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Abstract 

The basic aim for the current paper is to investigate the influence of addition of three 

different chemical elements including Tungsten, Aluminum and Cobalt to the Fe-

Composite Alloys prepared by the powder technology compared with a reference 

stainless steel alloy to be applied for the nuclear domain. The nuclear characterization 

for the selected Fe-alloys is performed against thermal neutrons add to gamma ray.  

Where, the incident gamma ray has been optimized theoretically against the energy 

range beginning from [200 to 3000] keV.  The study recommends sample S2 Fe-

composite alloy as a good thermal neutrons absorber material and suitable shield against 

gamma ray prepared by powder technology technique for the nuclear domain 

application. 
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1. Introduction 

The nuclear reactor industry and its various applications within its facilities are related to the 

materials used in building various power reactor regions [1-2], which are variety of special 

alloys that are used in constructing several parts for the nuclear reactor structure, including 

shielding and cladding of the reactor itself [3-7].  

Each part of the reactor is exposed to a different set of harsh reactions that depend on the nature 

of the work of this part within the reactor unit [8-9]. Scientists are interested in developing 

many different alloys that are characterized by improved mechanical and tribo-chemical 

properties to face physical and chemical corrosion in the critical reactor environment [10-12]. 

This is in addition to the intense exposure to high temperatures of ionizing and non-ionizing 

rays of high density and intensity, which clearly affects the efficiency of the alloys used in 

constructing the reactor parts, which may reduce the expected final output of the total energy 

produced by the reactor, which is the main goal of this structure [13]. 

Alloys manufactured using powder technologies have advanced specifications compared to 

other alloys prepared by traditional techniques like (ESR) [14-15].  This is due to its superior 

ability to withstand high temperature conditions, which is a major factor in nuclear reactors 

that must be taken into consideration. The various types of iron alloys are considered the most 

common types of alloys in the field of various heavy, medical and nuclear industries [16].Their 

manufacturing using powder technology is considered an advanced and unique technique 

compared to other old traditional methods due to its superior surface properties, which have 

been previously tested through many different microstructure measurements. This is in 

addition to its high impedance to chemical corrosion reactions [17]. Studying the surface 

properties of the alloys used in building reactors is very important to avoid cracking or voids 

resulting from the welding processes or other operating conditions [18-19]. Previously, several 

studies estimated the effect of adding many different elements to different types of iron alloys, 

as an example Ti, Nb, Ta, and N to reduce their grain growth and their high oxidation resistance 

[20]. 

The research methodology involved the estimation of the nuclear capabilities of recently 

developed Fe-Composite Alloys against neutrons and gamma radiation. Where, three different 

chemical elements including Tungsten, Aluminum and Coalt have been added as function for  

 

the Fe- based Alloys compared with a reference stainless steel grade for being fabricated for 

nuclear reactors applications.  
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2. Materials and Methods 

2.1. Samples preparation 

The current study includes six samples of different alloys having variable chemical 

compositions, five of which are prepared by the powder technology for the Fe- Composite 

Alloys, meanwhile the sixth sample SS6 is a standard stainless steel sample. The five samples 

were prepared using the powder technology method, so that the required Fe- Composite Alloy 

powder sample is prepared in the form of pure powder at a rate of up to 99.9%, then the 

required proportions of the alloy to be prepared are mixed and ground using a mechanical 

grinder type SPEX CERTI-PREP800-Series, and the grinding process continues for 22 hours. 

The rotation speed of the device used is fixed at 350 (rpm).  The Fe- Composite Alloy samples 

S1 to  S5 are mixed in the proportions required to be prepared as mentioned in Table 1, then 

compressed using a hydraulic  piston  at room temperature under pressure of up to 85 bar. After 

that, the powder green samples are sintered for a full hour inside a completely vacuum oven 

under the influence of Argon gas at fixed temperature of 1150 Celsius. As for sample SS6, it 

is the stainless steel grade sample which is purchased from the steel market and its chemical 

composition is identified using the X-ray fluorescence device [21- 22], as shown in the 

following table 1.   The stainless steel sample SS6 is cut into an equal size for the previous 

five Fe- Composite Alloy powder samples, so that the dimensions of all samples are the same, 

the thickness is one mm, and the diameter is one cm for all investigated Fe-Alloy samples. 

Then the density is calculated for all investigated samples using the Archimedes method within 

the reference toluene solution. 

Table 1. - Chemical concentration for selected Fe-Composite alloys compared with 

stainless steel alloy SS6 

 

Wt% S1 
(Fe) 

S2 
(Fe-5W) 

S3 
(Fe-5W-4Co-Al) 

S4 
(Fe-5W-2.5Co-

2.5Al) 

S5 

(Fe-5W-4 

Al -Co) 

SS6 

Stainless 

steel 

Fe 0.99 0.94 0.89 0.89 0.89 0.70 

W  ---- 0.05 0.05 0.05 0.05  --- 

Co -- -- 0.04 0.025 0.01  ---- 

Al  --- -- 0.01 0.025 0.04  ---- 

Si 0.01 0.01 0.01 0.01 0.01 0.0435 

Cr  ---- --- --- --- ----- 0.17 

Ni  -----  ----  ----  ---  ----- 0.086 

C  ----  -----  ----  ----  --- 0.0005 

Density 

g/cm3) ) 

7.691 7.924 7.81 7.58 7.364 7.095 
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2.2.Nuclear characterization for the investigated alloys  

The nuclear characterization for the selected Fe-Alloys is performed theoretically against 

thermal neutrons add to gamma ray [23-24]. The incident gamma ray has been examined 

theoretically against the incident energy range beginning from [200 to 3000] keV utilizing the 

Win X Com program. Where, the selected gamma ray energy lines represent the characteristic 

gamma radiation belonging to the natural radioactive sources 60Cobalt, 137Cesium and 208 

Bismuth.  To examine the capability for these Fe-Composite alloys to be applied for nuclear 

applications when compared with the stainless steel grade SS, several radiation shielding 

parameters are obtained for the investigated alloys against incident nuclear radiation based on 

Lambert law. These parameters include: gamma radiation mass & linear attenuation 

coefficients (MAC & LAC) mean free path (𝑀𝐹𝑃) , tenth-value layer thickness (𝑇𝑉𝐿), add to  

neutrons removal cross section Thermal ∑R (cm-1) that has been  determined  at the energy 

range (2–12) MeV. 

3- Results 

Figure 1 shows a histogram of the measured experimental density values for the selected 

prepared five Fe-Composite alloys by the powder technology making method compared with 

the other purchased reference stainless steel sample SS6.  

 

Figure1. Density (cm2/g) for selected Fe-Composite alloys compared with stainless steel SS6. 
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The nuclear capabilities for the recently investigated Fe-alloys against incident thermal 

neutrons and gamma radiation are revealed by the next table 2 and are represented by the 

following figures from 2 to 6. 

 

 

Table 2 .(A-E) Nuclear characteristic data for selected Fe-Composite alloys compared with stainless steel 

SS6 against incident gamma and thermal neutron radiation    

A- LAC (cm ) 

SS6 S5 S4 S3 S2 S1 

 

Gamma energy 

KeV)) 

0.017631 0.020873 0.021165 0.021768 0.02242 0.019013 283.53 

0.014094 0.015106 0.015314 0.015778 0.016281 0.015264 346.93 

0.012708 0.01315 0.013329 0.013747 0.014185 0.01379 661.657 

0.009431 0.009278 0.00941 0.009702 0.010016 0.010248 826.06 

0.008497 0.008306 0.008425 0.008686 0.008968 0.009236 1173.24 

0.007147 0.006947 0.007046 0.007265 0.007502 0.00777 1332.5 

0.006708 0.006513 0.006607 0.006811 0.007034 0.007291 2614.53 
  

B-HVL  (cm ) 

SS6 S5 S4 S3 S2 S1 Gamma energy 

KeV)) 

39.31412 33.20737 32.74942 31.84276 30.91596 36.45574 283.53 

49.17892 45.88553 45.26321 43.93023 42.57407 45.40978 346.93 

54.54262 52.71112 52.00268 50.4228 48.86621 50.26451 661.657 

73.50055 74.70754 73.6628 71.44487 69.20167 67.6369 826.06 

81.57606 83.44725 82.27172 79.80036 77.28991 75.04775 1173.24 

96.98008 99.7729 98.37324 95.40686 92.39447 89.20514 1332.5 

103.3339 106.4231 104.9124 101.7636 98.54576 95.06822 2614.53 

 

C-MFP  (cm-1 ) 

SS6 S5 S4 S3 S2 S1 Gamma energy 

KeV)) 

56.71829 47.9081 47.24743 45.93939 44.60231 52.59451 283.53 

70.95019 66.19883 65.301 63.37793 61.4214 65.51247 346.93 

78.68836 76.04607 75.02402 72.74472 70.49904 72.51635 661.657 

106.0389 107.7802 106.273 103.0732 99.83691 97.57943 826.06 

117.6894 120.3889 118.693 115.1276 111.5058 108.271 1173.24 

139.9127 143.9419 141.9226 137.643 133.297 128.6958 1332.5 

149.0793 153.5361 151.3566 146.8139 142.1715 137.1545 2614.53 

 

D-TVL  (cm ) 

SS6 S5 S4 S3 S2 S1 Gamma energy 

KeV)) 

130.5987 110.3125 108.7912 105.7794 102.7006 121.1033 283.53 

163.3688 152.4284 150.3611 145.9331 141.428 150.848 346.93 

181.1866 175.1025 172.7492 167.5009 162.33 166.9751 661.657 

244.1636 248.1731 244.7025 237.3347 229.883 224.6849 826.06 

270.9898 277.2058 273.3008 265.0911 256.7515 249.3032 1173.24 

322.1609 331.4384 326.7888 316.9347 306.9278 296.3331 1332.5 

343.2677 353.53 348.5114 338.0514 327.3619 315.8098 2614.53 
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Figure 2. Thermal ∑R (cm-1) neutrons removal cross section for selected Fe-Composite alloys compared 

with stainless steel SS6. 

 

Figure 3. Mass attenuation coefficient (cm2/g) for selected Fe-Composite alloys compared with stainless 

steel SS6. 
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Figure 4.  HVL (cm) for selected Fe-Composite alloys compared with stainless steel SS6 

 

Figure 5.  MFP (cm) for selected Fe-Composite alloys compared with stainless steel SS6 
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Figure 6.  TVL (cm) for selected Fe-Composite alloys when compared with stainless steel SS6 

4- Discussion 

 Figure 1 shows a histogram representing the experimental density values for all the selected 
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and the lowest density belongs to sample S5 among the entire five Fe-Composite alloys. 

Moving on to the stainless steel sample SS6, which contains more other chemicals added at 

the expense of Iron, namely Nickel, Chromium, and Cobalt, in addition to slight touches of 

Carbon, which is a characteristic of reinforced stainless steel alloys . SS6 density is 7.095 

(cm3/g) and it records the lowest density at the entire Fe-alloy group of six samples. 

The process of evaluating nuclear properties for the Fe-Composite alloys to be applied for the 

nuclear domain, begins by investigating Thermal ∑R-neutrons removal cross section (cm-1) 

for the selected Fe-Composite alloys compared with  the reference stainless steel SS6 as 

revealed in Figure 2.  Also, whole Thermal ∑R (cm-1) neutrons removal cross section values 

are mentioned in detail at Table (2-E). The highest Thermal ∑R (cm-1) neutrons removal cross 

section value in the five Fe-Composite alloys goes to sample S2 = 0.161898 cm-1, and the 

lowest value goes to sample S5 = 0.15349 cm-1. Mean while, the reference stainless steel 

sample S6 records the lowest Thermal ∑R = 0.1489 cm-1 at the whole studied six alloys. 

Where, stainless steel SS6 contains the light element Carbon, and is characterized by its 

distinguished ability to absorb neutrons and continues to be on the throne of alloys used for 

repelling thermal neutrons. 

Moving on to Gamma ray, that represents the most important radiation type in the field of the 

nuclear domain. The nuclear distinctive properties for the selected six Fe-alloys under study 

were evaluated by obtaining the following nuclear shielding coefficients (MAC, LAC, TVL, 

HVL and MFP) revealed by figures 2 to 6 and their corresponding values are mentioned in 

detail by table 2.    

Those shielding parameters are optimized at the gamma ray energy range (200 to 3000) keV, 

that represents the spectral lines of gamma rays emitted from the following natural radioactive 

sources, 137Cesium (283.53 and 661.657), 60Cobalt (346.93, 826.06, 1173.237, 1332.501) and 

208Bithmuth (2614.533). 

 

Through Figure 3 and  Table  2, it's obvious that the behavior of each of the LAC and MAC 

radiation shielding parameters decreases as function of  the increased  incident gamma ray  

starting from (200 to 3000) keV. Meanwhile, figures 4, 5 and 6 show that HVL, TVL and MFP 

shielding parameters increase as function of the incident gamma rays at the same mentioned 

energy range. 

As shown from table 2 and figures (3-6) Fe-Composite alloy sample S2 has the highest 

shielding against the lower gamma ray energy line 238.53 keV emitted from 137Cesium. Where, 
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the recorded HVL=30.91596 cm and TVL=102.7006 cm. Mean while the weakest  shielding 

for the investigated Six Fe-alloy samples goes to  the stainless steel sample SS6. Where, the 

recorded HVL= 39.314 cm and TVL=130.598 cm.  

Fe-Composite alloy sample S1 achieved the highest shielding against the higher gamma ray 

energy line 2614.53 keV emitted from 208 Bismuth. . Where, the recorded HVL=95.068 cm and 

TVL=315.80 cm. Mean while, the weakest shielding at the same energy range belongs to Fe-

Composite alloy sample S5 where the recorded HVL = 105.423 cm and TVL=315.89 cm.           

5. Conclusions 

The current research paper includes evaluating the impact of adding different concentrations 

of Tungsten, Aluminum and Cobalt elements to the Fe-based alloys utilizing the powder 

technology method compared with reference stainless steel alloy SS6 for the nuclear domain 

applications. Practical density measurements for all investigated alloys reveal that the final 

density value relies on the chemical composition for the elements making up the final Fe- 

alloy. The nuclear shielding properties of the samples against thermal neutron rays were 

evaluated. Sample S2 Fe-composite alloy achieved the highest absorption for thermal 

neutrons= 0.161898 cm-1  and  the stainless steel sample  S6  records the lowest thermal neutron 

cross section Thermal ∑R = 0.01489 cm-1  and continues to be on the throne of neutron-

resistant materials when compared with the other five Fe-composite alloys prepared by powder 

technology.  Going to gamma rays, it was found that the best shielding sample at the lower 

energy range is S2 and the best for the higher energy range is S1.  
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