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Abstract.
A novel approach for PolSAR image analysis using support vector machines (SVM) were

presented in this paper, with a focus on the impact of target decomposition techniques on
classification accuracy. We explore the use of six different target decomposition techniques,
including Cloude, Huynen, HAAlpha, Freeman, Vanzyl, and Yamaguchi, to extract feature
vectors for training SVM models. Our study evaluates the performance of the classifiers
on two standard benchmark datasets (Flevoland and San Francisco Bay) using multiple
assessment metrics, including accuracy, sensitivity/recall, specificity, precision, F1-score, and
Kappa coefficient. Our contribution is twofold: first, we provide a comprehensive analysis of
how the choice of target decomposition technique affects the classification accuracy of PolSAR
images using SVMs, and second, we demonstrate the effectiveness of SVMs for PolSAR image
classification, particularly for differentiating between different land cover types. Our results show
that certain target decomposition techniques are better suited for specific land cover types, and
our approach can achieve high classification accuracy across different datasets. Overall, our
study provides important insights into the effective use of SVMs and target decomposition
techniques for PolSAR image analysis.

Keywords: SVM, PolSAR images, land cover classification, target decomposition techniques,
Cloude, Huynen, HAAlpha, Freeman, Vanzyl, Yamaguch.

1. Introduction
Polarimetric Synthetic Aperture Radar (PolSAR) is a sophisticated form of Synthetic Aperture
Radar (SAR). It involves the emission and reception of radar waves in various polarization
modes. It provides more information about the target scene compared to traditional single
polarization SAR. PolSAR images have numerous applications in remote sensing, including land
use and cover classification, change monitoring, disaster risk assessment, and urban analysis.
In recent years, there has been an abundance of PolSAR data provided by various airborne
and space-borne SAR systems such as AIRSAR, UAVSAR, SENTINEL-1, TSX, RADARSAT-
2 and ALOS-PolSAR. However, manual analysis of this large volume of complex images is not
feasible, hence the need for the development of autonomous or semi-automatic systems or models
for PolSAR image analysis and information extraction has become imperative [1], [2], [3].

This paper focuses on the use of supervised classification methods, particularly Support
Vector Machines (SVMs), for the analysis of (PolSAR) images. Various target decomposition
techniques such as (Cloude, Huynen, HAAlpha, Freeman, Vanzyl, and Yamaguchi) are used
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to extract feature vectors from fully polarimetric data, which are then used to train the
SVM model. The choice of target decomposition technique has a major effect on the overall
classification accuracy. The effectiveness of various target decomposition techniques is evaluated
using two benchmark datasets: the AirSAR mission over the Flevoland area and the Radarsat-2
satellite mission over San Francisco Bay [4]. The used evaluation parameters include accuracy,
sensitivity/recall, specificity, precision, F1-score, and Kappa coefficient [5], [6], [7]. The key
contribution of this paper is to enhance the understanding of PolSAR image classification using
supervised methods and the impact of various target decomposition techniques in classification
accuracy. The results of this study provide valuable insights for practitioners and researchers in
the field of microwave remote sensing.

The paper is organized into four sections. It includes an introduction, target decomposition
theorems, a description of the SVM algorithm, and an implementation of the SVM-based land
cover classification model and performance evaluation, and the conclusion.

2. Target Decomposition Theorems
The polarization diversity in PolSAR makes it a valuable tool for terrain surface classification.
Many widely used classification methods are based on polarimetric decomposition. The received
radar signal is encoded in a scattering matrix S, defined as:

S =

[
Shh

Sυh

Shυ

Sυυ

]
(1)

where for monostatic cases, the matrix S is symmetrical, Shυ = Sυh. For complex targets,
the scattering matrix is not adequate. A possible alternative is the representation based on
second-order polarimetry, such as the coherency matrix T3 and the covariance matrix C3. The
scattering matrix S can be transformed into a vector kp using Pauli basis:

kp =
1√
2
[Shh + Sυυ, Shh − Sυυ, 2Shυ]

T (2)

Then, the (3× 3) coherency matrix T3 can be defined as:

T3 = kp.k
∗T
p (3)

Where * denotes complex conjugation.
Target decomposition theorems aim to provide an interpretation of scattering interactions by
accounting for physical constraints such as the invariance of the average target to changes in wave
polarization basis. The first formalization of these theorems was by Huynen, but their roots can
be traced back to Chandrasekhar’s work on light scattering by small anisotropic particles. Then
different decomposition methods have been proposed by authors such as Holm and Barnes, Yang,
Freeman and Durden, Yamaguchi, Dong, Cloude, vanZyl, Cloude and Pottier [8], [9], [10], [11].
some of this methods are briefly explained in the next subsections.

2.1. Huynen Decomposition
Huynen’s decomposition is a method in radar target analysis that separates incoming data into
two parts: the single mean target, T0, and a residual component known as the N-target, TN .
This method uses the Kennaugh matrix or the coherency T3 matrix to represent the average
distributed target in clutter environments. The T3 matrix is decomposed into T0 and TN by
incoherent averaging. T0 represents symmetric target parameters and is dependent on target
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tilt angle, while TN represents nonsymmetric target parameters and remains unchanged with
target tilt angle. The N-target is roll invariant, meaning it is independent of rotation along the
line of sight. The parameters (B0 N, BN, EN, FN) are generated from understanding of the mean
Kennaugh matrix [9], where the full derivation exist.

2.2. Model-Based Decompositions (Three-Component Decomposition)
In the model-based decomposition approach, the scattering matrix S is separated into various
scattering mechanisms in the target medium. The technique was introduced by Freeman and
Durden in 1998 [12], and it decomposes the covariance matrix into canopy scatter, even-bounce
scatter, and Bragg scatter. This composite scattering model is useful in discriminating different
land covers, such as flooded and non-flooded areas, forested and deforested areas, etc.

The first-order Bragg scattering’s associated scattering matrix, such as surface scattering
and coherent odd-bounce scattering, can be expressed as a 2x2 matrix, where the coefficients
that describe the reflection of horizontally and vertically polarized waves are based on the
angle of local incidence and the surface’s relative dielectric constant. The surface scattering
covariance matrix is also expressed as a 3x3 matrix, where the effect of single-bounce scattering
is represented by a factor fS , and the scattering matrix for a dihedral scatterer, which
represents even/double-bounce scattering, can be modeled as a 2x2 matrix. The reflection of the
backscattered signal from a corner reflector with two sides, such as a building, can be used to
mimic double-bounce scattering. The backscatter from a reflective surface made up of various
dielectric materials, like a dihedral corner reflector, is analyzed. The reflection coefficients and
phase changes are taken into consideration to model the scattering.

The model-based decomposition approach provides a unique solution by making assumptions
about the structure of the target surface and provides a more detailed description of the
scattering mechanisms compared to other decomposition types.

2.3. EigenVector-Based Decompositions
describes the decomposition of the Hermitian positive semidefinite coherency matrix T 3 into
three separate targets, each with a single scattering mechanism. This decomposition is achieved
through finding the eigenvectors of T 3. A target is considered ”pure” if it has only one non-zero
eigenvalue, while a ”random” target lacks any structured polarization and has equal eigenvalues.
If the eigenvalues are non-zero and unequal, the target is referred to as partially polarized.

One approach to analyzing the polarimetric behavior of such a target is the Cloude
decomposition, which was first proposed by Cloude. This method finds the largest eigenvalue,
which represents the dominant scattering mechanism, and creates a target vector with the square
root of that eigenvalue and the corresponding eigenvector. The target vector can then be used
to calculate the scattering matrix.

The H-Alpha and Cloude decomposition methods using an eigenvector or eigenvalues analysis
of the covariance C3 or coherency matrix T 3 are briefly explained in the next sections.

2.3.1. Cloude Decomposition: Cloude was the first to suggest an eigenvector-based
decomposition, as cited in the publications [13], [14]. He proposed an approach for determining
the primary scattering mechanism by locating the biggest eigenvalue (λ1). The resulting
coherency matrix T1 has a rank of one, has a corresponding scattering matrix S, and can
be written as the outer product of a particular target vector k1.

T 1 = λ1u1 · u∗ T
1 = k1 · k∗ T

1 (4)
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Following the Cloude decomposition, the target vector can be represented as follows:

k1 =
√

λ1u1 =
ejϕ√
2A0

 2A0

C + jD
H − jG

 = ejϕ

 √
2A0√

B0 +Be+j arctan(D/C)√
B0 −Be−j arctan(G/H)

 (5)

The polarimetric representation of the target vector kI includes three basic scattering
mechanisms, which are surface scattering, dihedral scattering, and volume scattering. These
mechanisms can be identified from the three components, or target generators, of the target
vector. The characteristics of these mechanisms are as follows:

• For surface scattering, A0 is much larger than B0 +B and B0 −B.

• In dihedral scattering, B0 +B is much larger than A0 and B0 −B.

• And for volume scattering, B0 −B is much greater than A0 and B0 +B.

The application of the target decomposition resulting from Cloude methods is shown in Fig.1.
Where the three components of the equivalent unique target T 1 are depicted as generators.

Figure 1: Cloude target decomposition, showcasing the reconstruction of the three generators

2.3.2. H-Alpha Decomposition: The H-Alpha decomposition is a method that leverages the
eigen-decomposition of the coherency matrix T3 [15]. The H-Alpha decomposition is based on
three main parameters:

• Alpha Angle (αi): This is an angle that represents the degree of polarization of the scattering
mechanism and can be used to distinguish between different types of scattering. The Alpha

angle is given by αi = arccos

(
λ3√

λ2
1+λ2

2+λ2
3

)
.

• Beta Angle (βi): This is the angle between the direction of maximum coherence and
the horizontal direction. It provides information about the orientation of the scattering
mechanism.

• Gamma Angle (γi): This is the phase difference between the (Shh+ Sυυ) and Shυ terms,
and provides information about the ellipticity of the scattering mechanism.

The Alpha angle can be used to distinguish between volume scattering and surface scattering
Fig. 2, while the Beta angle provides information about the orientation of the scattering
mechanism. The Gamma angle provides information about the ellipticity of the scattering
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mechanism. These parameters are used to distinguish between different scattering mechanisms
and to extract additional information about the target’s properties, For example:

• The polarimetric scattering entropy H is defined by:

H =
∑
i

Pilog3Pi (6)

Where

Pi =
λi∑
i λi

(7)

• Average alpha α angle defined by:

ᾱ =
∑
i

αiPi (8)

• Anisotropy A described as:

A =
λ2 − λ3

λ2 + λ3
(9)

The normalization of eigenvalues is represented by Pi, while H represents entropy that gauges
the randomness of the scattering medium.

Figure 2: Alpha Ranges Vs. Scattering Mechanisms.

From this analysis two main features (H , ᾱ) are enough to separate different types of
scattering behavior into nine zones corresponds to nine different scattering mechanisms as shown
in Fig. 3.

Figure 3: (H − ᾱ) decomposition plane.
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From the previous target decompositions analysis. In this paper we used a combination
of six different target decompositions such as (Huynen, Cloude, H-A Alpha, Freeman and
Durden, Yamaguchi and Van-Zyl) to extract the polarimetric feature components from the
fully polarimetric SAR data. Each of which has a specific criterion in identifying the scattering
process. These features are then used to traine out the SVM model, which will be discussed in
the next section.

3. Support Vector Machines (SVM)
SVM is a type of supervised learning method used for classification, regression and outlier
detection. It aims to map high-dimensional data to a lower dimensional space by finding a
linear hyperplane that maximizes the margin between classes. This is achieved through the
use of a kernel function that maps the data to a higher dimensional feature space where the
hyperplane is optimized. The optimization is performed by finding the hyperplane that has
maximum distance to all training examples from different classes in the feature space [16–20].
Support Vector Machines (SVMs) have several benefits that have contributed to their popularity.
Firstly, they are able to perform well even in situations where the number of dimensions is
large. Secondly, they can be adapted to a variety of situations through the use of different
kernel functions. Additionally, SVMs are designed to use memory efficiently. Despite these
advantages, it is important to note that if the number of features is significantly higher than the
number of samples, there is a risk of overfitting. Furthermore, SVMs do not output probability
estimates directly. SVMs can be applied to a range of machine learning tasks, including linear
classification, non-linear classification, and regression.

The optimal hyperplanes separation in SVM is performed by finding a decision function,
which is a function of x⃗, that separates two classes of data. By finding the function that satisfies
the condition yi · sgn(f(x⃗)) > 0 the objective of the binary classifier is satisfied. For linear
separable case, the decision function is defined as f(x⃗) = ⟨w⃗ · x⃗⟩+ b. The optimal hyperplanes
separation is obtained by maximizing the margin between the two classes and the rest of the
data satisfies the constraint yi · sgn(⟨w⃗ · x⃗i⟩+ b) ≥ 1.

Figure 4: Concept of optimal separating hyperplanes between two classes
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An illustration of geometry in two-dimensional feature space is shown in Fig.4. The separating
hyperplane isH, followed by h1 and h2, while the green and blue class points denote two different
sorts of samples. Support vectors are the sample data on h1 and h2, which satisfy ⟨w⃗ · x⃗⟩+ b = 1
or ⟨w⃗ · x⃗⟩+ b = −1. The distance between the separating hyperplane is called margin.

In PolSAR data classification, the samples are usually divided into more than two categories,
which requires a multi-classifier. There are two common methods for multi-classification: one-
vs-all and one-vs-one [16–19].

The one-vs-all method consists of using a binary classifier for each category, with the samples
of category i treated as positive samples and the samples of all other categories treated as
negative samples. In total, N binary classifiers are required for an N -category problem. This
method is often preferred due to its reduced runtime while still providing similar results to the
other method. The one-vs-one method, on the other hand, requires k = N(N − 1)/2 binary
classifiers, where each classifier compares two categories and the final category is determined by
a vote among the classifiers. This method provides a more comprehensive comparison of the
categories but requires a larger computational effort.

4. SVM-based Classification model Implementaion and Experimental results
The PolSAR image is a well-known scattering map that represents the distinct scattering
properties of various objects and targets based on different polarization combinations. To classify
the land cover of PolSAR images, a robust and efficient Support Vector Machine (SVM) model
is developed by utilizing the physical and structural properties of PolSAR data. The features
are extracted from the scattering mechanisms derived from multi-target decompositions, which
are then used to train the SVM models to perform the classification task.

The Flowchart of the SVM-based land cover classification model for PolSAR data is illustrated
in Fig.5. As shown the process of using SVM for land cover classification of PolSAR images can
be broken down into five key steps:

(1) Preprocessing: The first step involves extracting the scattering matrix and calculating the
coherency matrix T3, as well as cleaning the images through the application of filters to
remove speckle noise and improve image quality.

(2) Feature extraction: The images are then analyzed to extract relevant features that will be
used as input for the SVM classifier. These features include intensity, entropy, coherence,
and texture and are related to polarimetric target decomposition techniques which divide
the target into different components based on their scattering characteristics.

(3) Model training: The extracted features are then used to train the SVM classifier with a set
of training data. The model is optimized for performance on test data.

(4) Model validation: To ensure accuracy, the model is tested with a set of validation data that
is separate from the training set.

(5) Classification: Finally, the model is used for the actual classification process.
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Figure 5: Flowchart of the proposed SVM-based land cover classification model for PolSAR data
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4.1. Experimental results and the Performance Evaluation
Two real PolSAR datasets, the Flevoland province and San Francisco Bay, Fig.6, are used
for comparative study purposes. The Flevoland dataset is aimed at crop classification while
the San Francisco Bay dataset focuses on land cover classification. This allows for testing the
classification model on different applications and evaluating its robustness. These datasets are
widely used in PolSAR image analysis studies [4], and their corresponding ground truth maps
provide a solid foundation for quantitative assessment. The data was collected by NASA/JPL’s
AirSAR aircraft mission and Radar-Sat2 (RS2) satellite mission, respectively. The AirSAR
dataset was obtained in L-band and the RS2 dataset in C-band, both utilizing full polarimetric
imaging channels. Technical Specifications of the Datasets Used is illustrated in Table 1. The
use of different sources, AirSAR and RS2, with varying spatial and radiometric resolutions,
increases the likelihood that the results will be generalized to other Datasets.

Table 1: Technical specifications of datasets

Dataset Source Band Polarization Ground Resolution Classes Area Acquisition Year
Flevoland Province AirSAR L-band 4-channels 6.7 m (Range), 12.2 m (Azimuth) 14 1020 x 1024 pixels 1991
San Francisco Bay RADARSAT-2 C-band 4-channels 4.7 m (Range), 4.8 m (Azimuth) 6 3074 x 1944 pixels 2008

The Pauli-RGB color composite image of the Flevoland province and its ground-truth map
are depicted in Fig. 6 (a, b). As per the legend, the image displays various agricultural zones
with crops of diverse species, resulting in 14 different classes. Fig. 6 (c, d) shows the Pauli-RGB
color composite image of the San Francisco Bay area along with the accompanying optical image
obtained from Google Earth. This Dataset consists of key land cover types, including urban areas
with three different patterns and structures, water bodies, and forest or open regions. Urban
areas correspond to an even or double-bounce scattering, water bodies and asphalt (runways-
aprons) correspond to Bragg surface scattering, and forest or open areas correspond to canopy
or volume scattering.

(a) (b)

Figure 6: The dataset used for analysis. (a) Flevoland Pauli-RGB image; (b) FL related ground
truth map; (c) San Francisco Pauli-RGB image; (d) SF optical image
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(c) (d)

Figure 6. Continue.

The SVM-based classification model is applied to the Flevoland and San Francisco Bay
datasets as per the flowchart in Fig.5. The pre-processing phase, including the calculation
of the coherency matrix and the reduction of speckle noise using the Lee sigma filter, precedes
the selection of polarimetric features. The aim of this process is to evaluate the robustness and
accuracy of the SVM classifier in separating different classes.

For the AirSAR (Flevoland) dataset, the training and test data are selected in such a way as
to cover all 14 crop species present in the image, using the available ground truth information.
For the RADARSAT-2 (San Francisco) dataset, the selection focuses on the six main land cover
types recognized from the optical image obtained from Google Earth.

(a)

Figure 7: Example of confusion matrix. (a) CM computed over San Francisco dataset; (b) CM
computed over Flevoland dataset
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(b)

Figure 7. Continue.

The trained SVM classifier is then used to perform the label prediction task. The results of
the classification model are evaluated using cross-validation with the ground truth samples (Chi
et al., 2008 ). The confusion matrix, as shown in Fig.7, is used to assess the performance of
the classification model on test data where the true values are known. The evaluation metrics:
accuracy, sensitivity/recall, specificity, precision, F1-score, and Kappa coefficient, are calculated
from the confusion matrix to understand the performance and behavior of the classification
model under different decomposition types. A column summary, which is normalized by column,
presents the accuracy and in accuracy of categorization for each predicted class as a percentage
of the total number of observations for that particular class. A row summary, normalized by
row, displays the ratio of correctly and incorrectly categorized observations for each true class
out of the total number of observations for that class.

In order to visually evaluate the classification results produced by the SVM-based model for
different target decompositions. These results are visualized by overlaying the ground truth
information for both the Flevoland province and San Francisco Bay datasets. Figures (8, 9)
provides a clear representation of the performance of the SVM-based classification model for
different target decompositions.
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Figure 8: Classification model output over Flevoland dataset

As shown in Fig.8, a comparative analysis of the classification results of the SVM-based model
is performed at different target decompositions using the Flevoland dataset. The first and third
rows of the figure depict the model outputs obtained at each target decomposition, with the
(Cloude - Freeman and durden - HAAlpha) decompositions shown in the first row and (Huynen
- VanZyl - Yamaguchi) shown in the third row. The second and fourth rows, on the other hand,
present a comparison of the classification results overlaid the ground truth information.
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Figure 9: Classification model output over San-Francisco dataset
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Also a comparative analysis of the classification results of the SVM-based model is performed
at different target decompositions using the San Francisco dataset are shown in Fig.9.

This comparative analysis provides insights into the performance and accuracy of the SVM-
based model at different target decompositions. The evaluation of the relationship between
accuracy and target decomposition revealed that different decomposition techniques exhibit
varying ability in identifying specific class types.

Table 2: Evaluation parameters of SVM based classifier at each target decomposition type

SVMs Evaluation parameters of Flevoland Dataset
Decomposition type Original T3 Cloude Huynen HAAlpha Freeman Vanzyl Yamaguchi
Accuracy 84.18% 90.10% 89.37% 80.09% 69.55% 72.78% 78.59%
Sensitivity/Recall 83.00% 89.75% 86.18% 86.56% 75.56% 72.23% 78.43%
Specificity 98.77% 99.25% 99.20% 98.37% 97.61% 97.84% 98.29%
Precision 70.76% 77.45% 73.44% 74.24% 65.62% 63.54% 69.61%
F1 score 74.54% 82.17% 77.54% 78.77% 66.15% 64.54% 71.33%
Kappa Coefficient 81.57% 88.44% 87.56% 76.76% 65.13% 68.50% 75.10%

SVMs Evaluation parameters of San Francisco Dataset
Decomposition type Original T3 Cloude Huynen HAAlpha Freeman Vanzyl Yamaguchi
Accuracy 89.34% 89.83% 87.24% 89.48% 90.07% 89.53% 90.17%
Sensitivity/Recall 86.91% 87.99% 84.97% 87.55% 87.80% 87.43% 87.89%
Specificity 97.99% 98.09% 97.58% 98.02% 98.12% 98.03% 98.14%
Precision 81.31% 81.96% 78.84% 81.57% 82.50% 81.43% 82.71%
F1 score 83.21% 83.82% 80.71% 83.38% 84.27% 83.29% 84.42%
Kappa Coefficient 85.20% 85.94% 82.37% 85.45% 86.21% 85.51% 86.34%

The results in Table 2 provide a comparison of the performance of SVM classifier on
two datasets, after applying various target decomposition techniques. The same evaluation
parameters are used to assess the performance of the classifiers.

For the Flevoland dataset, the highest accuracy was 90.10% obtained using the Cloude
decomposition type, the highest sensitivity/recall was 89.75% obtained using the Cloude
decomposition type as well. Also the highest specificity was 99.25%, the highest precision
was 77.45% , the highest F1 score was 82.17%, and the highest Kappa coefficient was 88.44%
all obtained using the Cloude decomposition which is an Eigenvalues and Eigenvectors based
decomposition type.

For the San Francisco dataset, the highest accuracy was 90.17% obtained using the Yamaguchi
decomposition type, the highest sensitivity/recall was 87.89% obtained using the Yamaguchi
decomposition type as well. Also the highest specificity was 98.14%, the highest precision was
82.71% , the highest F1 score was 84.42%, and the highest Kappa coefficient was 86.34% all
obtained using the Yamaguchi decomposition which is model-based decomposition type.

These results indicates that the Cloude decomposition technique, which is based on eigenvalue
and eigenvector analysis, is the best option for analyzing crop types in the Flevoland dataset.
Conversely, the Yamaguchi decomposition technique, a model-based approach, performed better
when analyzing landcover in the San Francisco dataset. It is important to note that each
decomposition technique has its own underlying basis and the choice of which to use will depend
on the specific analysis being performed.

Fig.10, shows a bar-chart of the overall statistical results of the SVM-based classification
model, for all target decomposition methods utilized in terms of accuracy and kappa coefficient.
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(a) Statistical results on Flevoland dataset (b) Statistical results on San Francisco dataset

Figure 10: bar-chart of the overall statistical results in terms of accuracy and kappa coefficient.

From the figure, it appears that Cloude decomposition is well suited for the Flevoland dataset
due to its eigenvalue and eigenvector analysis, while the model-based approach of the Yamaguchi
decomposition made it the better choice for the landcover analysis in the San Francisco dataset.

5. Conclusion
In this paper, the implementation of a SVM-based classification model for PolSAR data was
developed. The model is designed to analyze the performance of different decomposition
techniques in the classification process. Two frequently used datasets are employed for the
comparative analysis, the AirSAR dataset over the Flevoland area and the Radarsat-2 dataset
over the San Francisco Bay. The results showed that the Cloude decomposition technique, which
is based on eigen value and eigen vector analysis, was more effective for crop type analysis using
the Flevoland dataset. On the other hand, the Yamaguchi decomposition technique, which is
model-based, performed better for landcover analysis using the San Francisco dataset. These
findings highlight the importance of considering the specific characteristics of both the dataset
and the analysis goals when choosing the appropriate decomposition technique.
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