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Abstract:

The target of this manuscript is to obtain some fixed point results for generalized orthogonal (Π ,ξ )-weak contraction mappings in
the setting of orthogonal Branciari metric spaces. Also, axillary functions are given to help prove our results. Moreover, Some of
the consequences that can be obtained from the main theorem are presented in the form of corollaries. Ultimately, the theoretical
result is applied to obtain the solution of a differential equation as reinforcement and support for the results shown. keywords:
Orthogonal Branciari metric spaces, lower limit, fixed point technique, existence solution, differential equation.

1 Introduction

M. Frechet fundamentally defined the manifest evolution
of a metric space (shortly, MS) in 1906. The concept of
identifying the fixed point (shortly, f.p.) of self-map was
first proposed by Stefen Banach (1892–1945) in 1922.
Many academics have generalized and expanded this
approach in recent years, spurred on by this modern
notion. Later, the notion of f.p.s was used to solve integral
and differential equations with unique solutions.
Following these, the literature saw the introduction of
numerous MSs and f.p. theorems. Following the
development of Banach’s fixed theory, Branciari [1]
worked on Banach’s f.p. theory and one of the
requirements for the theory’s continuation. Azam, Arshad
and Kannan [2] introduced a novel concept of f.p. result
in generalized MSs (shortly, gms) in 2008. Interested
academics may consult the works of the following
writers, who used single-valued mappings and
multi-valued mappings to arrive at this novel idea and
propose a wide variety of f.p. theorems with contractive
conditions. For more details, see [3,4,5,6,7,8,9,10,11,
12,13]. Although f.p. theory has various uses, its main
purpose was to demonstrate the establishment and, in
certain cases, the uniqueness of a specific class of points

that obeyed a specified criterion. It shows how an
equation, which may take the form of an integral
equation, a differential equation, a matrix equation, and
so on. Since they need to be connected to an operator,
these elements are known as f.p.s. A f.p. problem must be
given in a basic space that has an abstract metric context,
or a mapping that determines the separation between two
random points. Since only MSs satisfy the prerequisites
of non-negativity, the identity of indiscernible, symmetry,
and the triangle inequality, these were initially the only
ones that were explored. By introducing the idea of
orthogonality and establishing the f.p. result, Gordji et al.
[14] recently added to the body of knowledge on MS.
This innovative notion of an orthogonal set, as well as
many different kinds of orthogonality, has many
applications. According to Eshaghi Gordji and Habibi
[15], the f.p. in generalized orthogonal MS and associated
findings in orthogonal MSs(shortly, OMS) are
established. In addition, we suggest the papers [16,17,18,
19], to the reader for more information. In the framework
of orthogonal Branciri type MS, we establish novel f.p.
theorem for orthogonal (Π ,ξ )-weak contractions.
Finally, an application of these findings to the proof of
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conditions for f.p. theorem of differential type equations
is also provided.

2 Preliminaries

We will use the notation [0,∞) by ℜ
+
0 throughout this

paper. Gordji et al. [14] initiated the notion of an
orthogonal set (or O-set) as follows:

Definition 21[14] Let ⋓ ̸= /0 and if a binary relation ∧ ⊆
⋓×⋓ satisfies the following condition:

∃ c0 ∈ ⋓ : (∀c ∈ ⋓,c∧ c0) or (∀c ∈ ⋓,c0 ∧ c),

then it is known orthogonal set (shortly O-set) and the O-
set is denoted by (⋓,∧).

Example 1.[14] Let the world’s population, ⋓, be the set.
If u is capable of giving blood to c, define the binary
relation ρ on ⋓ by ρ ∧ c. According to Table 1, if c0 is a
person whose blood type is O−, then we have c0 ∧ c
∀ c ∈ ⋓. In other words, (⋓,∧) is an O-set. The c0 value
from Definition 21 is not unique in this O-set. Notably, c0
in this instance might be an individual of blood type
AB+. In this situation, we get c∧ c0 ∀ c ∈ ⋓.

Type You can receive
blood from

You can give blood to

A+ A+A−O+O− A+AB+

O+ O+O− O−A+B+ςB+

B+ B+B−O+O− B+AB+

AB+ Everyone AB+

A− A−O− A+A−AB+AB−

O− O− Everyone
B− B−O− B+B−AB+AB−

AB− AB−B−O−A− AB+AB−

Now, in this section recalls some classical and definitions
of an O-sequence, properties, and preliminary notions of
an ∧-continuous mapping, an O-complete Branciari MSs,
a ∧-preserving.

Definition 22[14] A sequence {co} in O-set (⋓,∧) is
known an orthogonal sequence (shortly, O-sequence) if

(∀o ∈ N,co∧ co+1) or (∀o ∈ N,co+1 ∧ co).

Definition 23An orthogonal partial b-metric on ⋓ ̸= /0 is
a mapping OPb

: ⋓ × ⋓ → ℜ
+
0 satisfy the following

requirements ∀ c,ρ,z ∈ ⋓ with c∧ρ,c∧ z,ρ ∧ z:

1.c= ρ iff OPb
(c,c) = OPb

(c,ρ) = OPb
(ρ,ρ),

2.OPb
(c,c)≤ OPb

(c,ρ),
3.OPb

(c,ρ) = OPb
(ρ,c),

4.OPb
(c,ρ)≤ ♭[OPb

(c,z)+OPb
(z,ρ)]−OPb

(z,z).

An orthogonal partial b-MS is a pair (⋓,OPb
) s.t.

(shortly, s.t.) ⋓ is a nonempty O-set and OPb
is an

orthogonal partial b-MS on ⋓. The number ♭≥ 1 is called
the coefficient of (⋓,OPb

).

Definition 24Let ⋓ ̸= /0 be an O-set and a function ℧ : ⋓×
⋓→ ℜ

+
0 s.t. ∀ c,ρ ∈ ⋓ with c∧ρ and ∀ distinct points

ν ,δ ∈ ⋓ with ν ∧ δ each of them different from c and ρ

satisfy the following requirements:

(℧1)℧(c,ρ) = 0 iff c= ρ ,
(℧2)℧(c,ρ) = ℧(ρ,c),
(℧3)℧(c,ρ)≤℧(c,ν)+℧(ν ,δ )+℧(δ ,ρ) (the rectangular

inequality).

Then (⋓,℧) is known orthogonal Branciari type MS
(shortly, OBMS).

Every OMS is an OBMS, but the converse is not true.

Definition 25[14] Let (⋓,∧,℧) be an OBMS. Then, a
function ▽ : ⋓ → ⋓ is known to be orthogonally
continuous (or ∧-continuous) in c ∈ ⋓ if for each
O-sequence {co} in ⋓ with co → c as o → ∞, we have
▽(co) → ▽(c) as o → ∞. Also, ▽ is known to be
∧-continuous on ⋓ if ▽ is ∧-continuous in each c ∈ ⋓.

Definition 26Let (⋓,∧,℧) be an OBMS and {co} be an
O-sequence in ⋓ and c ∈ ⋓. We call that

(i){co} is converge to c iff ℧(co,c)→ 0 as o→∞(denoted
by co → c).

(ii){co} is a Cauchy O-sequence iff for each γ > 0 ∃ a
natural number N s.t.℧(co,cℵ)< γ ∀ ℵ,o> N.

(iii)⋓ is an orthogonally complete (briefly, O-complete) iff
every Cauchy O-sequence is convergent in ⋓.

Definition 27[14] Let (⋓,∧) be an O-set. A mapping ▽ :
⋓ → ⋓ is said to be ∧-preserving if ▽c∧▽ρ whenever
c∧ρ .

Lakzian and Samet proved a f.p. theorem of the gms in
2012.

Theorem 21Let (⋓,℧) be a Hausdorff and complete gms,
and let ▽ : ⋓→ ⋓ be a self-map satisfying

Π(℧(▽c,▽ρ))≤ Π(℧(c,ρ))−ξ (℧(c,ρ)) (1)

∀ c,ρ ∈ ⋓, where

(i)Π : ℜ
+
0 → ℜ

+
0 is a continuous and monotone non

decreasing function with Π(ϕ) = 0 iff ϕ = 0,
(ii)ξ : ℜ

+
0 → ℜ

+
0 is a continuous function with ξ (ϕ) = 0

iff ϕ = 0.

Then ▽ has a unique f.p. (shortly, ufp).

Liu and Chai obtained a generalization of f.p. Theorem 1.1
in 2013.

Theorem 22Let (⋓,℧) be a Hausdorff and complete gms,
and let ▽ : ⋓→ ⋓ be a self-map satisfying

Π(℧(▽c,▽ρ))≤ Π(ς1℧(c,ρ)+ ς2℧(c,▽c)+ ς3℧(ρ,▽ρ))

−θ(ς1℧(c,ρ)+ ς2℧(c,▽c)+ ς3℧(ρ,▽ρ))
(2)

∀ c,ρ ∈ ⋓, where
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(i)Π : ℜ
+
0 → ℜ

+
0 is a continuous and monotone non

decreasing function with Π(ϕ) = 0 iff ϕ = 0,
(ii)θ : ℜ

+
0 → ℜ

+
0 satisfies lim

ϕ→τ
θ(ϕ) > 0 for τ > 0 and

lim
ϕ→τ

θ(ϕ) = 0 iff τ = 0,

(iii)ς∨ ≥ 0(∨= 1,2,3) with ς1 + ς2 + ς3 ≤ 1.

Then ▽ has a ufp.

It is important to note that Π : ℜ
+
0 → ℜ

+
0 is a continuous

and monotone nondecreasing function, but we cannot
acquire that ϕ1 ≤ ϕ2 if Π(ϕ1) ≤ Π(ϕ2). The incorrect
conclusion has been used extensively in the above
theorems proofs. The weaken the theorems criteria and to
present the right results for the previously mentioned
theorems, read this work.

3 Main results

Now, we propose the new estimates of f.p. result for an
orthogonal (Π ,ξ )-weak Contraction on an OBMS.
Let Π be the collection of all functions Π : ℜ

+
0 → ℜ

+
0

satisfy the requirements:

(ς1)Π is monotone nondecreasing,
(ς2) lim

ϕ→τ
Π(ϕ)> 0 for τ > 0 and lim

ϕ→0+
Π(ϕ) = 0,

(ς3)Π(ϕ) = 0 iff ϕ = 0.

Let ξ be the set of functions ξ : ℜ
+
0 → ℜ

+
0 satisfy the

requirements:

(b1) lim
ϕ→τ

infξ (ϕ)> 0 for each τ > 0,

(b2)ξ (ϕ)→ 0 implies that ϕ → 0,
(b3)ξ (ϕ) = 0 iff ϕ = 0.

Theorem 31Let (⋓,∧,℧) be an O-complete Braniciari
type MS, and let ▽ : ⋓→ ⋓ be a self-map satisfying

(i) ∀ c,ρ ∈ ⋓ with c∧ρ ,

℧(▽c,▽ρ)> 0 [Π(℧(▽c,▽ρ))

≤ Π(ς1℧(c,ρ)+ ς2℧(c,▽c)+ ς3℧(ρ,▽ρ))

−ξ (ς1℧(c,ρ)+ ς2℧(c,▽c)+ ς3℧(ρ,▽ρ))]

where Π ∈Ψ ,ξ ∈ Φ and ς∨ ≥ 0(∨= 1,2,3) with ς1+
ς2+ ς3 ≤ 1,

(ii)∧-continuous,
(iii)∧-preserving.

Then ▽ has a ufp.

Proof.Proof of this theorem consists of the two steps.
Step 1. ▽ has the f.p. in ⋓.
By orthogonality, ∃ c0 ∈ ⋓ s.t.

(∀ ρ ∈ ⋓,c0 ∧ρ) or (∀ ρ ∈ ⋓,ρ ∧ c0).

It follows that c0 ∧▽(c0) or ▽(c0)∧ c0.
Let

c1 =▽(c0),c2 =▽(c1) =▽2(c0), . . . ,co+1

=▽(co) =▽co+1(c0)

∀ o ≥ 0. Since ▽ is ∧-preserving, {co}o ≥ 0 is an
O-sequence.
Case 1. ▽ has a periodic point.
Case 1.1. If co+1 = co for some o, then co is a f.p. of ▽.
The remainder, we presume that ℧(co+1,co) ̸= 0 ∀ o.
Case 1.2. If co+2 = co fro some o, then ▽co is a f.p. of ▽.
On contrary, assume that ▽co ̸= ▽2co, i.e.,
℧(▽co,▽2co) > 0, which implies that
ξ (℧(▽co,▽2co))> 0. By contraction (3), we have

Π(℧(co,co+1)) = Π(℧(▽2co,▽co))

≤ Π(ς1℧(co+1,co)+ ς2℧(co+2,co+1)+ ς3℧(co,co+1))

−ξ (ς1℧(co+1,co)+ ς2℧(co+2,co+1)+ ς3℧(co,co+1))

= Π((ς1 + ς2 + ς3)℧(co,co+1))−ξ ((ς1 + ς2 + ς3)℧(co,co+1))

= Π(℧(co,co+1))−ξ ((ς1 + ς2 + ς3)℧(co,co+1)), (3)

i.e., ξ ((ς1 + ς2 + ς3)℧(co,co+1)) = 0. If ∑
3
∨=1 ς∨ ̸= 0, we

obtain ℧(co,co+1) = 0, a contradiction. If ∑
3
∨=1 ς∨ = 0, by

(3) we have Π(℧(co,co+1)) = 0, i.e., ℧(co,co+1) = 0 is a
contradiction to the hypothesis, and so ▽co is a f.p. of ▽.
Case 1-3. If ℵ,o ∈ N s.t.cℵ = co with ℵ−o> 2 and c∨ ̸=
cε ∀ o≤∨ ̸= ε < ℵ, we claim that ▽ℵ−o−1co is a f.p. of
▽. Contrary assume that it is not hold, then

▽ℵ−o−1 co ̸=▽ℵ−oco ⇐⇒ ℧(▽ℵ−o−1co,

▽ℵ−o co)> 0 ⇐⇒ ℧(cℵ−1,cℵ)> 0,

conclude that

ξ (℧(▽ℵ−o−1co,▽ℵ−oco))> 0.

Again using (3), we get

Π(℧(cℵ+1,cℵ)) = Π(℧(▽cℵ,▽cℵ−1))

≤ Π(ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ+1,cℵ)+ ς3℧(cℵ−1,cℵ))

−ξ (ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ+1,cℵ)+ ς3℧(cℵ−1,cℵ)).
(4)

If ℧(cℵ,cℵ−1)< ℧(cℵ+1,cℵ), then

Π(℧(cℵ+1,cℵ))≤ Π((ς1 + ς2 + ς3)℧(cℵ+1,cℵ))

−ξ (ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ+1,cℵ)+ ς3℧(cℵ−1,cℵ))

≤ Π(℧(cℵ+1,cℵ))

−ξ (ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ+1,cℵ)+ ς3℧(cℵ−1,cℵ)),
(5)

i.e.,

ξ (ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ+1,cℵ)+ ς3℧(cℵ−1,cℵ)) = 0,

that is,

(ς1 + ς3)℧(cℵ,cℵ−1)+ ς2℧(cℵ+1,cℵ) = 0,

which shows that ς1 = ς2 = ς3 = 0. From (4), we have
Π(℧(cℵ+1,cℵ)) = 0 ⇐⇒ ℧(cℵ+1,cℵ) = 0, a
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contradiction and so ℧(cℵ+1,cℵ) ≤ ℧(cℵ,cℵ−1). We
obtain

Π(℧(co+1,co)) = Π(℧(cℵ+1,cℵ))

= Π(℧(▽cℵ,▽cℵ−1))

≤ Π(ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ,cℵ+1)+ ς3℧(cℵ−1,cℵ))

−ξ (ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ,cℵ+1)+ ς3℧(cℵ−1,cℵ))

≤ Π((ς1 + ς2 + ς3)℧(cℵ−1,cℵ))

−ξ (ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ,cℵ+1)+ ς3℧(cℵ−1,cℵ))

≤ Π(℧(cℵ−1,cℵ))

−ξ (ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ,cℵ+1)+ ς3℧(cℵ−1,cℵ)),
(6)

than
ς1℧(cℵ,cℵ−1) + ς2℧(cℵ,cℵ+1) + ς3℧(cℵ−1,cℵ) > 0.
Otherwise, ς1 = ς2 = ς3 = 0, we get a contradiction.
Therefore, (6) implies

Π(℧(co+1,co))≤ Π(℧(cℵ−1,cℵ))

−ξ (ς1℧(cℵ,cℵ−1)+ ς2℧(cℵ,cℵ+1)+ ς3℧(cℵ−1,cℵ))

< Π(℧(cℵ−1,cℵ))

. . .

≤ Π(℧(co+1,co)) (7)

a contradiction. Hence, the assumptions are hold.
Case 2. ▽ has no periodic point, i.e., cℵ ̸= co ∀ ℵ ̸= o.
Step 1-1. Prove that lim

o→∞
℧(co+1,co) = 0. Taking

c= co,ρ = co−1) in (3), we have

Π(℧(co+1,co)) = Π(℧(▽co,▽co−1))

≤ Π(ς1℧(co,co−1)+ ς2℧(co,co+1)+ ς3℧(co−1,co))

−ξ (ς1℧(co,co−1)+ ς2℧(co,co+1)+ ς3℧(co−1,co)).
(8)

If ℧(co,co−1)< ℧(co+1,co), then

Π(℧(co+1,co))≤ Π(℧(co+1,co))

−ξ (ς1℧(co,co−1)+ ς2℧(co,co+1)+ ς3℧(co−1,co)),
(9)

it implies that

ξ (ς1℧(co,co−1)+ ς2℧(co,co+1)+ ς3℧(co−1,co)) = 0,
(10)

than ς1 = ς2 = ς3 = 0. Thus
Π(℧(co+1,co)) = 0 ⇐⇒ ℧(co+1,co) = 0, a
contradiction. Hence

℧(co+1,co)≤ ℧(co,co−1) (11)

∀ o. Since Π is monotonically nondecreasing, then

Π(℧(co+1,co))≤ Π(℧(co,co−1)).

There exist numbers τ and τ∗ s.t.

lim
o→∞

℧(co+1,co) = τ, lim
o→∞

Π(℧(co+1,co)) = τ
∗.

If τ > 0, we get

lim
o→∞

[ς1℧(co,co−1)+ ς2℧(co,

co+1)+ ς3℧(co−1,co)] = (ς1 + ς2 + ς3)τ > 0,
(12)

then

lim
o→∞

infξ (ς1℧(co,co−1)+ ς2℧(co,co+1)+ ς3℧(co−1,co))> 0.

By (8), we have

Π(℧(co+1,co))≤ Π(℧(co,co−1))

−ξ (ς1℧(co,co−1)+ ς2℧(co,co+1)+ ς3℧(co−1,co)).
(13)

Letting o→ ∞ in (13), applying lower limits on both sides
of the above inequality, we obtain

lim
o→∞

infξ (ς1℧(co,co−1)+ ς2℧(co,co+1)+ ς3℧(co−1,co))≤ 0,

a contradiction, and so lim
o→∞

℧(co+1,co) = 0.

Step 1-2. Prove that lim
o→∞

℧(co+2,co) = 0. Again letting c=

co+1,ρ = co−1 in (3), then we have

Π(℧(co+2,co)) = Π(℧(▽co+1,▽co−1))

≤ Π(ς1℧(co+1,co−1)+ ς2℧(co+2,co+1)+ ς3℧(co−1,co))

−ξ (ς1℧(co+1,co−1)+ ς2℧(co+2,co+1)+ ς3℧(co−1,co))

≤ Π(ς1℧(co+1,co−1)+ ς2℧(co−1,co)+ ς3℧(co−1,co))

−ξ (ς1℧(co+1,co−1)+ ς2℧(co+2,co+1)+ ς3℧(co−1,co)).
(14)

If ∑
3
∨=1 ς∨ = 0, then ς∨ = 0 for ∨ = 1,2,3. Thus,

Π(℧(co+2,co)) = 0, a contradiction. If ∑
3
∨=1 ς∨ ̸= 0, we

arise the two cases.
Case 1-2-1. If ∃ an orthogonal infinite subsequence
{co(∨)} of co s.t. ℧(co(∨),co(∨)−1) < ℧(co(∨)+1,co(∨)−1)
∀ ∨. Without loss of generality, we have

℧(co(∨),co(∨)−2)≤ ℧(co(∨)−1,co(∨)−2)

≤ ℧(co(∨)−2,co(∨)−3)

≤ . . .

≤ ℧(co(∨−1),co(∨−1)−1)

< ℧(co(∨−1)+1,co(∨−1)−1) (15)
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∀ ∨ ≥ 1. Again by (3), we get

Π(℧(co(∨)+1,co(∨)−1)) = Π(℧(▽co(∨),▽co(∨)−2))

≤ Π(ς1℧(co(∨),co(∨)−2)+ ς2℧(co(∨)+1,co(∨))

+ ς3℧(co(∨)−1,co(∨)−2))

−ξ (ς1℧(co(∨),co(∨)−2)+ ς2℧(co(∨)+1,co(∨))

+ ς3℧(co(∨)−1,co(∨)−2))

≤ Π((ς1 + ς2 + ς3)℧(co(∨)−1,co(∨)−2))

−ξ (ς1℧(co(∨),co(∨)−2)+ ς2℧(co(∨)+1,co(∨))

+ ς3℧(co(∨)−1,co(∨)−2))

≤ Π(℧(co(∨)−1,co(∨)−2))

−ξ (ς1℧(co(∨),co(∨)−2)+ ς2℧(co(∨)+1,co(∨))

+ ς3℧(co(∨)−1,co(∨)−2)),

∀ ∨. If ∑
3
∨=1 ς∨ = 0, then ς∨ = 0 for ∨ = 1,2,3.

Therefore, we obtain Π(℧(co(∨)+1,co(∨)−1)) = 0, i.e.,
℧(co(∨)+1,co(∨)−1) = 0 is a contradiction. If ∑

3
∨=1 ς∨ ̸= 0,

then we get from (16) and (15) that

Π(℧(co(∨)+1,co(∨)−1))≤ Π(℧(co(∨)−1,co(∨)−2))

−ξ (ς1℧(co(∨),co(∨)−2)+ ς2℧(co(∨)+1,co(∨)) (16)

+ ς3℧(co(∨)−1,co(∨)−2))

< Π(℧(co(∨)−1,co(∨)−2))

. . .

≤ ℧(co(∨−1),co(∨−1)−1)

≤ ℧(co(∨−1)+1,co(∨−1)−1). (17)

It concludes from (17) and by the Step 1-1 that

Π(℧(co(∨)+1,co(∨)−1))< Π(℧(co(∨)−1,co(∨)−2))→ 0

as ∨→ ∞, that is,

lim
∨→∞

Π(℧(co(∨)+1,co(∨)−1)) = 0. (18)

And we also obtain from (17) that

Π(℧(co(∨)+1,co(∨)−1))< Π(℧(co(i−1)+1,co(i−1)−1)),

which shows that

℧(co(∨)+1,co(∨)−1)< ℧(co(i−1)+1,co(i−1)−1),

so the O-sequence {℧(co(∨)+1,co(∨)−1)} is monotone
decreasing and bounded below, ∃ ℜ ≥ 0 s.t.

lim
∨→∞

℧(co(∨)+1,co(∨)−1) = ℜ.

If ℜ > 0, then

lim
∨→∞

Π(℧(co(∨)+1,co(∨)−1))> 0

contradicts (18). Thus lim
∨→∞

℧(co(∨)+1,co(∨)−1) → 0 as
∨→ ∞.
Case 1-2-2. If ∃ an infinite orthogonal subsequence
{co(ε)} of {co} s.t.

℧(co(ε)+1,co(ε)−1)≤ ℧(co(ε),co(ε)−1),

then ℧(co(ε)+1,co(ε)−1) → 0 as ε → ∞. Hence, the two
cases we obtained that lim

o→∞
℧(co+2,co) = 0.

Step 1-3. Prove that {co} is a Cauchy O-sequence. On the
contrary, assume that ∃ γ > 0 for which an orthogonal
subsequences {cℵ(µ)} and {co(µ)} of {co} s.t.

℧(cℵ(µ),co(µ))≥ γ

for o(µ)> ℵ(µ)> µ with o(µ) is the smallest index, and
so we obtain

℧(cℵ(µ),co(µ)−1)< γ

∀ µ . By the rectangular inequality, we have

γ ≤ ℧(cℵ(µ),co(µ))

≤ ℧(cℵ(µ),co(µ)−1)+℧(co(µ)−1,co(µ)−2)+℧(co(µ)−2,co(µ))

< γ +℧(co(µ)−1,co(µ)−2)+℧(co(µ)−2,co(µ)),

then ℧(cℵ(µ),co(µ))→ γ as µ → ∞. Similarly,

℧(cℵ(µ),co(µ))−℧(cℵ(µ),cℵ(µ)−1)−℧(co(µ)−1,co(µ))

≤ ℧(cℵ(µ)−1,co(µ)−1)

≤ ℧(cℵ(µ)−1,cℵ(µ))+℧(cℵ(µ),co(µ))+℧(co(µ),co(µ)−1),

then ℧(cℵ(µ)−1,co(µ)−1) → γ as µ → ∞. Furthermore,
∃ K s.t.

℧(cℵ(µ)−1,co(µ)−1)>
γ

2
, ℧(cℵ(µ),cℵ(µ)−1)<

γ

2
,

℧(co(µ),co(µ)−1)<
γ

2

for ℵ(µ),ℵ(µ)> K . Again by using (3), then

Π(℧(cℵ(µ),co(µ))) = Π(℧(▽cℵ(µ)−1,▽co(µ)−1))

≤ Π(ς1℧(cℵ(µ)−1,co(µ)−1)+ ς2℧(cℵ(µ),cℵ(µ)−1)+ ς3℧(co(µ),co(µ)−1))

−ξ (ς1℧(cℵ(µ)−1,co(µ)−1)+ ς2℧(cℵ(µ),cℵ(µ)−1)+ ς3℧(co(µ),co(µ)−1))

≤ Π((ς1 + ς2 + ς3)℧(cℵ(µ)−1,co(µ)−1))

−ξ (ς1℧(cℵ(µ)−1,co(µ)−1)+ ς2℧(cℵ(µ),cℵ(µ)−1)+ ς3℧(co(µ),co(µ)−1))

≤ Π(℧(cℵ(µ)−1,co(µ)−1))

−ξ (ς1℧(cℵ(µ)−1,co(µ)−1)+ ς2℧(cℵ(µ),cℵ(µ)−1)+ ς3℧(co(µ),co(µ)−1)).

(19)

Letting the limit as o → ∞ in the above equation (19)
implies

lim
µ→∞

infξ (ς1℧(cℵ(µ)−1,co(µ)−1)+ ς2℧(cℵ(µ),cℵ(µ)−1)

+ ς3℧(co(µ),co(µ)−1))≤ 0.
(20)

©2024 Sohag University sjsci.journals.ekb.eg Sohag J. Sci. 2024, 9(2), 198-205 202



On the other hand,

lim
µ→∞

[ς1℧(cℵ(µ)−1,co(µ)−1)+ ς2℧(cℵ(µ),cℵ(µ)−1)

+ ς3℧(co(µ),co(µ)−1)] = ς1γ.
(21)

If ς1 = 0, then we obtain from (19) that

Π(℧(cℵ(µ),co(µ)))≤ Π(ς1℧(cℵ(µ)−1,co(µ)−1)

+ ς2℧(cℵ(µ),cℵ(µ)−1)

+ ς3℧(co(µ),co(µ)−1))→ 0

(22)

as µ → ∞, i.e., lim
µ→∞

Π(℧(cℵ(µ),co(µ))) = 0, a

contradiction. If ς1 ̸= 0, then, by (21), we have

lim
µ→∞

infξ (ς1℧(cℵ(µ)−1,co(µ)−1)

+ ς2℧(cℵ(µ),cℵ(µ)−1)+ ς3℧(co(µ),co(µ)−1))> 0,
(23)

a contradiction. Therefore, {co} is a Cauchy O-sequence.
Since (⋓,℧) is an O-complete, ∃ w ∈ ⋓ s.t. lim

o→∞
co =w.

Step 1-4. Let us prove that w is a f.p. of ▽. On the contrary,
assume that w is not a f.p. of ▽, i.e., ℧(w,▽w)> 0. From

℧(w,▽w)−℧(w,co)−℧(co,co+1)≤ ℧(▽w,▽co)

≤ ℧(▽w,w)+℧(w,co)+℧(co,co+1),

then

lim
o→∞

℧(▽w,co+1) = ℧(▽w,w)> 0.

Thus,

lim
o→∞

Π(℧(▽w,co+1))> 0.

From (3), we obtain

Π(℧(▽w,co+1)) = Π(℧(▽w,▽co))

≤ Π(ς1℧(w,co)+ ς2℧(w,▽w)+ ς3℧(co+1,co))

−ξ (ς1℧(w,co)+ ς2℧(w,▽w)+ ς3℧(co+1,co)) (24)

If ς2 = 0, then (24) yields

Π(℧(▽w,co+1))≤ Π(ς1℧(w,co)+ ς3℧(co+1,co))→ 0
(25)

as o→ ∞, i.e., lim
o→∞

Π(℧(▽w,co+1)) = 0, a contradiction.
If ς2 ̸= 0, then, we get

lim
o→∞

infξ (ς1℧(w,co)+ ς2℧(w,▽w)+ ς3℧(co+1,co))> 0.

And we get from (24) that

Π(℧(▽w,co+1))≤ Π(ς1℧(w,co)

+ ς2℧(w,▽w)+ ς3℧(co+1,co))

−ξ (ς1℧(w,co)+ ς2℧(w,▽w)+ ς3℧(co+1,co)).

Since

lim
o→∞

[ς1℧(w,co)+ ς2℧(w,▽w)+ ς3℧(co+1,co)] = ℧(▽w,w),

then

lim
o→∞

Π(ς1℧(w,co)+ ς2℧(w,▽w)+ ς3℧(co+1,

co)) = lim
o→∞

Π(℧(▽w,co+1)).

Applying limits as lim
o→∞

on both of (26), then

lim
o→∞

infξ (ς1℧(w,co)+ ς2℧(w,▽w)+ ς3℧(co+1,co)) = 0,

which is a contradiction, and hence w=▽w.
step 2. If ∃ a f.p. of ▽ is unique.

Assume that there exist two f.p.s ▽z = z ̸= w = ▽w, it
means that ℧(z,w) = ℧(▽z,▽w) > 0. Taking c = z and
ρ =w in (3), Since ▽ is ∧-preserving, we have

Π(℧(z,w)) = Π(℧(▽z,▽w))≤ Π(℧(▽z,▽ρ))

≤ Π(ς1℧(z,w)+ ς2℧(z,▽z)+ ς3℧(w,▽w))

−ξ (ς1℧(z,w)+ ς2℧(z,▽z)+ ς3℧(w,▽w))

= Π(ς1℧(z,w))−ξ (ς1℧(z,w)). (26)

If ς1 = 0, then Π(℧(z,w)) = 0, i.e., ℧(z,w) = 0, which
contradicts ℧(z,w) ̸= 0. If ς1 > 0, from (26) we obtain
that

Π(℧(z,w))< Π(ς1℧(z,w))≤ Π(℧(z,w))

is a contradiction and z=w. Hence the f.p. is unique. This
completes the proof.

Corollary 32Let (⋓,∧,℧) be an O-complete Branciari
type MS, and let ▽ : ⋓→ ⋓ be a self-map satisfying

(i) ∀ c,ρ ∈ ⋓ with c∧ρ ,

℧(▽c,▽ρ)> 0 [Π(℧(▽c,▽ρ))

≤ Π(℧(c,ρ))−ξ (℧(c,ρ))]
(27)

where Π and ξ are defined as in Theorem 31,
(ii)∧-continuous,
(iii)∧-preserving.

Then ▽ has a ufp.

Similar results are obtained from Theorem 31 taking ς1 =
ς3 = 0,ς2 = 1 or ς1 = ς2 = 0,ς3 = 1.

Corollary 33Let (⋓,∧,℧) be an O-complete Branciari
type MS, and let ▽ : ⋓→ ⋓ be a self-map satisfying

(i) ∀ c,ρ ∈ ⋓ with c∧ρ ,

℧(▽c,▽ρ)> 0 [Π(℧(▽c,▽ρ)) (28)
≤ Π(℧(c,▽c))−ξ (℧(c,▽c))

or
Π(℧(▽c,▽ρ))≤ Π(℧(ρ,▽ρ))−ξ (℧(ρ,▽ρ))]

(29)

where Π and ξ are defined as in Theorem 31,
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(ii)∧-continuous,
(iii)∧-preserving.

Then ▽ has a ufp.

Corollary 34Let (⋓,∧,℧) be an O-complete Branciari
type MS, and let ▽ : ⋓→ ⋓ be a self-map satisfying

(i) ∀ c,ρ ∈ ⋓ with c∧ρ ,

℧(▽c,▽ρ)> 0 [Π(℧(▽c,▽ρ))

≤ Π(max{℧(c,ρ),℧(c,▽c),℧(ρ,▽ρ)})
−ξ (max{℧(c,ρ),℧(c,▽c),℧(ρ,▽ρ)})] (30)

where Π and ξ are defined as in Theorem 31,
(ii)∧-continuous,
(iii)∧-preserving.

Then ▽ has a ufp.

4 Existence of the local solution to a
first-order periodic problem

Let ⋓ = C (I ) be the set of all continuous real functions
on I = [0,▽] with ▽ < 2.5. Obviously, this space with
the Branciari type gms given by

℧(c,ρ) = emaxϕ∈I |c(ϕ)−ρ(ϕ)|−1

∀ c,ρ ∈ ⋓ is an orthogonal complete Branciari type gms
with Ω(ϕ) = eϕ − 1. Additionally, ⋓ may have a partial
order given by

c≤ ρ iff c(ϕ)≤ ρ(ϕ) ∀ ϕ ∈ I .

Consider the following first-order periodic problems{
c
′
(ϕ) = £(ϕ,c(ϕ))

c(0) = c(▽).
(31)

where ϕ ∈ I and £ =: I ×ℜ → ℜ is a given continuous
function. A lower solution for (31) is a function
β ∈ C

′
(I ) s.t. {

β
′
(ϕ) = £(ϕ,β (ϕ))

β (0) = β (▽),

where ϕ ∈ I .
Suppose ∃ ℓ > 0 s.t., ∀ c,ρ ∈ ⋓ and ϕ ∈ I , we have

|£(ϕ,c(ϕ))+ ℓc(ϕ)−£(ϕ,ρ(ϕ))− ℓρ(ϕ)| ≤ ℓ

2
(|c(ϕ)−ρ(ϕ)|).

problem (31) can be rewritten as{
c
′
(ϕ)+ ℓc(ϕ) = £(ϕ,c(ϕ))+ ℓc(ϕ) =𭟋(ϕ,c(ϕ))

c(0) = c(▽).

where ϕ ∈ I . It is well known that this problem is
equivalent to the integral equation

c(ϕ) =
∫ ▽

0
G (ϕ, ♭)𭟋(♭,c(♭))℧♭.

Here G is the Green’s function given as

G(ϕ, ♭) =

{
eℓ(▽+♭−ϕ)

eℓ▽−1 ,0 ≤ ♭≤ ϕ ≤▽
eℓ(♭−ϕ)

eℓ▽−1 ,0 ≤ ϕ ≤ ♭≤▽.

Theorem 41Assume that the following axioms are
satisfied:

(P1)𭟋 : [0,▽]×ℜ → ℜ is orthogonal continuous function
(P2)Assume that ∃ ℓ > 0 s.t., ∀ c,ρ ∈ ⋓ and ϕ ∈ I , we

have

|£(ϕ,c(ϕ))+ ℓc(ϕ)−£(ϕ,ρ(ϕ))− ℓρ(ϕ)| ≤ ℓ

2
(|c(ϕ)−ρ(ϕ)|).

(P3)Now define an operator H : ⋓→ ⋓ by

Hc(ϕ) =
∫ ▽

0
G(ϕ, ♭)𭟋(♭,c(♭))℧♭.

Then, (31) has a unique solution in ⋓.

Proof.We define the orthogonal relation ∧ on ⋓ by

c∧ρ ⇐⇒ (£c∧£ρ) or (£ρ ∧£c).

We define ℧ : ⋓×⋓→ ℜ
+
0 by

℧(c,ρ) = emaxϕ∈I |c(ϕ)−ρ(ϕ)|−1

∀ c,ρ ∈⋓. Then, (⋓,∧,℧) is an orthogonal complete MS,
and hence, (⋓,∧,℧) is an O- complete Branciari MS with
Ω(ϕ) = eϕ −1. Observe that c ∈ ⋓ is a solution of (31) iff
c ∈ ⋓ is a solution of the differential equation

c(ϕ) =
∫ ▽

0
G (ϕ, ♭)𭟋(♭,c(♭))℧♭.

Then, H is an ⊥-continuous. Now, we show that H is
⊥-preserving, in (P2), ∀ c,ρ ∈ ⋓ with ℧(Hc,Hρ) > 0
and ∀ ϕ ∈ [0,1]. Then, H is an ⊥-reserving. Let c,ρ ∈ ⋓.
Next, we claim that H is an orthogonal (Π ,ξ )-weak
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contractions. Then, we have

Ω(℧(Hc,Hρ)) = ee
maxϕ∈I |♭(c(ϕ))−♭(ρ(ϕ))|−1 −1

= ee
maxϕ∈I |

∫▽
0 G(ϕ,♭)𭟋(♭,c(♭))℧♭−

∫▽
0 G(ϕ,♭)𭟋(♭,ρ(♭))℧♭|−1 −1

≤ ee
maxϕ∈I

∫▽
0 |G(ϕ,♭)||𭟋(♭,c(♭))−𭟋(♭,ρ(♭))|℧♭−1 −1

≤ ee
maxϕ∈I

∫▽
0 |G(ϕ,♭)| ℓ2 |c(ϕ)−ρ(ϕ)|℧♭−1 −1

≤ ee

ℓ
2 maxϕ∈I |c(ϕ)−ρ(ϕ)|

(∫▽
0

eℓ(▽+♭−ϕ)

eℓ▽−1
℧♭+

∫▽
ϕ

eℓ(♭−ϕ)

eℓ▽−1
℧♭

)
−1 −1

= ee

ℓ
2 maxϕ∈I |c(ϕ)−ρ(ϕ)| 1

ℓ(eℓ▽−1)

(
eℓ▽−eℓ(▽−ϕ)+eℓ(▽−ϕ)−1

)
−1 −1

= e
1
2℧(c,ρ)−1

= Π(M (c,ρ)).

where from Ω(℧(Hc,Hρ))≤ Π(M (c,ρ)), where

Π(M (c,ρ)) = Π(ς1℧(c,ρ)+ ς2℧(c,▽c)

+ ς3℧(ρ,▽ρ))−ξ (ς1℧(c,ρ)+ ς2℧(c,▽c)+ ς3℧(ρ,▽ρ)).

Hence, the conditions of Theorem 41 are fulfilled with
Π(ϕ) = e

1
2 ϕ − 1. Therefore, ∃ a f.p. c ∈ C (I )

s.t.Hc= c. Hence, c is a solution of problem (31).

5 Conclusion

In the context of orthogonal Branciari metric spaces, the
goal of this publication is to derive certain fixed point
results for generalized orthogonal (Π ,ξ )-weak
contraction mappings. Axillary functions are also
provided to support our findings. Additionally, some of
the main theorem’s corollaries are offered as results that
can be drawn from them. Finally, the theoretical result is
used to solve a differential equation in order to confirm
and support the conclusions presented.
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