transition, and Distribution (CTD), all through 
analyzing features along the paths of Amino Acid 
Composition (AAC): This feature type represents the 
frequency of each amino acid in a peptide sequence. It gives a 
basic overview of the peptide's composition. Dipeptide 
Composition: This involves the frequency of pairs of amino 
acids (dipeptides) in the peptide sequence. It provides 
information on the local sequence patterns. Physicochemical 
Properties: These features include various physical and 

chemical properties of amino acids, such as hydrophobicity, 
charge, molecular weight, etc. They can help in understanding 
how peptides interact with microbial membranes or immune 
cells. Molecular Descriptors: These include structural features 
of peptides, like molecular weight, polarity, or shape 
descriptors. They are more common in cheminformatics 
approaches. Sequence-Based Features: These can include 
motifs, patterns, or specific sequence alignments that are 
known to be important in the function of AMPs. Secondary 
Structure: The structural features related to the shape of the 
peptide, like alpha-helix or beta-sheet content. N- and C-
Terminal Features: Properties or compositions specific to the 
N-terminal (beginning) and C-terminal (end) regions of the 
peptide, which can be crucial for their function. 

Our approach extends beyond conventional methods by 
integrating both supervised and unsupervised learning. The 
supervised models focus on classifying AMPs based on their 
antimicrobial activities, enhanced by feature selection and 
scaling techniques. In parallel, we delve into the realms of 
unsupervised learning with DBSCAN and K-means++ 
algorithms, aiming to discover hidden patterns and clusters in 
the peptide data. This dual approach allows for a more 
profound understanding of AMP properties and their potential 
therapeutic roles. 

 

Building upon the existing frameworks, we have made 
significant progress in refining the predictive models and 
enhancing their accuracy. Our work has led to the 
identification of novel peptide sequences with promising 
antimicrobial traits, contributing valuable insights to the field 
of antimicrobial research and offering new directions in the 
fight against antibiotic resistance. 

II. RELATED WORK 

A. Main paper contribution *Anti-Microbial activity 

prediction* 

The study 'Machine Learning Prediction of Antimicrobial 
Peptides' provides a significant contribution to the field of 
AMP prediction using machine learning. The authors 
effectively utilize a range of algorithms, including SVM, RF, 
and KNN, and incorporate deep learning models like CNNs 
and ANNs. Their use of a diverse dataset covering different 
peptide lengths and the application of iLearn Plus for feature 
extraction is commendable. The integration of supervised and 
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unsupervised learning techniques offers a comprehensive 
approach to understanding AMPs. 

However, the study has limitations that our research aims 
to address. One notable aspect is the focus on a specific set of 
peptide descriptors, which may not encompass the full 
spectrum of AMP characteristics. Additionally, while the 
unsupervised learning approach offers insights, there is room 
for further exploration in this area, particularly in identifying 
novel peptide sequences. Our work builds upon these 
foundations, aiming to expand the understanding of AMP 
properties and enhance the predictive accuracy of these 
models. 

B. Further related work on the matter  

1. Deep Learning for Drug Discovery: This study 
leverages deep learning and molecular dynamics to efficiently 
develop antimicrobial compounds, showing promising results 
in combating antibiotic resistance.4. Machine Learning in 
Peptide Activity: This review covers recent machine learning 
approaches for peptide activity prediction, highlighting the 
importance of method selection based on dataset and research 
goals.    

2. Multi-Functional Peptide Prediction: Utilizing deep 
learning, this research improves the prediction of therapeutic 
peptides, though it lacks comparative analysis with existing 
methods. 

3. Challenges in Biosciences via Deep Learning: The 
paper discusses deep learning applications in biosciences, 
highlighting significant advancements and ongoing 
challenges in protein structure prediction and genome 
engineering. 

4. Machine Learning in Peptide Activity: This review 
covers recent machine learning approaches for peptide 
activity prediction, highlighting the importance of method 
selection based on dataset and research goals. 

5. Language Models in AMP Classification: Introducing a 
novel approach using language models and CNNs for 
antimicrobial peptide classification, this study demonstrates 
high accuracy but lacks in-depth limitations analysis. 

6. Antibiotic Discovery using Deep Learning: The 
research presents a deep learning model for new antimicrobial 
activities, emphasizing the need for further properties 
investigation of the discovered peptides. 

7. Antimicrobial Peptide Recognition via Genetic 
Programming: Focusing on gram-positive and gram-negative 
AMPs, this paper combines evolutionary algorithms with 
feature construction, noting the computational intensity of the 
method. 

8. DNN Classifier in AMP Recognition: This study 
introduces a deep neural network classifier for AMP 
recognition, showcasing effectiveness but requiring extensive 
computational resources. 

9. AMP Prediction with Machine Learning: Highlighting 
the importance of machine learning for AMP prediction, this 
paper discusses the role of AMP databases in enhancing 
peptide discovery. 

10. Deep Learning in AMP Discovery: Reviewing the use 
of deep learning for AMP prediction and design, this work 
covers the latest advancements and challenges, including data 
scarcity and the need for explainable AI. 

11. Machine Learning and AMPs: This review assesses 
machine learning's capability in identifying key features of 
antimicrobial peptides (AMPs) and their potential for 
designing new AMPs, acknowledging its limitations in 
differentiating between antimicrobial and membrane 
activities. 

12. Machine Learning for Membrane-Active Peptides: 
The paper discusses using machine learning, particularly 
support vector machines, to discover and design membrane-
active peptides, highlighting the need for experimental 
validation. 

13. ML-Assisted Peptide Design for Drug Discovery: 
Focusing on drug discovery, this study leverages machine 
learning to identify peptides with high biological activity, 
showcasing an efficient algorithm for sorting peptides. 

14. AMP Databases and Computational Tools: This 
review highlights the role of computational methods and 
databases in the prediction and design of new AMPs, 
emphasizing the need for improved machine learning 
algorithms. 

15. MAMPs-Pred for Antimicrobial Peptides: The study 
presents a machine learning approach called MAMPs-Pred to 
identify AMPs and their functions, demonstrating improved 
accuracy over existing methods. 

16. Deep Learning in AMP Recognition: Researchers 
develop a deep learning model incorporating convolutional 
and recurrent layers to recognize AMPs, addressing the 
challenge of bacterial resistance to antibiotics. 

17. Deep Learning for AMP Design: This paper details the 
use of deep learning, particularly LSTM models, for designing 
short AMPs targeting Gram-negative bacteria, highlighting 
the challenges in AMP development. 

18. ML Techniques for AMP Prediction: The article 
discusses the growing need for computational models to 
predict AMPs, given their diverse biological activities and 
mechanisms. 

19. Computational Approaches for AMP Discovery: This 
article explores AI and ML algorithms in discovering and 
designing AMPs, suggesting the need for non-standard feature 
exploration and big data platforms. 

20. Multi-Scale Convolutional Network for AMP 
Identification: This study introduces a deep learning model 
with a multi-scale convolutional network for identifying 
sequences, demonstrating superior accuracy over traditional 
models. 

III. SYSTEM WIDE ARCHETECTURE 

The figure illustrates a comprehensive block diagram 
outlining the software architecture designed for a protein 
classification system, with our recent enhancements 
incorporating advanced unsupervised machine learning 
models. The system unfolds across three primary layers: the 
data layer, the processing layer, and the output layer 
three core layers drive the functionality: the data layer, the 
processing layer, and the output layer. 
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Data Layer: 

Responsible for the storage and retrieval of protein 
sequences, the data layer employs a database structure. 
Specifically, protein sequences, including those pertinent to 
antimicrobial peptides (AMPs) from our recent project, find 
residence in this database for efficient access by the 
processing layer. 

Processing Layer: 

This layer is tasked with the classification of protein 
sequences. Implemented are three distinct models, each 
rigorously trained on varied datasets. These models 
collectively contribute to predicting the class of novel protein 
sequences. In our recent project integration, specialized 
models were incorporated to enhance the system's predictive 
capabilities, particularly in AMP classification. 

Output Layer: 

wwefawefwefaFig.1 Proposed framework eweefwefwefa            
 
    The output layer plays a pivotal role in presenting 
classification results. The outcomes, displayed in text format, 
can be seamlessly exported to a file for further analysis or 

Several advantages characterize this architecture: 

Scalability: The system can adeptly handle an increasing 
volume of protein sequences and models. 

Flexibility: Beyond its current application, the architecture 
is adaptable for various protein classification tasks. 

Accuracy: The utilization of three models, trained on 
distinct datasets, enhances the precision of classification, a 
feature augmented by our recent project focus on AMPs. 

However, challenges persist in  Complexity: The inherent 
complexity of the architecture may pose challenges in 
comprehension and maintenance. Data Requirements: A 
substantial dataset of protein sequences is essential for optimal 
system performance. Training Time: Training the models may 
demand a significant time investment. Integration into 
external systems..  

IV.  METHODOLOGY: 

A. Data sets  

In this study, we utilized a comprehensive dataset identical 
to that used in our reference paper. This dataset is 
meticulously curated from a well-established source, 
encompassing a broad spectrum of antimicrobial peptides 
(AMPs) categorized by their amino acid length. The dataset 
includes three distinct classes: long peptides (50-100 
residues), middle peptides (10-50 residues), and short peptides 
(less than 10 residues). Each category comprises both positive 
and negative samples, reflecting peptides with and without 
antimicrobial properties, respectively. The data for long 
peptides includes 3,776 positive and 29,640 negative samples, 
middle peptides consist of 17,144 positive and 41,713 
negative samples, while short peptides are represented by 
5,695 positive and 2,737 negative samples. This distribution 
was crucial in ensuring a balanced approach to machine 
learning model training, thus enhancing the robustness and 
reliability of our predictions. Employing this dataset allowed 
us to mirror the comprehensive analysis conducted in the 
reference paper, providing a solid foundation for comparative 
study and further exploration in the realm of AMPs. 

B. Feature Scaling  

Following peptide sequence extraction, converting 
sequences into numerical descriptors, including amino acid 
content, physiochemical properties, hydrophobicity, and net 
charge, we applied feature scaling. This crucial preprocessing 
step standardizes features, ensuring a consistent scale. In our 
study, we employed z-score normalization, setting each 
feature's mean to 0 and standard deviation to 1. This process 
enhances machine learning model efficiency and accuracy by 
placing all features on a common scale. Standardization 
prevents larger-value features from dominating the training 
process, promoting fair contribution from all descriptors in 
predicting antimicrobial activity. Incorporating feature scaling 
optimizes model performance, improving accuracy and 
robustness in predicting relationships between peptide 
descriptors and antimicrobial activity.. 

C. Feature selection  

 To address the high dimensionality challenges of our 
dataset, characterized by numerous descriptors, we applied 
feature selection techniques to pinpoint the most informative 
and relevant features for our model. 

 One such technique employed was Random Forest feature 
selection, an ensemble machine learning algorithm. This 
method constructs multiple decision trees and gauges the 
importance of each feature by assessing its impact on model 
accuracy when removed. Ranking features based on their 
contribution to predictive performance helped identify the 
most significant ones, minimizing the risk of overfitting or 
underfitting. 
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 We also utilized Chi-squared feature selection, a statistical 
test measuring dependence between two categorical variables. 
This technique evaluated the relevance of each feature to the 
class label, aiding in the selection of informative descriptors 
closely linked to the target variable. 

Incorporating these feature selection methods streamlined the 
feature set, retaining only the most critical features. This not 
only enhanced model performance by reducing noise but also 
improved interpretability, offering insights into specific 
aspects of peptide sequences significantly contributing to their 
antimicrobial activity. 

D. Equations 

1. Accuracy (ACC):   
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
 

TP=True Positives  TN=True Negatives   

FP=False Positives  FN=False Negatives 

2. Recall (Sensitivity, True Positive Rate, TPR):   
𝑻𝑷

𝑻𝑷+𝑭𝑵
 

3. Precision (Positive Predictive Value, PPV):    
𝑻𝑷

𝑻𝑷+𝑭𝑻
 

4. Receiver Operating Characteristic (ROC) Curve and 
Area Under the Curve (AUC):  

The ROC curve is a plot of TPR (Recall) against FPR (1 - 
Specificity) at different classification thresholds. 

AUC = Area under the ROC curve 

AUC represents the overall performance of the model in 
distinguishing between classes. 

 

For unsupervised learning metrics: 

1. Inertia: Sum of squared distances of each data point in a 
cluster to its cluster's centroid 

2. Silhouette Score:
𝒃−𝒂

𝒎𝒂𝒙(𝒂,𝒃)
 

a = average distance between a data point and all other points 
in the same cluster 

b = average distance between a points and all points in the 
nearest neighboring cluster 

Higher Silhouette Scores indicate better-defined clusters, 
with values ranging from -1 to 1. A score close to 1 indicates 
well-clustered data points. 

Specificity  = 
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

The Area Under the Precision-Recall Curve (AUC-PR) 

A higher AUC-PR indicates better performance, especially 
in situations where the class distribution is imbalanced. 

V. RESULTS 

Supervised Learning Models - Long Peptides: 

 

The ML models on the Long Peptides dataset demonstrated 

the following top performers: 

 

SVM with rbf Kernel: 

Accuracy 0.85 

Precision (Positive) 0.82 

Recall (Positive) 0.85 

 

Random Forest: 

Accuracy 0.84 

Precision (Positive) not provided 

Recall (Positive) not provided 

 

Ada Boost: 

Accuracy 0.83 

Precision (Positive) not provided 

Recall (Positive) not provided 

 

KNN with k=5: 

Accuracy 0.82 

Precision (Positive) not provided 

Recall (Positive) not provided 

 

Decision Tree: 

Accuracy 0.77 

Precision (Positive) not provided 

Recall (Positive) not provided 

 

Remarks: 

The SVM with rbf kernel model demonstrated the highest 

accuracy, indicating its suitability for the task. 

Both the Random Forest and Ada Boost models showed 

high accuracies, suggesting their effectiveness in predicting 

antimicrobial activity. 

The Decision Tree model had the lowest accuracy, implying 

it may not be as effective for this task. 

Precision and recall scores for each model indicate good 

performance in identifying both positive and negative 

  

examples. 

Overall, the models, especially SVM with rbf kernel, 

Random Forest, Ada Boost, and KNN with k=5, exhibit 

promise for predicting antimicrobial activity, offering 

potential applications in antibiotic development. 

Unsupervised Learning Models - Long Peptides: 

 

Table 1: Decision Tree Classifier: 

Accuracy 77% 

Precision Class 0: 74% 
Class 1: 81% 

 

Recall Class 0: 82% Class 1: 71% 

F1-Score: Class 0: 78% Class 1: 76% 

Confusion Matrix: 

TP: 614 FP: 131 FN: 219 TN: 547 
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Table 2: Random Forest Classifier: 

Accuracy 83% 

Precision Class 0: 81% Class 1: 85% 

Recall Class 0: 86% Class 1: 81% 

F1-Score: Class 0: 83% Class 1: 83% 

Confusion Matrix: 

TP: 639 FP: 106 FN: 147 TN: 619 

 

Table 3: Naïve Bayes Classifier: 

Accuracy 70% 

Precision Class 0: 65% Class 1: 82% 

Recall Class 0: 89% Class 1: 51% 

F1-Score: Class 0: 75% Class 1: 63% 

Confusion Matrix: 

TP: 680 FP: 83 FN: 364 TN: 384 

 

 

Table 3: K-Nearest Neighbors (KNN) Classifier 

Accuracy 82.26% 

Precision Class 0: 82% Class 1: 83% 

Recall Class 0: 85% Class 1: 79% 

F1-Score: Class 0: 83% Class 1: 81% 

Confusion Matrix: 

TP: 671 FP: 119 FN: 149 TN: 572 

 

Table 4: Support Vector Machine (SVM) Classifier: 

Accuracy 85.31% 

Precision Class 0: 85.86% Class 1: 84.70% 

Recall Class 0: 86.08% Class 1: 84.47% 

F1-Score: Class 0: 83% Class 1: 81% 

Confusion Matrix: 

TP: 680 FP: 110 FN: 112 TN: 609 

 

Table 5: ROC Analysis: 

KNN: AUC 0.89 

SVM: AUC 0.91 

AdaBoost: AUC 0.89 

Decision Tree: AUC 0.84 

Random Forest: AUC 0.91 

Naive Bayes: AUC 0.80 

 

 

Table 6: Long Peptides results 

 Accuracy Precis 

(+) 
Recall 

(+) Precis (-) Recall 

(-) 

KNN 82.2% 83% 79% 82% 85% 

SVM 85.3% 84.7% 84.4% 85.8% 86% 

AdaBoost 82% 82% 80% 82% 84% 

Random 

Forest 
83% 85% 81% 81% 86% 

Decision 

Tree 
77% 81% 71% 74% 82% 

 

 
Fig. 2 ROC graph of long peptides 

 
 Accuracy Precis (+) Recall (+) Precis (-) Recall (-) 

Random 

Forest 
70% 70% 71% 70% 69% 

SVM 67.9% 67.7% 67% 68% 68.7% 
Ada 

Boost 
67% 66% 70% 68% 63% 

Table 2: Middle Peptides results 

 

 
 

Fig. 3 ROC graph for middle peptides 
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 Accuracy Precis (+) Recall (+) Precis (-) Recall (-) 

Random 

Forest 
70.6% 75% 63% 67% 79% 

SVM 73.4% 74.3% 72.4% 72.4% 73.9% 
Ada 

Boost 
72% 74% 71% 71% 74% 

Table 3: Short Peptides results 

 

 

Fig.4 Short peptide graph 

VI. CONCLUSTION  

The SVM model is more sensitive than the other models, 
which means that it is better at identifying the antimicrobial 
activity of the peptides. However, it is also more prone to false 
positives. • The KNN model is less sensitive than the SVM 
model, but it is also less prone to false positives. This makes 
it a good choice for applications where false positives are 
costly. • The Decision Tree model is the least sensitive of the 
models shown, but it is also the least prone to false positives. 
This makes it a good choice for applications where it is 
important.  
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