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  Abstract 

Induction motors are popular in industry due to their robustness, reliability, and 
low maintenance. Like all machines, they can fail and cause downtime, production 
losses, and safety hazards. Early detection and diagnosis of motor faults prevents 
catastrophic failures, reduces maintenance costs, and improves efficiency. This pa-
per presents the feasibility and effectiveness of using vibration, temperature, and 
current (VTC) measurements to obtain a comprehensive picture of the motor's con-
dition and predict faults early. Internet of Things (IoT) sensors and adaptive control 
supervision protect induction motors by detecting and classifying faults in real-
time based on experimental data obtained in the lab. This IoT system monitors and 
diagnoses electrical motor conditions by measuring VTC to predict functional ab-
normalities. Sensors are connected to a universal, low-cost microcontroller to ob-
tain the required results. Data is stored on a cloud platform and accessed via a web 
dashboard and a smartphone application. An efficient adaptive control technique 
using Artificial Neural Network (ANN) learning identifies fault types even in uncer-
tain diagnosis situations. Simulation results demonstrate its effectiveness in diag-
nosing the target fault type among the three types. Overall, the paper's results prove 
that the proposed method improves the reliability and efficiency of motor systems 
by providing accurate fault diagnosis. This can result in significant economic and 
environmental benefits by reducing maintenance costs and preventing cata-
strophic failures. 
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1. Introduction 

Industrial processes rely on three-phase induction 

motors due to their reliability, overload capability, cost-

effectiveness, and efficiency. However, faults like unsym-

metrical power, unbalanced voltage, and mechanical is-

sues can cause vibration and damage to the stator wind-

ing. According to statistical studies of induction motor 

failure by ASEA Brown Boveri (ABB), the Institution of 

Electrical and Electronics Engineers (IEEE), and the Elec-

tric Power Research Institute (EPRI) shown in Figure 1, 

bearing and stator defects are the most common types of 

faults, followed by rotor defects and others [1].  

 
Figure 1. Study on induction motor faults. (a) ABB, (b) IEEE, (c) 

EPRI 

 Therefore, identifying and predicting faults before they 

occur through effective condition monitoring and fault de-

tection is essential to preventing production shutdowns 

and significant financial losses [2–4]. To ensure safe and 

reliable operation of industrial induction motors, it's cru-

cial to continuously monitor performance factors, includ-

ing VTC through VTC sensors, which provide real-time 

readings, enabling timely repairs and maintenance to pre-

vent motor failures [5–7].  

IoT systems have revolutionized induction motor moni-

toring by enabling real-time monitoring of VTC motor pa-

rameters. Cloud-based data storage allows for detailed 

analysis and detection of potential motor malfunctions. 

Artificial intelligence (AI) and machine learning enhance 

data collection processes. ANNs classify motor states as 

normal or faulty, enabling timely repairs and maintenance 

to prevent production shutdowns and unexpected fail-

ures. Despite challenges in using large mechanical device 

data for fault prediction, IoT systems offer increased effi-

ciency, reduced energy consumption, and lower operating 

costs for industrial induction motors [8–10]. 

This paper begins with a review of the literature, high-

lighting developments and contributions over earlier in-

vestigations. The system design and development are 

then detailed, including component selection, ideal loca-

tion, and acquisition methods. The next part discusses the 

results and comments, as well as MATLAB simulations. Fi-

nally, a review of findings and implications concludes the 

research. 

2. Literature Review 

Aydil Bapir's research in 2021 focuses solely on 

bearing faults [11], which are limited to three areas by us-

ing different analysis methods: ball, outer race, and inner 

race. This paper investigates motor faults, including vibra-

tion, bearing faults, misaligned loads, improper motor in-

stallation, and high temperature of the windings, which 

can cause insulation damage and failure. Furthermore, we 

examine motor currents to detect overloading and motor 

winding problems to monitor and protect the motor from 

potential damage. ANN is used to assess the condition of 

the motor and classify faults. 

Data collection for Aydil Bapir's study was emailed to the 

computer as a CSV file and sent to the cloud. 

In this paper, data is sent to the cloud and displayed on a 

web dashboard and mobile application, streamlining ease 

of use. 

In Ekkawach Noyjeen's research in 2021, a tempera-

ture sensor is on the motor's external shell, and a vibra-

tion sensor measures magnitude without direction [12]. 

In this paper, for precise winding temperature measure-

ment, the temperature sensor was installed on the motor 

windings. Furthermore, the vibration sensor was used to 

read vibration in three axes (x, y, and z) to determine the 

cause of vibration. 
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3. System Design and Development 

3.1. System Overall 

The health monitoring system designed for the elec-

trical motor is in Figure 2. The system is designed to mon-

itor and display the performance of an induction mo-

tor produced by Shoubra Co. for Engineering Industries 

(a Ministry of Military Production company) under a Sie 

mens license.  

Figure 2. Health monitoring system for the electrical motor 

 

The motor is a three-phase squirrel cage model with 

a 1 hp rating, 1500 RPM speed, 380Vrms voltage, 50Hz 

frequency, and 1.95A current. The system utilizes an Ar-

duino Uno R3 microcontroller to operate three single-

phase ACS712 current sensors, three digital DS18B20 

temperature sensors, and a 3-axis accelerometer 

ADXL335 vibration sensor. 

Laboratory testing ensured the accuracy and validity 

of motor readings by measuring various factors such as 

temperatures, current flow, rotational speed, torque, and 

vibration. Through accurate comparisons with pro-

grammed sensor readings, the verified setup ensured 

proper functioning. For optimum fault detection, the elec-

trical motor securely fastens nuts and bolts, while sensors 

are carefully positioned for accurate readings, as de-

scribed below: 

 

3.1.1. Temperature sensor 

To ensure precise monitoring of the temperature of 

each phase winding in a class F motor (which can with-

stand an ambient temperature of up to 40 °C, a maximum 

temperature rise of 105 °C, and a maximum allowable 

temperature of 155 °C) [13], a temperature sensor was se-

curely installed on each winding. To provide accurate 

temperature measurements, the sensor was chosen based 

on this insulation categorization [14]. The DS18B20 tem-

perature sensor was chosen for its accuracy, reliability, 

and ease of use. With a range of -55°C to +125°C and 

0.0625°C resolution, it is ideal for motor windings and re-

mote monitoring. The sensor's effectiveness in accurately 

measuring temperature was confirmed using the Raytek 

Raynger St2 Infrared Thermometer, which is crucial for 

optimal and safe motor operation. 

It features a user-configurable resolution of 9 to 12 

bits, with increments from 0.5°C to 0.0625°C. With its 

unique one-wire interface, multiple sensors can be con-

nected to a single bus, simplifying monitoring of multiple 

areas without complicated wiring. Additionally, it is easily 

interfaced with a microcontroller for real-time monitor-

ing and control, and has low power consumption for con-

tinuous monitoring. Its small form-factor and motor 

winding mounting capability make it an ideal choice for 

various industrial applications. 

In Figure 3. the sensor uses a parasitic power supply, 

but it can also be powered externally. This option is useful 

when the sensor is far from the microcontroller. Data pin 

communicates temperature readings to the microcontrol-

ler. Thermistor error curve is shown in Figure 4. 

  

(a) 

 

 

 

 

 

  Current sensor 
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 Vibration sensor  

IOT Cloud Platform 

3 Phase Induction motor 
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(b) 

 
Figure 3. (a) DS18B20 Sensor chip. (b) Schematic Diagram 

 

Figure 4. Shows Thermistor’s typical error curve that mainly 
shows these T-sensors have a -0.2◦C bias and a -3 standard 

deviation error less than 0.3◦C 

3.1.2. Current sensor 

The current in each phase of the motor was moni-

tored using three current sensors installed on the motor 

cable. Sensor accuracy was verified using the Fluke 125 

multimeter, and the sensors were programmed to ensure 

precise measurements [15–16]. The ACS712 current sen-

sor's built-in Hall Effect technology, easy installation, abil-

ity to measure both AC and DC currents, low noise level, 

and high isolation between input and output pins make it 

an accurate and safe option for monitoring the current of 

a three-phase induction motor. 

In Figure 5. the ACS712 uses a Hall Effect integrated 

circuit (IC) to measure the magnetic field generated by the 

current flowing through the conductor. which is con-

verted into a voltage proportional to the current, as rep-

resented in equation (1). 

𝑽𝒐𝒖𝒕 =  
𝑽𝒄𝒄

𝟐
+ (𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝒙 𝑰)           (1) 

Where; Vcc: Supply voltage, Sensitivity: Sensor sensitivity, I: 

Conductor current. 

Figure 5. (a) ACS712 sensor chip. (b) ACS712 

Internal Schematic Diagram 

In Figure 6. the nominal sensitivity and transfer charac-

teristics of the ACS712-05B sensor are shown, which is 

powered by a 5.0-volt supply. The drift in the output is the 

minimum for a varying operating temperature. 

 

Figure 6. Output voltage vs sensed current of 
ACS712-05B at 5.0 V power supply and varying 
temperature 
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3.1.3. Vibration sensor 

For accurate monitoring of motor vibration levels, a 

vibration sensor was installed at the optimal location on 

the bearing. It measures vibration in three axes (X, Y, and 

Z) and can detect the source of vibration, including bear-

ing issues, motor fixing bolts, misalignment, or uneven 

surfaces [17–19]. 

The optimal location for vibration sensor installation 

was determined through an experiment comparing the 

readings of two sensors: one installed on the bearing and 

another on the motor junction box.  

The analysis of laboratory readings confirms that in-

stalling the sensor on the bearing provides more accurate 

results. 

Figure 7. shows the vibration differences in the three axes 
between sensor 1 installed on the bearing and sensor 2 on 
the junction box.  

Figure 7. Illustrates the variation in vibrations 

across the three axes as detected by the two 

vibration sensors 

ADXL335 accelerometer is a highly reliable and low-

cost sensor that monitors the vibration of a three-phase 

induction motor on three axes. It helps plant operators 

avert unforeseen shutdowns by detecting defects and en-

suring regular operation. It measures acceleration in g-

forces by sensing changes in capacitance between a fixed 

plate and a movable proof mass. It functions by measuring 

acceleration with respect to a fixed frame of reference, as 

represented by equation (2). 

 

𝐴𝑐𝑐𝑒𝑙𝑖𝑛 𝑔 =  
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 − 1.5 𝑉

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
                  (2) 

Where the sensitivity of ADXL335 is constant at 330 mV/g, 

giving it a high level of accuracy in measuring accelera-

tions. 

(a) 

(b) 

Figure 8. (a) ADXL335 Accelerometer Sensor. (b) 

Schematic Diagram 

In Figure 8. the ADXL335 sensor has three axes of meas-

urement (X, Y, and Z), with each axis having its own set of 

components to sense acceleration. The resulting outputs 

can be read by a microcontroller for real-time monitoring. 

Moreover, utilizing ANN with ADXL335 enables the anal-

ysis of various vibrations, making it possible to distin-

guish between normal and faulty motors with different 

fault types having distinct results. 
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Figure 9. Testing instruments for the electrical 

motor where (a) Infrared Thermometer (b) 

Tachometer (c) Digital multimeters (d) Power 

Analyzer 

Figure 9. shows the instruments used for testing the mo-

tor. 

3.1.4. Microcontroller 

The low-cost Arduino Uno microcontroller is ideal for 

small-scale monitoring projects for 3-phase induction mo-

tors and can interface with a variety of sensors and com-

ponents, making it versatile for multiple monitoring ap-

plications [20]. 

3.2. Data acquisition 

Various sensors were meticulously selected to moni-

tor significant parameters for motor performance. Three 

current sensors provided precise electricity flow meas-

urements of the motor. To analyze thermal performance's 

impact on efficiency and lifespan, three temperature sen-

sors, one per phase, were mounted on motor windings. Di-

agnosing mechanical failures due to unbalanced loads or 

bearing faults relied on a vibration sensor measuring x, y, 

and z-axis vibration. Collecting data from the sensors for 

twelve hours daily over a year, under normal and various 

fault conditions, revealed motor performance. The data 

analysis identified and categorized transient, short-term, 

and limit-exceeding readings to accurately identify prob-

lems. Laboratory equipment validated sensor accuracy 

during testing. 

Large datasets of up to 20,000 readings of different 

motor states were utilized for accurate ANN learning used 

for diagnosing motor faults and determining their actual 

state. 

The project hardware components labeled shown in 

Fiure10. 

3.2.1. Normal and fault conditions Data reading 

ANN was trained by conducting laboratory experi-

ments on an electrical motor to collect data on normal and 

faulty conditions. Deliberate changes were introduced to 

the motor to simulate different faults, including: a) con-

necting an unbalanced shaft to create a misalignment load 

and increase vibration; b) loosening the motor fixing bolts 

to increase vibration; c) increasing the bearing home of  

 

Figure 10. Hardware control of the project 

the end shield's diameter by 0.12 mm, which altered 

the air gap and increased vibration; d) decreasing the 

bearing home of the end shield's diameter by 0.3 mm, 

which increased winding temperature and current; e) us-

ing a combination of the above methods to create mixed 

faults. By introducing these faults, a diverse range of data 

was collected to improve the ANN's ability to detect and 

diagnose faults in electrical motors. 
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3.2.2. IoT 

An IoT system is developed and connected to a mi-

crocontroller kit, enabling easy monitoring of the motor's 

condition. Motor data is displayed on a web dashboard 

and a smartphone application, giving users the ability to 

quickly identify performance ranges and defects. This al-

lows for online motor monitoring from any location at any 

time. 

3.2.3. ANN  

An adaptive control technique is employed for accu-

rate diagnosis of the motor's condition using a MATLAB-

built ANN.  

Figure 11. Flowchart model of research context 

The ANN is trained on normal and faulty motor data 

to ensure correct learning and tested to verify the accu-

racy and validity of its output, which proves to be highly 

effective.  

Then integrated into the project for detecting the 

motor's actual condition, including healthy condition 

mode and VTC faults. This improves the diagnosis of mo-

tor faults significantly, even in cases of uncertainty.  

Figure 11. illustrates the proposed system that installs 

VTC sensors strategically in optimal locations for accurate 

data collection. These sensors are connected to a micro-

controller kit programmed to read and display data on an 

Arduino serial monitor, an Excel sheet and the IoT cloud, 

and then ANN accurately diagnoses the motor's state. 

4. Results and Discussion 

The circuit was tested in real-time, and the results 

were categorized into two sections. 

4.1. IoT 

An operational system was demonstrated that moni-

tored a three-phase induction motor through VTC sensors 

and an Arduino Uno with WiFi capabilities. The collected 

data is transmitted to the IoT Blynk cloud and presented 

in a user-friendly format via a web dashboard and 

smartphone application, providing real-time data for cor-

rective measures, as shown in Figure 12.  
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Figure 12. Real image of the IoT smartphone application in first 
and web dashboard at the bottom which shows a normal-

operating motor 

4.2. MATLAB 

4.2.1. Induction Motor model and Load model 

Controlling the speed of an induction motor is critical 

for numerous industrial applications [21]. The speed of 

the stator revolving flux (𝑁𝑠) can be calculated as equa-

tion (3): 

𝑵𝒔 =
𝟏𝟐𝟎𝒇

𝒑
                      (3) 

Where; f: frequency in Hz, P: number of poles in the ma-

chine. 

The induction motor per-phase equivalent circuit on the 

stator side presented in Figure 13. 

Where; R1= Stator resistance, X1=Stator leakage reac-

tance, I1=Stator current, Ro=Shunt resistance, Xo=Mag-

netizing reactance, Io=Per-phase no-load current, V1=Sta-

tor voltage, E1 = Stator induced emf. 

The machine electrical equation is: 

 

𝑉𝑎=𝐼𝑎𝑅𝑎+𝐽𝑋𝑠𝐼𝑎+𝐸𝑏               (4)         

𝐸𝑏∝
𝒅𝜽

𝒅𝒕
                           (5) 

 Electrical torque is: 𝑻𝒆 =  
𝑲𝑬𝟐 𝑹

𝑹𝟐+𝑿𝟐                   (6) 

A. Induction Motor block diagram and 
transfer function 

 

Figure 13. Per-phase equivalent circuit referred to Stator 
side 

Mathematical modeling of an induction motor can be 
achieved by considering the basic equations of the ma-
chine's behavior. From equations (4), (5) and applying La-
Place transforms,  

𝑉𝑎(𝑠) = 𝐼𝑎(𝑠)(𝑅𝑎 + 𝑗𝑋𝑠) + 𝐸𝑏(𝑠)           (7) 

As is known:       𝑬𝒃 = 𝑲𝒕𝒔𝜽(𝒔)                
(8) 

Obtained; 𝑉𝑎(𝑠) = 𝐼𝑎(𝑠)𝑍(𝑠) + 𝐾𝑡𝑠𝜃(𝑠)             (9) 

𝑽𝒂(𝒔)−𝑲𝒕(𝒔)𝒔𝜽(𝒔)

𝒁(𝒔)
= 𝑰𝒂(𝒔)           (10) 

Electrical torque is:  𝑻𝒆 =
𝑲𝑬𝟐𝑹

𝑹𝟐+𝑿𝟐                   (11)                                

Taking LaPlace transforms:  𝑻𝒆 = 𝑬𝟐𝐬𝐢𝐧 𝜽          (12) 

From equation (9) and applying LaPlace transforms:   

                𝑇𝑚(𝑠) = (𝐽𝑠2 + 𝐵𝑠)𝜃(𝑠)         (13) 

𝑻𝒎 = 𝑻𝒆 ⇒ (𝑱𝒔𝟐 + 𝑩𝒔 − 𝑬𝟐)𝜽(𝒔) = 𝑻𝒎         (14) 

𝜽(𝒔)

𝑻𝒎(𝒔)
=

𝟏

𝑱𝒔𝟐+𝑩𝒔−𝑬𝟐              (15) 

(𝐭𝐚𝐤𝐞 𝜽 = 𝟎):      𝐓 = 𝐊∅(𝐬)𝑰𝒂(𝒔)              (16) 

𝑲𝒂[𝑽𝒂(𝒔)−𝑲𝒕𝒔𝜽(𝒔)]

𝒁(𝒔)
= (𝑱𝒔𝟐 +  𝑩𝒔 − 𝑬𝟐)𝜽(𝒔)        (17) 

𝜽(𝒔)

𝑽𝒂(𝒔)
=

𝑲𝒂

(𝑱𝒔𝟐+𝑩𝒔−𝑬𝟐)(𝑹𝒂+𝑳𝒂𝒔)+𝑲𝒂𝑲𝒕𝒔
          (18) 

Where: 𝐾𝑎 =
3

2Π𝑛𝑠
, 𝐾𝑡 = 0.5, J(Inertia constant) = 0.076kgm2 

, R = 4.2Ω , B(Friction coefficient) = 8 , L = 3mH. 

Transfer function:G(s) =  
𝜃(𝑠)

𝑣𝑎(𝑠)
=

0.0190

(1+0.71𝑠)(1+0.0095𝑠)𝑠
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=
𝟎.𝟎𝟎𝟎𝟏𝟐𝟖 𝑺𝟏+𝟎 

𝟎.𝟎𝟎𝟎𝟔𝟕 𝒔𝟑+𝟎.𝟕𝟏𝟗𝟓 𝒔𝟐+𝒔+𝟎
      (19) 

 
Using MATLAB Simulink software to generate Figure 14. 

 
Figure 14. Transfer function block diagram of induction motor 

The Load model of induction motor pump shown in figure 

15. Where, Va=327<0°, Vb= 327<-120°, Vc= 327<120° at 

F= 50 HZ. 

 

Figure 15. MATLAB Simulink software of three phase 

induction motor with pump load at running program 

plays the unbalanced motor current load and the elec-

tromagnetic torque of a 3-phase induction motor given by 

equations (21) and (22). 

In the case of an unbalanced load, Equation (20) dis 
 

 

 

 
(a) 

 
(b) 

 
(c) 
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(e) 
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Figure 16. wave form of (a) the supply voltage matching 

the pumping-motor (b) Motor stator current 𝑰𝒂, 𝑰𝒃, 𝒂𝒏𝒅 𝑰𝒄 as 

function of time  (c) Motor rotor current 𝑰𝒂, 𝑰𝒃, 𝒂𝒏𝒅 𝑰𝒄 as 

function of time (d) Output response of the pumping-motor 

speed as function of time 

Figure 16. shows MATLAB simulation curves over time of 

The Load model of induction motor pump. 

𝐼𝑢𝑛𝑏𝑎𝑙 = (𝐼1 − 𝐼2) + 𝑗(𝐼3 − 𝐼2)        (20) 

𝑻𝒖𝒏𝒃𝒂𝒍 = (
𝟑

𝟐
) ∗ (

𝑷

𝟐
) ∗ [(𝑰𝟏 − 𝑰𝟐) ∗ 𝑰𝟐 𝒔𝒊𝒏 𝜽𝟐]      (21) 

𝑻𝒆𝒎 = (
𝟑

𝟐
) ∗ (

𝑷

𝟐
) ∗ (

𝑰𝟐
𝟐

𝑹𝟐
) ∗ 𝑺      (22) 

Where; 𝑷= number of poles, 𝑰𝟏, 𝑰𝟐the stator currents in 

Phase 1 and 2 respectively, θ2 = angle between the wind-

ing of Phase 2 and the rotor axis, 𝑹𝟐= stator resistance of 

Phase 2, 𝑺 = slip. 

 

4.2.2. ANN model 

ANNs are machine learning techniques inspired by 

the human brain's structure and operation. Comprising 

interconnected layers of nodes, each with weights and a 

threshold value. It uses activation functions, such as sig-

moid, ReLU, and hyperbolic tangent, to transform inputs 

from nodes as shown in figure 17. node output in terms 

of weights, inputs, and activation function in equation 

(23). It excels in pattern recognition, classification, and 

prediction tasks, learning complex relationships and 

making accurate predictions through training and opti-

mization of network weights and thresholds. 

 

Figure 17. The structure of a Neuron ANN 

• Algebraic formula: 

∑ 𝒘𝒊

𝒏

𝒊=𝟏

𝒙𝒊+𝒃𝒊𝒂𝒔 =𝒘𝟏𝒙𝟏+𝒘𝟐𝒙𝟐+𝒘𝟑𝒙𝟑 + 𝒃𝒊𝒂𝒔 

Output= 𝒇(𝒙) = {
𝟏,   ∑𝐰𝟏𝐱𝟏 + 𝐛 ≥ 𝟎
𝟎,   ∑𝐰𝟏𝐱𝟏 + 𝐛 < 𝟎

      (23) 

Predicted output = 

[𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆 𝑽𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏 𝑪𝒖𝒓𝒓𝒆𝒏𝒕][𝑷𝒉𝒂𝒔𝒆(𝒏)] 

where n=1,2,3. 

= [𝐓∅𝐧
𝐕∅𝐧

𝐂∅𝐧]              (24) 

 

ANNs exhibit exceptional generalization capabilities, 

allowing them to detect previously unseen faults.  
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This means that ANNs can identify faults based on 

training and measurements, without the need for com-

plex mathematical models [22]. 

The data from VTC sensors is saved in Excel sheets 

every three minutes and analyzed using ANN MATLAB 

software, which analyzes the monitored data. 

Figure 18. explains the steps of the ANN program on 

MATLAB. 

 

 
Figure 18. The procedural steps for developing ANN models using 

MATLAB 

 

Figure 19 shows the structure and algorithms of the 

model, which uses 2 layers with 10 neurons and 

TRAINLM training function. 

 

 

 

 

 

Figure 19. the structure and algorithms of the model 

 

Four ANN motor operation output cases compared in 

Table I: 

Case 1: The normal state (Temperature, vibration and 

current with range) --- Neural network output = 1. 

Case 2: Temperature Fault (Motor winding temperature 

higher than range) --- Neural network output = -1.  

Case 3: Vibration Fault (Motor vibration higher than 

range) --- Neural network output = -2. 

Case 4: Current Fault (Motor phases current higher than 

range) --- Neural network output = -3. 
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Table 1  

Table 1. Table Of Case Plots Message 

Case Neural network Message 

1 

 

2 

 

3 

 

4 

 

 

Table 2. Table Of Abbreviations 

VTC Vibration, Temperature, and Current 

IoT Internet of Things 

AI Artificial Intelligence 

ANN Artificial Neural Network 

MSE Mean Squared Error 
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5. Conclusion 

Fault detection is essential for the reliable and effi-

cient operation of industrial induction motors, which ne-

cessitates continuous monitoring of various factors, in-

cluding VTC. Advanced technologies such as IoT systems 

and ANN can be employed for this purpose.  

This paper presents a design system that combines 

artificial intelligence technology with IoT monitoring sys-

tems to facilitate the prediction and diagnosis of electrical 

motor faults. The system utilizes laboratory testing and 

sensor strategic placement to ensure accurate motor read-

ings, and stores information in an Arduino program, an Ex-

cel sheet, and a cloud platform accessible from multiple lo-

cations via an application. A two-layer ANN with 10 neu-

rons and TRAINLM training function achieves high accu-

racy in predicting motor conditions and classifying VTC 

faults. The model is trained on a dataset of 10,000 samples, 

with 70% allocated for training. The achieved accuracy 

reaches up to 98%, accompanied by a low MSE of 𝟏𝟎−𝟎.𝟔. 

Remarkably, the model's running time was only 0.4 milli-

seconds, facilitating swift and precise predictions. How-

ever, when the training function type was modified, the 

ANN's accuracy decreased to 80%, although with a slightly 

improved MSE of 𝟏𝟎−𝟎.𝟒𝟐. The modified model's running 

time increased to 0.6 milliseconds. Continuous monitoring 

and parameter data analysis enhance motor performance 

assessment, improving efficiency, accuracy, and system re-

liability. The Blynk application facilitates remote monitor-

ing, real-time data, and larger-scale monitoring applica-

tions. 
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