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Abstract  

Within the electrical power system, classification, and detection of power quality disturbances 

(PQDs) are top priorities. We are utilizing feature extraction with artificial intelligence (AI) and 

deep learning to solve PQD problems utilizing a two-step technique: the feature extraction and 

categorization steps, with the Feature extraction step employing Stockwell Transform and the 

categorization step utilizing Long Short-Term Memory techniques. For the detection and 

classification of PQ disturbance occurrences, this study seeks to employ Stockwell Transform as 

a feature extraction method using the LSTM Deep Learning (DL) method. 

Signal characteristics are extracted from time-frequency analysis data utilizing the Stockwell 

transform and Deep Learning in the long short-term memory (LSTM) network, which detects and 

classifies PQ disturbance events. Combining the S-transform with the long short-term memory 

(LSTM) network enables a high level of classification efficiency. Numerous PQ disorders are 

treated with single and combination disruptions. The results indicate that the proposed method is 

accurate and reliable for identifying and recognising single and combination PQ disruptions. 

Compared to numerous concise studies, the proposed strategy performs exceptionally well. 

1. Introduction  

Massive changes in electrical loads, such as heavy load powering up, large motor launching, 

capacitor recharging, cable line switching, and other phenomena, have occurred because of the 

growth of industry. Due to the non-linear and unbalanced characteristics, voltage, current, and 

frequency deviations occur, resulting in severe degradation of power supply quality. Such 
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pollution would disrupt the normal operations of the sophisticated processing and computer 

industries, leading to irreparable losses. 

Fast Fourier Transform (FFT) [1, 2], Short-Time Fourier Transform (STFT)[3, 4], Wavelet 

Transform (WT) [5, 6], Hilbert-Huang Transform (HHT) [7], and so on, are some of the most 

widely used techniques for extracting features from disturbance signals. FFT is only appropriate 

for stationary signals; it cannot discern transient signals (temporary fluctuations in amplitude or 

frequency)[8] . STFT overcomes the shortcomings of FFT by utilizing a sampling window with a 

fixed width in which the signal is considered approximately stable. Due to the constant breadth of 

the window, STFT lacks adaptability and has limited time and frequency resolution [9]. Wavelet 

transform overcomes the shortcomings of STFT and has excellent localization capability for 

mutation signals in the time-frequency domain. Due to spectrum leakage and the picket fence 

effect, however, computational costs increase. In addition, WT is susceptible to being affected by 

sounds and the employed algorithm [10, 11]. [12, 13] F. Z. Dekhandji devised a power quality 

monitoring system based on abc–0dq transformation and 90 phase shift algorithms. N. Mohan 

investigated the use of gated recurrent units (GRU) and the convolutional neural network-long 

short-term memory (CNN-LSTM) and proposed an optimal architecture for deep learning with 

specific network parameters and topologies [14]. H. Liu decomposes the signals utilizing singular 

spectrum analysis (SSA) and Fast discrete curvelet transform (FDCT) techniques, and then uses 

deep convolutional neural networks (DCNN) for classification [15]. 

S transform is a bidirectional time-frequency analysis technique proposed by Stockwel1 in 1996 

[16] that is used between STFT and WT for non-stationary signals.  By means of the time-

frequency analysis of the signal, local characteristics, such as time-amplitude, frequency-

amplitude, and time-frequency, are determined.  Consequently, the S transform monitors the 

beginning and ending times of power quality disturbances, the fluctuation of the amplitude, and 

the change in frequency, which is employed progressively in the field of power quality 

disturbances. M. Jaya Bharata Reddy [17] presented a novel method for analyzing power quality 

based on an orthogonal time-frequency representation of the S transform. Two segments of the 

wolf sunspot series, seismic maps, and synthetic two-dimensional imagery are analyses using the 

generalized S transform in [18]. By introducing modifying parameters, the time-frequency 

resolution of the entire spectrum is enhanced. Milan Biswal proposed novel frequency partitioning 



schemes and band pass filtering, which substantially reduced the computational cost of the S 

transform[19]. N. Huang proposed a multiresolution generalized S transform in which the 

frequency domain is segmented into three frequency areas and the width factor of the window 

function that is used in the S transform is set to vary across frequency areas to satisfy the 

recognition requirements of various disturbances in each frequency area [20]. 

2. The Proposed PQ Categorizations Methodology 

In the initial phase of this project, code written in MATLAB was employed to generate simulated 

voltage time signals. This section provides strategies for identifying PQ disruptions (LSTM) 

depending on the S-transform and long-short-term memory. Based on the S-transform as 

an extracted signal feature, these algorithms identify, classify, and localize PQ disturbances. 

MATLAB equations are used to generate signals (at 50 Hz) with power quality disturbances in 

accordance with IEEE-1159. These signals provide data in real-time that is used to assess the 

generalizability of the classifier. ST was employed to extract features from these signals, followed 

by the training and evaluation of deep learning identification algorithms (LSTM). 

This data set contains simulations of numerous power quality disturbance (PQD) signals, including 

Interruption, Normal, Sag, and Swell, as well as complex power quality disturbances, including 

Sag plus Harmonics and Swell plus Harmonics. 

The deep learning algorithms were then evaluated using data obtained from experiments of voltage 

signal measurements that included the previously mentioned perturbations. In MATLAB/Code, 

Deep Learning Algorithms were implemented to generate the power quality disturbances dataset. 

2.1  Stockwell transform. 

As a signal processing transform, R. G. Stockwell introduced the Stockwell transform, also known 

as the (S-transform) in 1996. It combines elements of both short-time Fourier analysis and wavelet 

analysis, but it is a distinct category [16]. Using MRA, the S-transform decomposes a time-varying 

waveform (PQ disturbance signals) while preserving the absolute phase of each constituent 

frequency [21]. Therefore, the S-transform can be used to effectively extract features from non-

stationary Power Quality disturbance waveforms. When ST is employed to identify power signals 

as described in [18], it becomes a component of power quality detection methods. ST, like STFT, 

uses a window to localize the complex sinusoidal Fourier signal, but the window's width and 



maximal value scale with frequency, as do wavelets. Such a description can be found in [22] 

regarding detecting voltage sag and surge. The authors proposed using ST and a probabilistic 

neural network to identify and classify single and complex power quality issues with an overall 

accuracy of 89%[23] .In addition, a real-time method for detecting and classifying distorted power 

waveforms was published recently [24].According to [25], an ST-derivative technique known as 

Discrete Orthogonal S-Transform is applied to five distinct disturbances. The output of an S- 

transform-based signal decomposition is a n*m-dimensional complex matrix. This matrix is 

known as an S-matrix and is mathematically represented by the following formula [26].      

𝑆𝑥(𝜏, 𝑓) = ∫ 𝑥(𝑡)
∞
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𝑆𝑥(𝜏, 𝑓) = 𝐴(𝜏, 𝑓)𝑒(−𝑖𝜑(𝜏,𝑓))                                            (4) 
 

 where 𝑤(𝜏, 𝑓) represents the Gaussian window and 𝜎(𝑓) represents the window standard deviation, 

which controls the window width of the Gaussian in the time domain as a percentage of the 

analysis’s frequency. 

Where 𝜑(𝜏, 𝑓) stands for phase and 𝐴(𝜏, 𝑓)stands for amplitude. The rows and columns of the S- 

matrix represent frequency and time, respectively. Each row represents the magnitude 

corresponding to a particular frequency regarding time in terms of zero to N -1 samples. Each 

column depicts the frequency components associated with the signal at a particular instant in time. 

From the S-matrix, the frequency, phase, and magnitude containing valuable information are 

obtained. At a specific instant in time, the magnitude contour corresponds to the location of the 

maximal S-matrix value. The phase of the S-matrix corresponds to the regions of maximum 

amplitude. The frequency contour depicts the signal's frequency content, as determined by the S- 

matrix. 
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Figure 1. The steps to implement this algorithm. 

2.2  Long-Short Term Memory (LSTM) 

A Recurrent Neural Network (RNN) is a deep learning technique that represents a discrete dynamic 

periodic system with input Xt and output ht, where A is the current state's hidden layer. RNNs are 

utilised for sequence data processing. It can process sequential data changes, unlike typical neural 

networks [27]. The displayed loop enables the transfer of data between layers. Standard RNN 

repeating module topology consists of only one tanh layer. Internally, LSTM is more complex than 

RNN, with four neural network layers: input gate, neglect gate, cell state, and output gate[28] . As 

shown in Figure 3, these three gates precisely regulate the LSTM to skip or add information to the 

cell state. Consequently, by employing constant error flow via constant error carousels within 

special units, LSTM can learn to bridge minimum time gaps exceeding 1000 discrete time steps 

[29]. Back-propagation over time is the most prevalent training method for RNNs. However, due 

to the difficulty in isolating gradients, parameters typically capture short-term dependence while 

information from earlier time decays. Exploding gradients, the opposite phenomena, may happen 

as well and cause the error to grow rapidly with every time step [28]. LSTM is a novel neural 

network that employs repetition to solve this problem. LSTMs use additional gates to control the 

information in the output of the hidden cell and its subsequent concealed state. This allows the 

network to discover longer-term data connections more efficiently. 



 
 

Figure.2 Block chart of an LSTM cell 

Three LSTM parameters reduce the network's dependence on long-term data. The Forgotten State 

eliminates irrelevant or superfluous data. The Input State processes the new data, while the Output 

State completes the processing of the input data. The illustration in Figure 2 depicts a block 

diagram of an LSTM cell. 

3. SIMULATION RESULTS 

MATLAB is used to generate synthetic PQ disturbance signals using parametric formulas which 

involve signal distortions and voltage variations. As shown in Table I, these signals include simple 

PQ disturbances such as sag, swell, interruption, and harmonics in addition to complex PQ 

disturbances such as sag with harmonics and swell with harmonics. 

Each disturbance generates one hundred random event signals. The sampling frequency is set to 

6,400 Hz. There were 700 PQD disruptions in total. 70% of the data was selected at random for 

training, while the remaining 30% was utilised for testing. Thus, it will satisfy the required quantity 

of training data. These signals and their respective labels were layered on the cell array. PQ 

disturbance signals are subjected to Stockwell transform feature extraction using these inputs. 

After gathering signal sets of data in MATLAB code being used, it is necessary to implement 

Stockwell Transformer feature extraction in. 

100 concealed layers receive the unprocessed PQ signals. 100 concealed units, or 100 LSTM 

blocks, were employed to identify time series results for the under-evaluation scheme. To complete 

the architecture, an entirely connected layer, a SoftMax layer, and a classification layer are added. 

The activation function in any hidden layer enables the division of signals into distinct categories. 



The features obtained in each layer are passed to the succeeding layer, with the final layer's 

activation values ultimately classifying the data into distinct groups. 

TABLE 1     Parametric equations for the simulation of PQ problems [30, 31] 

PQ problem Simulation equation Parameters 

Normal 

wave 

V(t ) = a∗ sin(𝜔 t) 𝜔 = 2𝜋 f 

Sag 
V(t )=(1 - 𝛼(u(t − t1 ) − u(t − t2 )))∗sin(𝜔 t) 0.1 ≤ 𝛼 ≤ 0.9, T ≤ t2 − t1 ≤ 

9T 

Swell 
V(t ) = (1 + 𝛼(u(t − t1 ) − u(t − t2 )))∗sin(𝜔 t) 0.1 ≤ 𝛼 ≤ 0.8, T ≤ t2 − t1 ≤ 

9T 

Interruption 
V(t ) = (1 − 𝛼(u(t − t1 ) − u(t − t2 ))) ∗ sin(𝜔 t) 0.9 ≤ 𝛼 ≤ 0.1, T ≤ t2 − t1 ≤ 

9T 

Harmonics 
V(t) = 𝛼1sin(𝜔 t ) + 𝛼3sin(3 𝜔 t ) + 𝛼5sin(5 𝜔 t ) + 

𝛼7sin(7𝜔t)                                    

0.05 ≤ 𝛼3, 𝛼5, 𝛼7 ≤ 0.15, 

Sag with 

harmonics 

V(t) = (1 − 𝛼(u(t − t1 ) − u(t − t2 ))) ∗(𝛼1 sin(𝜔 t ) 

+𝛼3sin(3 𝜔 t ) + 𝛼5 sin(5 𝜔 t ) + 𝛼7 sin(7 𝜔 t )) 

0.1 ≤ 𝛼 ≤ 0.9, T ≤ t2 −t1 ≤9T 

0.1≤𝛼3, 𝛼5, 𝛼7 ≤0.15 

Swell with 

harmonics 

𝑉(𝑡 )  =  (1 +  𝛼(𝑢(𝑡 −  𝑡1 )  −  𝑢(𝑡 −  𝑡2 )))  ∗

(𝛼1 𝑠𝑖𝑛(𝜔 𝑡 )  + 𝛼3𝑠𝑖𝑛(3 𝜔 𝑡 )  +  𝛼5 𝑠𝑖𝑛(5 𝜔 𝑡 )  +

 𝛼7 𝑠𝑖𝑛(7 𝜔 𝑡 ))  

0.1 ≤ 𝛼 ≤ 0.9, T ≤ t2 −t1≤9T 

0.1≤𝛼3, 𝛼5, 𝛼7 ≤0.15 

 

3.1  Analysis of PQ disturbances using Stockwell Transform (ST) 

In this section, we present an analysis of Power Quality (PQ) disturbances through the utilization 

of the Stockwell Transform (ST). The ST is a mathematical technique that employs a windowed 

Fourier Transform to provide time-frequency localization of signals. Our approach involves the 

generation of diverse plots using the ST-matrix, aimed at identifying and classifying PQ issues. 

Specifically, we employ the waveform curve, frequency contour, amplitude-time plot, Total 

Harmonic indicator, and Long Short-Term Memory (LSTM) output to conduct the analysis. 

Moreover, the ST-based plots of pure sine waves serve as a benchmark for identifying PQ 

disturbances. Through this scientific investigation, we aim to enhance our understanding of PQ 

disturbances and their impact on power systems. 



3.1.1 Case I: Normal sine wave 
In Case I, we look at a regular sine wave signal and use several Stockwell Transform (ST)-based 

displays to assist identify PQ problems. Figure 3 shows a variety of ST-based graphs of the normal 

sine wave that can be used to identify PQ disturbances. The amplitude-frequency curve of a normal 

sine wave has a peak at 50 Hz, suggesting a pure sinusoidal waveform. Any variations from these 

charts might point to the presence of a PQ disturbance in the signal. We can properly identify and 

characterize PQ disturbances using the ST-based analytical technique, thereby improving our 

understanding of power system behavior. 

 

Figure 3: Case I (a) Normal waveform (b) Frequency contour(c) amplitude, (d) LSTM output, and (e) THD  

3.1.2 Case II: Voltage Transients 
Case II evaluates voltage transients, and Figure 4 depicts Stockwell Transform (ST) transform-

based visualizations of these transients. Figures 4(b) to (d) show the produced surge or transient 

waveform, as well as the amplitude and output values from the Long Short-Term Memory (LSTM) 

network. Notably, at 0.017 s, the LSTM output equals 0.6, indicating the presence of a spike. In 

addition, the Total Harmonic Distortion (THD) value for this waveform is 0, indicating that no 

harmonic distortions exist. We can effectively recognise and categories voltage transients using 



the ST-based analytic technique and the LSTM network, offering significant insights into power 

system behaviors. 

 

Figure 4 Case II (a) Transient waveform (b) Frequency contour(c) amplitude, (d) LSTM output, and (e) THD  

3.1.3 Case III: Voltage sag with harmonics 
Case III involves the analysis of a voltage sag event contaminated with harmonic distortions. 

Figure 5 displays the Stockwell Transform (ST)-based plots of the distorted signal mixed with the 

sag event. Specifically, Figure 5(b) presents the frequency contour plot, while Figure 5(c) 

showcases the amplitude-time curve. Additionally, Figure 5(d) illustrates the Long Short-Term 

Memory (LSTM) output plot. The ST-based plots and their associated values indicate that the 

signal is complex, containing both harmonic distortions and sag events. Notably, the LSTM output 

equals 1 for the time periods from 0 to 0.078 s and 0.13 s to the end of the captured time period, 

indicating that the waveform is normal during these intervals. However, the output equals 0.5 from 

0.78 to 0.13 s, indicating the presence of a sag event, as depicted in Figure 5(d). Furthermore, the 

Total Harmonic Distortion (THD) value for this waveform is 1, confirming the existence of a 

distortion in the captured signal, as shown in Figure 5(e). By utilizing the ST-based analysis 



approach, we can accurately identify and classify voltage sag events, even in the presence of 

harmonic distortions, providing valuable insights into power system behavior. 

 

Figure 5 Case III (a) Sag with Harmonics waveform (b) Frequency contour(c) amplitude, (d) LSTM output, and (e) 

THD  

3.1.4 Case Ⅳ: Voltage swell with harmonics. 

Case VI involves the analysis of a voltage swell event contaminated with harmonic 

distortions. Figure 6 displays the Stockwell Transform (ST)-based plots of the distorted 

signal mixed with the swell event. Specifically, Figure 6(b) presents the frequency contour 

plot, while Figure 6(c) showcases the amplitude-time curve. Additionally, Figure 6(d) 

illustrates the Long Short-Term Memory (LSTM) output plot. The ST-based plots and their 

associated values indicate that the signal is complex, containing both harmonic distortions 

and swell events. Notably, the LSTM output equals 1 during the normal part of the 

waveform and equals 1.5 during the swell event, as depicted in Figure 6(d). Furthermore, 

the Total Harmonic Distortion (THD) value for this waveform is 1, confirming the 

existence of a distortion in the captured signal, as shown in Figure 6(e). By utilizing the 

ST-based analysis approach, we can accurately identify and classify voltage swell events, 



even in the presence of harmonic distortions, providing valuable insights into power system 

behavior. 

 

Figure 6 Case Ⅳ (a) Swell with Harmonics waveform (b) Frequency contour(c) amplitude, (d) LSTM output, and 

(e) THD 

3.1.5 Comparisons with other PQ detection techniques 
Comparisons are made between the proposed method and several other state-of-the-art methods 

for making predictions, including the Kalman filter technique with fuzzy-expert method (KF-FES) 

[32], the Sparse signal decomposition on hybrid dictionaries (SSD) [33], the Long Short-Term 

Memory (LSTM) [34], the convolutional neural network (CNN)[35], and the double resolution ST 

(DRST) with directed acyclic graph (DAG) [36]. Tables II's comparison findings show that the 

suggested method detects all PQDs with an average accuracy of 99.7% and detects simple PQDs 

with 100% accuracy. These findings demonstrate the effectiveness of the suggested technique in 

complicated PQ settings, where it recognizes and identifies signals from a wide range of PQ 

disturbance occurrences. The absence of noise in the predictions demonstrates that the proposed 

method is robust and accurate, outperforming competing methods. The classification time is 



successfully shortened while keeping high accuracy with the suggested technique because the 

computation complexity of classification is reduced. 

TABLE 2 Accuracy based comparison of the WS with LSTM with other classification techniques for no noise 

PQ problems. 

 

PQ disturbance 

ADALINE 

and FFNN 

[37] 

DRST, 

DAG [32] 

SSD on 

hybrid dict. 

[[33] 

LSTM  

[38] 

CNN 

[39] 

CNN-

LSTM 

[34] 

Adjusted 

CNN-LSTM 

[34] 

Proposed 

ST-LSTM 

Normal 100 100 100 100 11.4 100 49.7 100 

Interruption 100 97.0 100 100 100 100 100 100 

Sag 100 99.5 100 89.8 92 90.3 98.4 100 

Swell 100 99.0 100 89.2 99.8 97.7 95.7 100 

Flicker 94.0 99.5 100 ---- --- --- --- 100 

Harmonics 98.0 100 100 85.4 100 98.2 97.8 100 

Transient  98.86 99.3 96.33 0 88.4 0 49.8 100 

Sag with 

Harmonics 

98.0 100 84.67 --- --- --- ---- 96.6 

Swell with 

Harmonics 

97.0 99.5 86.0 ---- ---- ---- ---- 98 

Mean% 98.38 99.31 96.33 62.4 66.9 81.03 89.4 99.8 

 

4. CONCLUSION 

This study proposes a novel method for detecting and classifying PQD using ST and LSTM. The 

proposed method extracts features from PQD signals using ST before classifying simple and 

complex PQD problems using LSTM. This strategy reduces differences between distinct classes 

while preserving their distinction. For obvious visualization, rather than the original electrical 

power quality perturbation signal, frequency contour plot, amplitude, and THD are used as inputs. 

To evaluate the performance of the proposed method, various simple PQD events, including 

transient, as well as complex PQD events, including sag with harmonics and swell with harmonics. 

The results demonstrate that the proposed method outperforms other approaches for classifying 

PQD problems while reducing the classification's calculation complexity. The proposed algorithm 

reduces classification time while maintaining classification precision. Overall, the ST with LSTM 

method is an efficient and effective technique for detecting and classifying PQD issues. 
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