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Abstract: This paper explores artificial intelligence's (AI) transformative potential in optimizing energy management within 

buildings, aligning with environmental objectives and sustainable practices. AI-based methodologies are pivotal in identifying 

inefficiencies, forecasting future energy requirements, and mitigating energy wastage. Adopting AI-driven energy management 

systems enhances efficiency, reduces costs, and contributes to a decreased building environmental footprint. Furthermore, AI 

empowers buildings to actively participate in energy markets by accurately predicting real-time supply and demand without 

operational disruption. 

The study delves into various AI applications, including energy prediction, optimization, fault detection and diagnosis (FDD), and 

real-world implementations. Notably, AI's role in fault detection and diagnostics is highlighted, emphasizing its substantial 

contribution to diagnostic precision. Specific numerical outcomes from reviewed studies underscore the tangible impact of AI 

techniques. Predictive control powered by AI achieved a remarkable 20% reduction in heating energy without compromising 

comfort. Additionally, smart home energy management algorithms demonstrated a notable 22.63% decrease in electricity costs and a 

22.77% reduction in the peak-to-average ratio. These concrete figures underscore the practical success of AI techniques in 

significantly reducing energy consumption.  

This review affirms the transformative potential of AI in building energy management. Including specific numerical values from 

empirical studies adds a quantitative dimension to the discussion, providing clear evidence of the positive impact of AI on energy 

efficiency. 
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1. Introduction 

Humans predominantly spend their time indoors, 

involved in diverse activities such as living, working, and 

pursuing various endeavors. These activities wield 

significant influence over the energy dynamics within 

buildings, contributing substantially to global energy 

consumption. Consequently, they become a pivotal focus in 

the pursuit of environmental sustainability. 

The judicious use of energy in buildings is imperative, 

and effective building energy management plays a crucial 

role in achieving this goal. This approach promotes 

environmental well-being by reducing the carbon footprint 

and controlling energy expenses. The principal goal is the 

reduction of energy consumption. Nonetheless, classical 

controllers face a formidable challenge in managing the 

vast volume of data associated with this objective. Artificial 

Intelligence (AI) handles such data, enhancing energy 

management, reducing waste, and mitigating environmental 

impact. 

The urgent concerns related to climate change and the 

depletion of finite energy resources underscore the 

necessity of swiftly transitioning towards sustainable 

energy practices. Building operations account for Roughly 

40% of the world's total energy consumption [1], primarily 

contributing to greenhouse gas emissions. This study 

initiates a detailed review of how AI techniques can 

revolutionize building energy management. 

2. Energy Management in Building 

The analysis of energy consumption in buildings reveals 

distinct categories, each playing a pivotal role in the overall 

energy profile. Notably, HVAC systems—comprising 

heating, ventilation, and air conditioning are prominent 

contributors to indoor comfort. 

In addition to HVAC systems, lighting systems, 

encompassing both natural and artificial sources, 

significantly impact energy consumption. Another critical 

dimension pertains to the electrical appliances and 

equipment, encompassing computers, refrigerators, and 

televisions, which significantly contribute to both base-load 

and peak-load energy demands. Simultaneously, 

noteworthy energy consumption arises from hot water 

systems designed for domestic use, specifically showers 

and sinks, predominantly attributable to water heating 

processes. 

Furthermore, the building envelope, including insulation 

and windows, shapes thermal performance and overall 

energy consumption. Specific building functions, such as 

elevators and escalators, present distinctive and diverse 
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energy requirements, contributing further to the complexity 

of energy dynamics in buildings. 

A comprehensive understanding of the breakdown of 

energy usage in buildings is imperative for devising and 

implementing effective energy-saving strategies, fostering a 

sustainable and energy-efficient built environment. 

Building Energy Management Systems (BEMS) are 

systematically categorized into two fundamental methods: 

passive and active. Passive methodologies aim to indirectly 

influence and reduce energy consumption by implementing 

foresighted strategies and enhancing user awareness of 

energy usage. In contrast, active methodologies combine 

actuators and sensors seamlessly integrated into the 

building infrastructure, specifically focusing on directly 

mitigating energy wastage by regulating smart building 

actuators and devices. 

Active BEMS is further nuanced by delineating four key 

management strategies: Demand-Side Management, 

Optimization, Model Predictive Control, and Fault 

Detection and Diagnosis, as explained in Error! Reference 

source not found. from [2]. Demand-side management is 

dedicated to optimizing energy load and demand, while 

optimization revolves around the meticulous calibration of 

building systems to attain peak efficiency. Continuous 

monitoring and real-time diagnosis of faults ensure an 

optimal equilibrium, ensuring both performance excellence 

and heightened energy efficiency. 

These active BEMS management strategies function 

cohesively, synergizing to guarantee efficient energy 

utilization and a marked reduction in energy wastage, 

ultimately contributing to the overarching sustainability 

enhancement of buildings. 

 

 
Figure 1: BEMS management strategies. 

 

These active BEMS management strategies function 

cohesively, synergizing to guarantee efficient energy 

utilization and a marked reduction in energy wastage, 

ultimately contributing to the overarching sustainability 

enhancement of buildings. 

2.1 Sustainable Energy Management 

Buildings need sustainable energy management to 

reduce energy use, expenses, and environmental effects. 

This goal can be achieved using renewable energy sources, 

energy efficient building designs, and AI in building 

management systems. AI can find inefficiencies, estimate 

energy needs, and reduce energy waste. AI-driven energy 

management systems can save buildings money by 

monitoring energy usage. Commercial buildings can 

participate in energy markets through advanced building 

energy management systems without disrupting operations. 

Implementing sustainable energy management methods and 

incorporating AI technology is expensive and requires 

substantial data collecting and analysis, but the long-term 

benefits make it worth it [3]. Recent research has identified 

challenges and prospects in developing autonomous cycles 

for data analysis tasks and multi-agent systems to enhance 

AI-driven energy management. 

Sustainable building management is a holistic approach 

that aims to minimize the environmental impact of 

buildings while optimizing their performance and 

occupants' well-being. It also involves a range of strategies 

and practices, including energy-efficient design, using 

renewable energy sources, waste reduction and recycling, 

water conservation, and implementing intelligent building 

technologies. Sustainable building management 

encompasses the entire life cycle of a structure, spanning 

from its construction and operational phases to eventual 

decommissioning and recycling. Furthermore, sustainable 

building management underscores key factors such as 

energy efficiency, indoor air quality, water conservation, 

waste management, the utilization of green materials, 

integration of intelligent building technologies, and active 

occupant participation. Additionally, it integrates renewable 

energy sources, water-efficient fixtures, and advanced air 

filtration systems. 

Waste management reduces construction waste and 

promotes recycling. Green materials with recycled content 

and low volatile organic compounds reduce environmental 

impact. Intelligent building technologies optimize energy 

use and enhance comfort. Buildings actively involve 

occupants in energy-saving practices and seek certifications 

like LEED to validate their commitment to sustainability. 

This approach contributes to a more sustainable future. 

The transition toward urban low-carbon practices 

necessitates adopting sustainable building energy 

management. Given that buildings contribute significantly 

to global energy consumption, prioritizing energy efficiency 

becomes imperative in attaining environmental objectives. 

Contemporary perspectives on energy efficiency encompass 

energy conservation, alternative energy generation, and 

implementing environmentally conscious 'green' 

construction practices [4]. Energy Management Systems 

(EMS) play a vital role in this paradigm by scheduling 

smart appliances, ventilation units, heating systems, and 

local generation devices to optimize building energy usage 

[5]. These frameworks also consider factors such as 

occupancy and weather, seamlessly integrating local 

generation and storage technologies into building energy 
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management [6]. Implementing sustainable energy 

management practices in buildings reduces greenhouse gas 

emissions and energy consumption and contributes to 

developing a smart and sustainable electric system. 

Building management should use AI for numerous 

reasons. First, AI technologies can improve building 

operation and management, reducing energy usage and 

improving automation, control, and reliability [7]–[9]. 

Second, AI can improve environmental controls and 

building performance to improve occupant safety and 

comfort [8],[10]. AI-based HVAC energy optimization can 

also maintain thermal comfort while reducing energy use. 

AI can also enable smart buildings and intelligent 

environmental controls, increasing environmental efficiency 

and human health by improving indoor environmental 

quality. AI in building management could transform energy 

efficiency, comfort, and sustainability. 

2.2 Artificial Intelligence in Building Energy 

Management  

The fundamentals of AI in buildings refer to AI 

technology's principles, techniques, and applications in 

building systems and energy management. It involves 

leveraging AI algorithms, machine learning models, data 

analytics, and intelligent control systems to enhance 

buildings' energy efficiency, comfort, and sustainability. 

The fundamentals encompass various aspects, including: 

Data Acquisition and Processing: Collecting data from 

sensors, meters, and other sources within the building to 

capture information about energy consumption, 

environmental conditions, occupant behavior, and system 

performance, preprocessing and cleansing the data to ensure 

its quality and reliability. 

Machine Learning and Predictive Modeling: Developing 

AI models to learn patterns and make predictions based on 

historical and real-time data. These models include 

regression, classification, clustering, and time series 

analysis techniques. AI models can be trained to predict 

energy demand, occupancy patterns, equipment failure, and 

other relevant parameters. 

Control and Optimization: Applying AI algorithms to 

optimize building systems and control strategies in real-

time. This application uses intelligent algorithms to adjust 

heating, cooling, lighting, and ventilation systems based on 

weather conditions, occupancy, energy prices, and other 

factors. The optimization techniques can maximize energy 

efficiency, comfort, and cost savings. 

Anomaly Detection and Fault Diagnosis: Using AI 

algorithms to detect abnormal energy usage patterns or 

building malfunctions. Machine learning models can 

identify deviations from normal behavior and raise alerts 

for potential faults or inefficiencies, enabling proactive 

maintenance and timely interventions. 

Natural Language Processing and Human-Computer 

Interaction: Integrating AI technologies that enable human 

interaction with building systems through voice commands, 

natural language processing, and chatbots. This integration 

enhances user experience, facilitates energy management 

tasks, and allows occupants to provide feedback or receive 

information about energy usage and sustainability practices. 

Integration with IoT and Building Automation: 

Leveraging AI to integrate with Internet of Things (IoT) 

devices and building automation systems. This leveraging 

enables seamless communication and coordination between 

various components, such as sensors, actuators, energy 

meters, and control systems, creating an intelligent and 

interconnected building ecosystem. 

2.2.1 AI-Based Energy Prediction Models 

Several research studies have investigated using AI 

models for accurate building energy demand prediction. 

[11] examined nine machine learning classification-based 

methods for assessing energy performance in residential 

structures during the design stage.  

[12] investigate the impact of building types on the 

performance of long/short-term memory networks (LSTMs) 

in predicting energy consumption. Focusing on Student 

Hall buildings, and Classroom, Library, the study utilizes 

three years of hourly energy usage data and corresponding 

weather data from the University of Manchester. The results 

reveal that the LSTMs model excels in predicting buildings 

with clear energy usage patterns, particularly the classroom 

building. However, its accuracy diminishes for buildings 

without distinct patterns, like libraries and dormitories. The 

study emphasizes the importance of longer training datasets 

for improved prediction results but notes the associated 

increase in training time. 

[13] explore an advanced approach for building energy 

consumption prediction using a detailed dataset and 

dynamic simulation modeling through the EnergyPlus 

program. The model integrates building HVAC systems, 

zone division, and envelope performance, utilizing both 

actual weather data and generated occupancy data. 

Occupancy, lighting, and equipment schedules are 

generated at 5-minute intervals, thereby enhancing accuracy 

when compared to conventional office occupant profiles. 

Validation using IoT information from a testbed building 

demonstrates improved simulation results. A sequence-to-

sequence (seq2seq) model with long short-term memory 

(LSTM) cells is constructed for demand prediction, yielding 

an RMSE of 4.48% and a weighted average percentage 

error of 3.07%. The model's learning performance is further 

validated through climate scenario variations. The study 

identifies occupancy and solar radiation as the most 

influential factors in energy demand prediction. 

New elements, including dropout mechanisms and 

schedule sampling, enhance the seq2seq model's accuracy. 

The research underscores the potential of synthesized data 

for accurate predictions. It discusses the significance of the 

study in the context of emerging technologies such as 

digital twins and the growing importance of data 

generation. Future considerations include the analysis of 

resident behavior patterns, evaluation across different 

building types, and expansion beyond a single building 

target. 
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Furthermore, the research identifies varying impacts of 

weather conditions on energy consumption across different 

building types. The LSTMs model accurately captures 

sudden changes in consumption, such as building 

shutdowns during the Christmas holidays, but struggles to 

provide satisfactory predictions for buildings lacking 

obvious energy consumption patterns. Despite these 

limitations, the LSTM model reasonably forecasts energy 

consumption trends in libraries and student halls. The 

nuanced findings contribute valuable insights into 

optimizing LSTM models for building energy consumption 

prediction, considering building types and training data 

lengths. 

[14] explore machine learning techniques for forecasting 

building energy consumption, with a specific focus on the 

Clarendon building at Teesside University. This 

investigation will involve the application of artificial neural 

networks (ANNs), support vector regression (SVR), and 

polynomial regression (PR) as predictive modeling tools, 

the study finds that SVR consistently outperforms the other 

models, particularly in monthly predictions with 

weekday/weekend segmentation. Data segmentation, 

specifically based on weekdays and weekends, significantly 

improves prediction accuracy, resulting in a noteworthy 

reduction in the mean absolute percentage error (MAPE), 

ranging from 5.27% to 12.03% for PR, SVR, and ANNs. 

The research emphasizes the impact of seasonality on 

prediction accuracy, with summer forecasts exhibiting the 

highest precision. The study's practical recommendations 

include using SVR for smaller datasets and shorter forecast 

ranges, employing ANNs for larger datasets and longer 

forecast ranges, and implementing data segmentation to 

account for regular variations in building energy usage, 

providing valuable insights for energy management 

practices 

Neural networks, regression algorithms, and ensemble 

methods have undergone evaluation for the prediction of 

building energy consumption. The study conducted a 

comparative analysis of various data-driven techniques, 

including Gaussian Process Regression (GPR), Multivariate 

Linear Regression (MLR), Support Vector Machine (SVM), 

and Artificial Neural Networks (ANN) as well as ensemble 

methods such as Exhaustive Regression Trees (CHAID), 

General Regression Trees (CART), and Multivariant 

Adaptive Regression Splines (MARS),  Support Regression 

Trees (SRT),[15],[16]. The performance of these methods 

was assessed using evaluation metrics such as Root Mean 

Square Error (RMSE), Mean Absolute Percentage Error 

(MAPE), Mean Bias Error (MBE), Coefficient of 

Determination (R2) , and Coefficient of Variance of the 

Root Mean Square Error (CV RMSE),[17]–[19] The results 

showed that ANN, SVM, and MLR methods generally 

performed better in the case scenarios studied. At the same 

time, GPR had the fastest computation time but lower 

accuracy. Ensemble methods like CART, CHAID, SRT, 

and MARS effectively predicted energy consumption. 

These findings can guide the selection of appropriate 

algorithms for building energy prediction based on the 

dataset size and desired prediction accuracy. 

2.3 AI-Based Energy Optimization and Control 

AI techniques have been widely used for optimizing and 

controlling building systems. These techniques aim to 

balance energy consumption and maintain comfortable 

conditions in buildings. Different AI methodologies, such 

as expert systems, genetic algorithms, fuzzy logic, machine 

learning, natural language processing , machine vision, 

neural networks, and pattern recognition, have been 

employed in this area of research. AI-based control systems 

have demonstrated encouraging outcomesin improving 

buildings' energy efficiency and comfort levels [20]. 

However, due to the necessity for a massive amount of 

high-quality, real-world data, the performance of AI-based 

control is still insufficient [7]. The application of AI 

technology in building control is an ongoing area of 

research, offering the prospect of notable improvements in 

comfort and substantial energy savings. 

Reinforcement Learning (RL) is a widely adopted 

machine learning algorithm employed extensively for 

optimizing energy consumption and controlling systems 

within buildings. This methodology seamlessly incorporates 

progress in sensing technology, communication systems, 

and advanced control algorithms. Its primary objective is 

maximizing energy efficiency by iteratively learning and 

adapting strategies, thus contributing significantly to 

building energy optimization [21]. RL has been 

successfully applied in various BEMS, resulting in energy 

savings of over 20% for complex problems [22]. In addition 

to RL, other data-driven approaches, like genetic 

algorithms, and optimization techniques, are also used in 

power and energy systems for control and optimization 

problems [23]. These methods leverage advanced sensor 

and smart meter data to address the complexities and 

uncertainties in modern power systems [24]. RL based 

controllers have been proposed for energy-efficient climate 

control in commercial buildings, showing significant energy 

savings compared to baseline rule-based controllers [25]. 

The application of RL algorithms in managing power power 

management for grid-tied microgrids has been investigated, 

highlighting the need for improving multi-agent RL 

methods and addressing challenges in power dispatch 

among interconnected microgrids. 

3. Key AI Techniques for Energy Optimization 

The fundamentals of AI in buildings aim to transform 

traditional energy management approaches by harnessing 

the power of data, machine learning, and intelligent 

algorithms. Using AI techniques, as shown in Error! 

Reference source not found., buildings can optimize 

energy consumption, reduce costs, improve occupant 

comfort, and contribute to fostering a more sustainable and 

efficient built environment. 

3.1 Artificial Neural Networks 

In  Error! Reference source not found., the 

architecture of the artificial neural network comprises input, 

hidden, and output layers interconnected by neurons, acting 

as processing units. The learning algorithm within the 

neural network iteratively updates the synaptic weights that 



     Vol.53, No2 April 2024, pp:26-46         Ahmed M. Hanafi et al   Engineering Research Journal (ERJ) 

 

 
 
30 
 

connect neurons across various layers, establishing and 

refining the input/output relationship. The aggregation of 

weighted inputs is followed by analysis and processing 

through the activation function to produce the final output. 

The ongoing adjustment of weights and biases is geared 

towards minimizing the difference between the network's 

generated output and the desired output. This iterative 

process enhances the network's ability to accurately model 

complex relationships and improve performance over time.  
Figure 2:principal ANN framework ,[26]. 

 

Table 1: The key AI techniques used in buildings. 

 

AI Technique Description 
Application in 

Buildings 
Advantages Limitations 

Artificial Neural 

Networks (ANN) 

Computational models inspired 

by the neural network structure of 

the human brain are employed for 

tasks such as prediction, fault 

detection, and optimization, 

utilizing learning from data.. 

Energy demand 

prediction, fault 

detection, and 

system 

optimization. 

Good generalization, 

handling complex 

relationships, and 

adaptability to new 

data. 

Requires significant 

training data may be 

computationally intensive. 

Genetic 

Algorithms (GA) 

Optimization algorithms rooted in 

natural selection and genetics, 

which actively seek optimal 

solutions to intricate problems. 

Parameter 

optimization, 

control strategy 

optimization. 

Suitable for complex 

and non-linear 

optimization problems, 

it can handle multiple 

objectives. 

The computational 

complexity may necessitate 

a considerable number of 

iterations for convergence 

to an optimal solution. 

Fuzzy Logic 

Mathematical framework dealing 

with uncertainty and imprecision. 

It uses linguistic variables for 

decision-making and control. 

HVAC control and 

decision-making 

based on expert 

knowledge. 

Ability to handle 

imprecise and uncertain 

information, and 

flexible decision-

making. 

Difficulty in defining 

membership functions, can 

be sensitive to parameter 

tuning. 

Reinforcement 

Learning (RL) 

A learning methodology wherein 

an agent gains knowledge through 

iterative trial-and-error 

interactions with its environment. 

Adaptive HVAC 

control, demand 

response 

optimization. 

Can learn optimal 

control policies in 

dynamic environments 

and adaptability to 

changing conditions. 

Requires extensive 

exploration and learning 

time, sensitivity to reward 

shaping, and exploration-

exploitation trade-offs. 

Data Analytics 

and Machine 

Learning 

Various machine learning 

algorithms are used for energy 

consumption prediction, anomaly 

detection, and optimization. 

Energy 

consumption 

prediction, anomaly 

detection, and 

optimization tasks. 

Ability to uncover 

patterns and 

relationships in data, 

flexibility in handling 

various data types. 

It requires data 

preprocessing and feature 

engineering and may suffer 

from overfitting if not 

properly regularised or 

validated. 

Natural 

Language 

Processing 

(NLP) 

Techniques enabling 

communication between humans 

and building systems using 

natural language. 

Voice-activated 

control, chatbot 

interfaces, 

intelligent 

assistants. 

Improved user 

interaction and 

convenience enable 

personalized control. 

Reliance on accurate 

speech recognition, 

challenges in understanding 

context, and complex 

queries. 

Internet of 

Things (IoT) 

Integration 

Integrating sensors, devices, and 

systems in buildings enables real-

time data collection, analysis, and 

control. 

Real-time 

monitoring, 

adaptive control, 

and energy 

optimization. 

Enhanced monitoring 

capabilities, 

decentralized control, 

and decision-making. 

Security and privacy 

concerns, interoperability 

challenges, data overload, 

and network congestion. 

 

It describes how a neuron can be expressed 

mathematically simply.in Equation (1),[26]. It can determine 

a neuron's output as 

 

(1) 

Ai is the network's output, Wij is the connection weight 

between the Jth and Ith layer neurons, and aj is the neuron's 

input. The basic building block of a neural network may 

contain a single output and a signal or many inputs. The 

neural network has two fundamental processes: training and 

testing. 

Neurons within a neural network undergo training to 

learn specific input patterns that yield the desired output. 

This training phase constitutes the network's learning 

process. During testing, the network produces the output if it 

accurately recognizes the taught input pattern. In cases 

where the network's output deviates, it undergoes additional 

training to rectify errors. This training process persists until a 

predefined learning threshold is achieved. 
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This segment has encompassed the definition and various 

types of ANNs, performance metrics employed for accuracy 

assessment, prominent learning algorithms, transfer 

functions within the networks, and diverse normalization 

strategies. Drawing inspiration from the brain's fundamental 

structure, ANN models involve numerous nodes working 

concurrently, communicating through interconnecting 

synapses [27],[28]. 

 Artificial Neural Networks (ANNs) find diverse 

applications, spanning pattern recognition, function 

approximation, optimization, simulation, prediction, 

automation, and numerous other fields [29]. In the context of 

Building Energy Analysis (BEA), several ANNs are 

commonly referenced in the literature, including: 

 Auto Regressive with Exogenous Inputs Neural 

Network (ARXNN) [30] 

 Recurrent Neural Network (RNN) [31]  

 Radial Basis Function Neural Network (RBFNN) [32]  

 Group Method of Data Handling Neural Network 

(GMDHNN) [33]  

 General Regression Neural Network (GRNN) ) [34] 

 Multi-Layer Feed-Forward Neural Network (MLFFNN) 

[35]  

These networks demonstrate versatility in addressing 

various challenges and tasks within the realm of BEA. 

[36] conducted a study contrasting machine learning-

based models with conventional approaches , including time 

series and regression, to estimate the power usage of 

buildings. The study emphasized the improved performance 

brought on by using machine learning-based models. 

Notably, conventional techniques were deemed less flexible 

for emergent non-linear patterns. The performance of 

conventional models may be significantly impacted by such 

non-linear patterns in weather, interior conditions, and 

occupancy data, leading to subpar overall estimates. 

Similarly, Zhao et al. [37],  investigated standard 

methods for predicting and forecasting building energy 

consumption. The study specifically compared models 

grounded in statistics, physics, and machine learning. 

Notably, machine learning-based models exhibited superior 

levels of precision and adaptability when contrasted with 

statistical models.Although the preceding study was 

produced prior to developments in deep learning, Support 

Vector Machines (SVMs) were developed with purportedly 

superior performance compared to ANN models. Future 

research areas for data-driven models include application-

specific parameter optimization. 

[38] explored the application of AI models and ensemble 

models for predicting and forecasting the energy 

consumption of buildings. The study commenced with an 

overview of the utilization of AI in energy prediction, noting 

a predominant use of hourly data for the entire building load 

in AI-based articles. The research then delved into the 

current application of ensemble approaches in building 

energy prediction, revealing widespread use across various 

domains and superior performance compared to single 

prediction models. However, a gap was identified in the 

scarcity of articles utilizing ensemble models for short-term 

energy estimation in buildings. 

Similarly, [39] investigated the use of AI models for 

energy forecasting and prediction in buildings. The study 

revealed that most articles constructed AI models utilizing 

hourly data for the total energy consumption of buildings, 

employing measurement data in case studies. Notably, 

artificial neural network (ANN) models were implemented at 

a ratio of approximately 2:1 compared to support vector 

machine (SVM) learning techniques. 

[40] provided a summary of data-driven methods for 

predicting and classifying buildings. The authors emphasized 

the diverse practical applications of ANN models, including 

forecasting energy loads, assessing the current energy 

performance of buildings, and evaluating potential energy 

savings through retrofit solutions. Their investigation 

highlighted the utilization of ANN prediction models in a 

commercial building with a short-term horizon and a focus 

on overall energy load.  

The collective performance range of Artificial Neural 

Network (ANN) models in predicting energy consumption 

for a single time step stands at an impressive 0.001% to 

36.5% error (MAPE). Conversely, multi-step forecasting 

reveals elevated error rates from 1.04% to 42.31% (MAPE). 

When exploring a 24-hour forecast horizon using hourly 

data, the performance narrows from 1.04% to 11.92% 

(MAPE). In contrast, adopting sub-hourly data widens the 

performance spectrum from 2.59% to 42.31% (MAPE). This 

result indicates that elongating the forecasting horizon 

adversely affects performance, akin to the deleterious impact 

observed when decreasing the temporal granularity of data 

over an equivalent forecasting horizon. 

3.1.1 Limited Use of ANN Forecasting Models 

Artificial Neural Networks (ANNs) offer various 

advantages but have limitations [41]. First, ANNs exhibit 

optimal performance within their training range, rendering 

them less effective when applied to data beyond their 

training scope. Continual retraining, such as cumulative or 

sliding window retraining, can mitigate this issue by 

updating models with recent data [42],[43]. Sliding window 

retraining is particularly useful as it avoids storing outdated 

data. However, it necessitates ongoing retraining. Overfitting 

is another limitation, occurring when models capture noise in 

training data, reducing their generality in long-term 

forecasts. To address this, ANNs can be trained with ample 

data relative to input variables [41], utilize multi-task 

learning [42],[43], implement early stopping [41], or employ 

ensemble forecasting to combine multiple models. 

Another limitation is that ANNs are black-box models 

[64], lacking an understanding of underlying parameters. 

Hybrid grey-box models integrate ANNs with physics-based 

equations, capitalizing on the strengths of each approach 

while mitigating their respective limitations. These hybrid 

models can effectively forecast various aspects of a 

building's behavior, reducing development time. 

Selecting hyperparameters during model development is 

a critical challenge [40]. Inadequate hyperparameter 

selection can lead to poor performance and increased 

processing time.  
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3.2 Genetic Algorithms 

Introduced by Holland [44], the genetic algorithm (GA) 

is a metaheuristic technique inspired by natural selection and 

genetics. GA addresses complex problems through the 

utilization of nature-inspired operators, including mutation, 

crossover, and selection. The search process commences 

with a randomly generated set of solutions, termed the 

population, with each solution referred to as a chromosome. 

An individual solution is characterized by a set of parameters 

known as genes. 

Through the application of crossover and mutation, the 

fittest individuals, as evaluated by the fitness function, are 

selected for subsequent iterations. Crossover involves the 

creation of new solutions, or children, by modifying portions 

of parental genes (chromosomes). Mutation, a crucial 

component of GA, explores the search space needed to 

converge the optimization problem. The mutation operator 

entails the probability that any random bit in a genetic 

progeny will be inverted from its original state, leading to 

the formation of a new generation. 

With a predetermined population size, the least fit 

individuals are eliminated, making way for new offspring to 

enter the population. The algorithm continues iterations until 

the convergence criterion is met, at which point it terminates. 

This iterative process allows genetic algorithms to efficiently 

explore solution spaces, providing an effective approach for 

optimization problems. 

[45] examine the use of parallelization and distributed 

computing to lower the reaction time of Genetic Algorithms. 

Those algorithms were used for planning energy resource 

scheduling problems in community energy systems. The 

results show that parallelization significantly impacts the 

response time, leading to a significant drop in the execution 

time of the algorithms. 

[46] explore using genetic algorithms and Fanger's 

comfort method in optimizing HVAC systems. It uses 

SCADA system sensors to calculate heat transmission 

coefficients, ensuring optimal initial values for the system. 

The real-time model predicts and controls the internal 

building environment, ensuring power consumption remains 

below peak values while maintaining user comfort. 

Integrating SCADA systems with intelligent building 

management systems significantly impacts power 

consumption and comfort levels. 

[47] The study explores the application of a genetic 

algorithm to improve the energy efficiency of an HVAC 

system in a building. It reveals that using multiple control 

variables leads to significantly higher energy savings than 

relying solely on one type. The selection and location of 

control variables influence the effectiveness of the 

optimization process and energy-saving outcomes. 

[48] focus on the substantial energy demand stemming 

from HVAC systems in buildings. The study introduces a 

multi-objective optimization (MOO) framework using GA, 

considering competing objectives related to energy 

consumption, thermal comfort, and productivity. Through 

building performance simulation on prototype office 

buildings across various climate zones, the study identifies 

optimal HVAC setpoint settings. These settings, capable of 

reducing energy consumption by up to 25.8%, are shown to 

maintain acceptable comfort and productivity levels. The 

diverse Pareto fronts obtained underscore the necessity for 

climate-sensitive HVAC operation strategies. However, the 

study acknowledges a limitation in the simplistic 

representation of productivity and plans to validate findings 

with data from larger buildings. The research contributes to 

the understanding of trade-offs in building performance 

metrics. It emphasizes the potential for weather-dependent 

HVAC strategies to improve energy consumption, thermal 

comfort, and productivity. 

[49] introduce a methodology promoting energy 

efficiency in buildings using Genetic Algorithms (GAs) to 

optimize household appliance selection. The methodology 

aims to reduce energy consumption and minimize CO2 

emissions, enabling consumers to save on initial investment 

and energy consumption. The research compares GAs with 

the Simplex method and explores the impact of problem 

formulation on GAs results. The approach considers vital 

decision variables and cost functions. Evaluating these 

options incorporates factors such as the number of occupants 

and the combined type, emphasizing a comprehensive 

approach to enhancing energy efficiency and environmental 

sustainability in building choices. 

In the work presented by [50], a model for enhancing 

building energy efficiency with three primary objectives—

energy consumption, natural lighting, and natural 

ventilation—is introduced. The researchers employed a 

genetic algorithm to optimize building parameters, focusing 

on energy conservation and improved comfort. Following 

10,000 iterations, the algorithm successfully converged to a 

Pareto optimal solution set within a duration of 61024 

seconds. The selected configuration exhibited a building 

energy consumption of 5580 W/m
2
K, a Pressure Difference 

Pascal Hours (PDPH) of 6453 hours, and a lighting 

coefficient of 5.56%. Notably, this optimized solution 

resulted in a 3.40% reduction in energy consumption, an 

11.65% increase in lighting, and a 9.54% improvement in 

PDPH. 

3.3 Fuzzy Logic 

Fuzzy logic, introduced by L. Zadeh in 1960, represents a 

multi-valued logic extension of classical Boolean logic. Its 

primary application lies in the description of processes and 

events where precise mathematical models are either absent or 

impractical to define based on survey data. Particularly 

advantageous in situations where systems can be effectively 

elucidated using natural language, fuzzy logic facilitates 

automatic decision-making processes reminiscent of human 

activities. Additionally, it contributes to the construction of a 

rule-based database that often aligns with the description of the 

underlying phenomenon. Fuzzy inference, a key aspect of fuzzy 

logic, finds application in the development of expert systems. 

The practical implementation of fuzzy logic principles 

involves the construction of fuzzy logic controllers and 

decision-making blocks, encompassing three fundamental steps, 

as illustrated in  Error! Reference source not found.. This 

approach provides a flexible and intuitive framework for 

addressing complex and uncertain systems, contributing to 

improved decision-making processes in various applications. 
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Figure 3: Fuzzy control system diagram [51] 

 

Fuzzification transforms numerical input data into fuzzy 

values, accommodating the inherent imprecision and 

uncertainty characterizing real-world information. In the 

inferencing phase, a rule database is leveraged to model 

intricate relationships akin to natural language "If-Then" 

statements. This strategic process facilitates the practical 

implementation of fuzzy logic in decision-making. 

Regarding defuzzification, this critical step yields precise 

and actionable output control signals by reversing the 

fuzzification process. Various techniques can be applied in 

defuzzification, including the maximum, center of gravity, or 

center of area methods. Collectively, these meticulously 

orchestrated steps enhance the efficacy of fuzzy logic 

systems in adeptly managing the complexities and 

uncertainties inherent in decision-making processes. 

[52] introduced an automated EMS employing fuzzy 

logic and a neural network-based decision table. The system, 

guided by the price signal, aims to strategically shift the peak 

energy demand of a building beyond the overall system load 

peak. The authors demonstrated the effectiveness of a 

simulation model of the EMS in selecting the most energy-

efficient scenario. The scenarios encompassed control over 

household appliances (water heater, dishwasher, freezer, 

washer), lighting, energy transfer from the electrical grid to 

battery storage, and the consumption of energy from 

Photovoltaic (PV) sources. The article reports a successful 

reduction in overall daily active energy consumption. The 

proposed system was implemented in C# Code and 

evaluated through simulations. 

[53] suggested a house EMS (HEMS) model based on a 

multi-agent system and fundamental fuzzy logic concepts 

that can cut electric energy usage by regulating the 

environmental conditions within a building while preserving 

the minimal comfort levels of its residents. 

[54] present a methodology that captures householders' 

preferences, allowing for the prioritization of appliance 

usage, particularly in the context of load curtailment within 

demand response programs. The complexity of users' 

consumption behavior, influenced by economic, social, 

cultural, and environmental factors, requires a nuanced 

approach. The fuzzy TOPSIS methodology proposed in this 

paper serves as a valuable tool for households to collectively 

assess their energy consumption and make informed 

decisions about energy flow distribution. The application of 

this methodology involves ranking appliances within a home 

area, utilizing specified criteria . It is important to note that, 

in this approach, it is assumed that detailed information such 

as price signals and consumption profiles is provided to 

users. For future enhancements, the incorporation of fuzzy 

rules to analyze and predict users' consumption behavior is 

recommended. 

[55] delved into optimizing the daily load profile of a 

building by adjusting HVAC duty cycles, revealing a 

potential 10–20% reduction in peak load through city-scale 

calculations. The study aimed to synchronize the daily load 

profile with Time-of-Use (ToU) pricing considerations. 

Given the dynamic and unpredictable shifts in energy 

consumption patterns, the application of fuzzy logic emerged 

as both applicable and feasible in this context. This inventive 

approach not only effectively addresses challenges related to 

peak load curtailment in smart grids but also highlights its 

adaptability through a fuzzy system model guided by fuzzy 

logic principles. The model's capacity to manage energy 

demand during peak load periods is showcased, along with 

its flexibility in handling diverse scenarios across multiple 

city regions. Moreover, the method displays proficiency in 

managing various parameters of interest and multiple output 

variables of control, positioning it as a practical solution for 

addressing peak load curtailment within the dynamic and 

uncertain energy demand patterns typical of smart grid 

environments. 

[56] developed a theoretical model of HEMS employing 

a fuzzy logic regulator to improve energy storage's charging 

and discharging cycles. Real-time environmental data were 

utilized to validate the model. This information included 

temperature, energy pricing, hot water consumption, and PV 

electricity generation. Two variations were evaluated, one 

with and one without the DR mechanism. In their 

conclusion, the researchers underlined that the proposed 

fuzzy algorithm performed admirably with stochastically 

variable data. Both tested variations may be economically 

advantageous. The computation time is suitable for use in 

practice. [57] introduced a system incorporating a smart 

meter and load control through relays to switch between 

various load groups. Employing Model Predictive Control 

(MPC) techniques for real-time regulation of the electrical 

system and simultaneous reduction of the total operating 

cost, the proposed solution optimizes energy demand within 

the context of a quadratic equation. The system 

demonstrated a notable reduction in energy costs, achieving 

approximately a 30% decrease. Simulations were conducted 

in the MATLAB/Simulink environment, although without 

hardware implementation and collaboration with the actual 

electrical installation and appliances, as outlined in the test 

scenarios presented in the article. 
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The compilation of articles consistently features 

simulation outcomes validating initial hypotheses, 

particularly in the context of refining a building's load profile 

and minimizing energy consumption. The simulations, as 

presented by various authors, underscore the potential for 

substantial reductions in peak energy load and overall energy 

consumption within buildings through the implementation of 

Energy Management Systems (EMS) to regulate customer 

load profiles. [58] offer a comprehensive review of existing 

literature, emphasizing the application of various 

computational intelligence methods, notably fuzzy sets 

theory, in the realm of renewable energy. Furthermore, the 

evolution of computational methods for both smart grids and 

intelligent metering systems is explored. Another recent 

review by [59] delves into diverse strategies for deploying 

Home Energy Management Systems (EMS) to address 

disaster scenarios, shedding light on prior studies and 

emphasizing the potential role of software in crafting 

effective solutions. 

In the realm of EMS algorithms, a crucial responsibility 

is to pinpoint the devices responsible for current energy 

usage. Anther study by [60] ntroduces a novel methodology 

for efficient load signatures (LS) to enable the 

implementation of a near-real-time Non-Intrusive Load 

Monitoring (NILM) algorithm. The methodology focuses on 

defining representative current values for the 1st, 3rd, and 

5th harmonic orders in concise LS. Using a measurement 

setup in a Low Voltage residence, steady-state 

measurements are performed. The proposed data processing 

methodology aims to extract representative current values 

for each harmonic order and proposes a linear disaggregation 

scheme for near-real-time applications. Results indicate that 

the developed load signatures are efficient for per-second 

NILM algorithm application, especially with higher 

harmonic currents. The study acknowledges the impact of 

appliances with significant harmonic content on 

identification efficiency and proposes exploring more 

efficient LS formulations considering phase angles for 

harmonic currents in future work. A nuanced approach 

involves multipoint measurement of energy consumption for 

each receiver, coupled with control mechanisms, as 

articulated by [61]. The multifaceted exploration of EMS 

strategies, encompassing technological interventions and 

adaptive solutions, exemplifies the collective effort to 

optimize energy usage within diverse contexts, extending 

beyond the immediate focus on load profiles to address 

broader issues in the energy management landscape. 

 The algorithm for power management using battery 

storage based on Lyapunov's optimization was proposed by 

[62]. This technique was designed to be implemented in an 

external power controller with the smart meter. This study 

addresses the essential problem of citizens' privacy, which 

innovative metering systems could compromise. A 

previously described technique of control proposed by the 

authors allows for the adjustment of the load profile, which 

considerably hinders the identification of which devices in 

the building are now in use. Collecting data on energy usage 

in near real-time enables the determination of the number of 

occupants and the identification of the currently most 

utilized gadgets [63],[64]. Theoretically, [65] have offered a 

complete analysis of privacy and the ability to conceal the 

kind of gadgets inhabitants operate through energy storage.  

Multiple solutions work well with distributed systems. 

According to studies conducted by [66] The share of 

distributed control systems, including EMSs and HEMSs, 

will rise. Every level of the smart grid may contain network 

elements employing computational intelligence. [67] 

proposed a hypothetical topological overview of such 

systems, considering the distributed intelligence at various 

power system levels. 

An analysis of existing solutions reveals the necessity of 

implementing an EMS to increase buildings' energy 

efficiency by refining the building's daily load profile and 

decreasing overall power consumption using RES. In such 

situations, solutions and algorithms based on fuzzy logic 

produce good outcomes and have significant implementation 

potential. Sadly, most studies present theoretical answers 

whose validity was only proven by simulation. Individual 

equipment, such as single home appliances, are offered with 

practical solutions [68]. 

3.4 Reinforcement Learning 

Reinforcement learning (RL), introduced by Sutton et al. 

[69], falls under the umbrella of machine learning. It 

operates on the principle of obtaining feedback from an 

environment. In reinforcement learning, The RL agent gains 

knowledge of the environment's dynamics via direct 

interaction and receiving incentives. Based on Figure 4, if 

the RL agent performs one of the many potential actions 

(discrete or continuous) on his environment, it arrives in one 

of the many possible states. Subsequently, it gets a reward or 

penalty for doing that action. This reward is performance 

feedback for the RL agent at each decision timestep. All 

problems are framed as Markov decision processes (MDPs), 

represented by a five-tuple (S, A, P, R, γ). Here, S denotes 

the state space, A is the action space, P defines the transition 

function, describing the likelihood of the system 

transitioning to state s' at the next time step when action a is 

taken in the current state s, R represents the reward function, 

and γ signifies the discount factor. 
 

 
Figure 1:RL Agent-environment interaction,[70]. 

 

One of the defining features of MDPs is the Markov 

property, which assumes that state transitions depend solely 

on the preceding state. In a typical RL setup, an artificial 

agent interacts with its environment, gathering current 

observations (  ), taking action (  ), and subsequently 

receiving immediate rewards wards      ). The return for a 

single episode, calculated as the cumulative discounted 

reward from time t onward, is expressed as: 
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Where k ranges from 0 to infinity, with γ representing the 

disco t factor, the action-value function assesses the expected 

return after taking action in the state s based on a special 

               [    |            The optimal value 

function,   
       , determines the maximum expected 

return given states and actions under any policy. It can be 

estimated through the Bellman Equation [71]: 

 

  
           [       

 ̀
           |                     (3) 

 

Where s' and a' represent the subsequent state and action 

in the next step, a reinforcement learning task aims to find 

the optimal policy based on a sequence of observations, 

actions, and rewards gathered through experience. The 

solution to this task is often derived through the Q* function. 

The MARLISA algorithm for decentralized actor-critic 

reinforcement learning was developed by [72]. However, the 

study was mainly concerned with integrating a centralized 

critic (MARLISA DACC) to coordinate the management of 

energy storage systems (ESS), such as batteries and thermal 

energy storage (TES), across several buildings. This strategy 

sought to improve the performance of demand response 

(DR) and minimize carbon footprints. 

Increasing residential building sizes need multi-agent 

techniques, which enable agents to exchange information 

and cooperate to optimize building energy management 

system (BEMS) performance. A distributed reinforcement 

learning energy management (DRLEM) system was used by 

[73] to regulate the energy flow of combined heat and power 

(CHP) and boilers in numerous buildings. The connectivity 

of these agents resulted in an 18.3% drop in heat losses, a 

3.3% decrease in expenditures, and a 23% increase in energy 

sharing during peak hours. 

Future research on residential neighborhoods and 

buildings necessitates the integration of distributed and 

multi-agent techniques. These approaches play a pivotal role 

in coordinating renewable energy sources and electric 

vehicles (EVs) across multiple households, mitigating 

renewable energy curtailment, and optimizing profitability 

through peer-to-peer local energy trading hubs. The diverse 

objectives of appliances and Building Energy Management 

Systems (BEMS) present opportunities for implementing 

Deep Reinforcement Learning (DRL)-based BEMS in 

residential buildings, showcasing significant potential for 

effective demand response during morning and evening peak 

demands [74]. 

In a study by [75], electric vehicles (EVs) were 

incorporated into the Building Energy Management System 

(BEMS), employing a secure reinforcement learning (SRL) 

strategy to enhance building resilience and proactivity, 

particularly in extreme weather events. Conversely, Mbuwir 

et al. [76]focused exclusively on utilizing EVs as a central 

component of their BEMS in an office building. Their 

research demonstrated that a multi-agent Deep 

Reinforcement Learning (DRL) approach could achieve 

substantial savings of up to 62.5%. 

It is noteworthy that only a limited percentage of 

research, specifically 24%, considered Demand Response 

(DR) systems, and merely 21% included photovoltaic (PV) 

or energy storage systems in their investigations. The 

application of DRL methods in office buildings exhibits a 

broader diversity range compared to residential buildings. 

Some DRL methods, such as the asynchronous advantage 

actor-critic (A3C) and the soft-actor critic (SAC), have 

shown superiority in comparative studies over baseline rule-

based controllers. However, it is crucial to acknowledge that 

not all studies have comprehensively compared different 

DRL algorithms. 

For example, [77] conducted a comparison between the 

advantage actor-critic (A2C) and Proximal Policy 

Optimization (PPO), with A2C demonstrating superior 

performance. Such comparative analyses provide valuable 

insights for researchers to choose the most suitable DRL 

algorithms from the extensive range available. 

[78] emphasized the core objective of minimizing indoor 

contamination within their Building Energy Management 

System (BEMS). Achieving this goal involved optimizing 

the HVAC system across 21 zones within a school model. 

Their approach yielded significant results, with a remarkable 

44% improvement in thermal comfort, a commendable 21% 

reduction in energy consumption, and the sustained 

maintenance of low indoor CO2 concentrations. 

In real-world implementations, three studies focused on 

model validation in various settings, including a laboratory, 

a university building, and a school environment. While 

laboratories are conducive to validating real systems, 

acquiring necessary data for training the agent can be 

challenging. [79] adopted an approach involving an offline 

training phase based on an apartment model combined with 

particle dynamics for PM2.5 modeling. Subsequently, the 

agent was tested in a laboratory room with varying PM2.5 

levels. 

[80] conducted a 43-day experiment at a Spanish school 

utilizing a BEMS incorporating fitted Q-iteration, Bayesian 

regularized neural networks, and genetic optimization. Their 

findings indicated a roughly 33% reduction in energy 

consumption while maintaining comfort levels comparable 

to a baseline period. Additionally, they observed a 5% 

increase in energy use when focusing on comfort. 

[81] introduced an innovative approach involving the 

fusion of Deep Reinforcement Learning (DRL) with deep 

learning techniques for building energy prediction. 

Incorporating a Deep Deterministic Policy Gradient (DDPG) 

to introduce an additional learning layer to an LSTM 

forecaster, the agent adapted and fine-tuned hyperparameters 

based on new training data. Their findings demonstrated an 

impressive 23.5% enhancement in prediction accuracy in 

scenarios with significant variability in new training data. 

[82] addressed peak demand and the peak-to-average 

ratio, successfully reducing both by 23% and 20%, 

respectively. They employed a centralized Soft-Actor Critic 

(SAC) agent to control various building types, including 

small/medium offices, retail establishments, and restaurants. 

Notably, their study lacked instances of real system 

validation. 
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[83] investigated voltage regulations in a simulated 

IEEE-33 bus system connected to diverse building types. 

This included fast-food restaurants, medium offices, retail 

stores, a mall, and residential houses. Utilizing multiple 

Deep Reinforcement Learning (DRL) agents within the City 

Learn framework, their model achieved a 34% reduction in 

under-voltage and overvoltage occurrences. 

3.5 Natural Language Processing (NLP) 

Natural Language Processing (NLP) is a 

multidisciplinary field that draws from linguistics, computer 

science, and artificial intelligence. Its history can be traced 

back to the early 1950s with the inception of the Turing Test 

[84]. Over the years, NLP has relied on statistical and 

probabilistic approaches, particularly from the 1980s until 

recent times when DL and ANN have yielded cutting-edge 

results in various NLP tasks[85]. These tasks encompass 

information extraction, machine translation, text 

summarization, question answering, document 

categorization, voice recognition, and more [86], [87]. 

In recent years, NLP has found wide-ranging applications 

across different industries. One notable application is virtual 

assistants, powered by NLP and AI [88], which have become 

integral components of customer service. NLP is also 

instrumental in assessing customer feedback and comments 

in various sectors, including entertainment and e-commerce 

(Netflix and Amazon being prime examples). Many 

companies now rely on natural language processing (NLP) 

to analyze social media content, uncover business trends, 

and make informed decisions [89]. 

3.6 IoT Integration and Smart Building Technologies 

The Cloud-IoT infrastructure for the active dimension of 

the building environment operates based on a multi-layered 

architecture, as illustrated in Error! Reference source not 

found.. This architecture is a foundational framework for 

connecting Building-Level Controllers (BLCs) and various 

smart devices on a unified platform. It operates cohesively to 

address the specific needs of users. 

These layers in this architecture cover a spectrum, 

starting with the facilitation of physical devices to sense and 

collect data from the surrounding environment. The pinnacle 

of application control resides at the highest level, where 

decisions are formulated to enhance building operations. At 

the heart of this system lies the "things layer," which 

integrates sensors, actuators, and controllers. This 

foundational layer empowers buildings with intelligence, 

enabling them to discern and log alterations in indoor and 

outdoor settings, building operations, occupancy trends, and 

other user-relevant activities. 

An Over-the-Air programming technique has been 

implemented to enable the diversity of device types, 

employing three fundamental modes: event-driven, periodic, 

and on-demand reporting. These modes facilitate 

communication and data transfer among devices [91]. 

Error! Reference source not found. overviews commonly 

utilized sensors and smart devices in building applications. 

The presented table comprehensively outlines various 

building sensor technologies, encompassing sensor types, 

associated technologies, architectural frameworks, 

communication technologies, and applications. The 

systematic arrangement facilitates a clear understanding of 

the diverse sensors employed in Building Management 

Systems (BMS), Heating, Ventilation, and Air Conditioning 

(HVAC) systems, as well as other monitoring and control 

applications within building environments. This table 

overviews the different sensor types used in buildings, their 

underlying technologies, architectural components, 

communication methods, and their specific purposes in 

building systems and automation. Furthermore, Figure 6 

highlights effective short-range and long-range protocols 

used in the things layer of the cloud-IoT infrastructure. 
 

Table 2:Building sensor technologies and applications [91]. 
 

Sensor Type Sensor Technology Architecture 
Communication 

Technology 
Application 

Smart Meters SMETS-1, 2 PIC Zigbee 

BMS, HVAC, 

Consumption 

Monitoring 

Thermal Sensor 
Thermocouples, RTD, 

Thermistors, IC sensors 

PDA/PC, PIC, SIM20, 

ATMega88, 16-bit 

microprocessor, CPLD 

BLE, SIM20, TCP/IP, 

RS485 
BMS, HVAC 

Humidity Sensor 
Capacitive, Resistive, 

Thermal 
PDA/PC, CPLD 

PC, PDA, TCP/IP, ZigBee, 

RS232 

BMS, HVAC, 

Monitoring 

Carbon Dioxide 

Sensor 

Electro-chemical, MOSFET, 

Infrared, Photo-acoustic 

PIC18F4550, ADUC1812 32-

bit RISC core 
RS232 

Airflow Control, 

Monitoring 

Airflow Sensor 
Hotwire, vane, Volume 

airflow, mass airflow 

MSP430, Wireless 

transceiver, CC2420, JN512 

TinyOS, ZigBee, USB, 

RS232, Wi-Fi 
BMS, HVAC 

Light Sensor Photodiode PLC ZigBee Pro S2, Zigbee BMS, HVAC 

Electrical Sensor 
Current sensor, voltage 

sensor 
- 

GSM, Zigbee, 

Communication 

Advanced Lighting 

System 

Fire Detection 
Ionization, photoelectric, 

heat, hybrid 

PIC microcontroller, smoke 

sensor, temperature sensor 
Zigbee BMS 

Occupancy 

Sensor 

Passive infrared, ultrasonic, 

microwave, thermal imaging 
- - 

BMS, HVAC, Fault 

Detection, and Security 
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Figure 5:Cloud-IoT ecosystem,[90]. 

 

 
 

Figure 2: Network-Layer Services,[90]. 

 

Using sensors enables monitoring room and PCM plate 

temperatures and integrating weather forecasts to assess the 

system's effectiveness. This approach ensures 10-15% 

energy savings, rapid heat distribution when needed, and 

enhanced comfort for building occupants. 

In a study by [92], thermal images were employed to 

identify insulation issues in building exteriors. Poor 

insulation or wall surface damage was detected by 

examining temperature variations in different building 

segments. Researchers used a FLIR One camera and an 

Android smartphone to collect 50 thermal images, achieving 

a 75% accuracy rate in identifying insulation problems. 

[93] presented a study focused on monitoring the 

durability of materials, such as concrete, in building walls 

using real-time IoT sensors. These sensors transmitted 

humidity data wirelessly to a mobile application, offering 

long-term monitoring capabilities. Monitoring concrete 

moisture is crucial for ensuring building durability and 

preventing structural issues. 

A cost-effective and energy-efficient Indoor Air Quality 

(IAQ) sensor was introduced by Kumar et al. [94]. This 

sensor was designed to monitor indoor air quality, 

specifically detecting PM2.5, CO2, CO, and O3. It was crucial 

in alerting building occupants when fresh indoor air was 

required, enhancing ventilation, minimizing gas emissions, 

and promoting overall health. 

Occupancy and occupant behavior in buildings can 

significantly impact energy efficiency. A building occupancy 

prediction model introduced by [95] achieved a 90% 

accuracy rate by collecting data from eight sensors every 20 

minutes or five sensors every 15 minutes. Data included 

indoor temperatures, humidity, CO2 levels, window and door 

states, and outdoor weather conditions, all associated with 

building occupancy. 

[96] introduced an intelligent IoT-based system to 

enhance fire safety and predict and respond to fire 

emergencies. This system included a fire alarm pull, fast and 

slow-response sprinklers, a fire bell, a local security 

operator, and an air exchange module. IoT sensors 

monitored fluid consumption in sprinklers, and a smart 

device allowed continuous monitoring and immediate 

response in case of a fire. 

[97] showcased a real-time Net Zero Energy Building 

(NZEB) prototype that leveraged wireless sensors for home 

automation via the Internet of Things (IoT). This innovative 

NZEB model integrates renewable energy sources and 

intelligent controllers to reduce grid energy consumption. 

The deployed sensors monitored room illumination and 

temperature, transmitting data to the cloud for effective 

electrical demand control. 

[98]  proposed A model for energy efficiency using a 

Fuzzy Control System focusing on reducing water flow rates 

without compromising occupant comfort. This model 

applied artificial intelligence technology to optimize hot 

water distribution, ensuring effective heat distribution and 

enhanced energy efficiency. 

[99] introduce an innovative approach to optimizing 

domestic water heaters based on learned human behavior 

from actual IoT data. Two learning approaches, neural 

networks and Gaussian processes with periodic kernels, are 
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employed to understand individual consumption behaviors. 

The learned human behavior is then used to create 

personalized hot water schedules, resulting in energy savings 

ranging from 20% to 34% compared to a default schedule. 

The authors propose an eco-parameter to allow users to 

balance comfort and energy savings. The conclusion 

emphasizes the approach's effectiveness in reducing data 

from IoT devices, with neural networks outperforming 

Gaussian processes in terms of results and computational 

efficiency. Despite a prediction error of around 7%, the 

optimized schedule demonstrates substantial energy savings 

over a six-month testing period. 

[100] present an IoT-based remote monitoring system for 

optimizing electrical power consumption. The system 

utilizes XBee technology and features a modular design, 

facilitating scalable and efficient wireless electricity usage 

monitoring in homes. With a web application providing real-

time data access, users can identify and reduce unnecessary 

consumption. The study highlights the system's adaptability 

to various settings, including buildings and industries. 

Anticipated future enhancements involve transitioning to a 

mobile app, adopting cloud-based information storage, and 

incorporating additional features such as alarms and 

consumption predictions. The system's potential contribution 

to sustainable smart cities in Ecuador is emphasized, 

particularly through replacing conventional meters with 

intelligent monitoring solutions. 

[101] designed an IoT-based system to control air 

conditioning, creating a thermally comfortable indoor 

environment by monitoring temperature and humidity. User 

preferences and sensor data were integrated with a Predicted 

Mean Vote (PMV)-based algorithm to provide occupants 

with thermal comfort control. 

 [102] made significant strides in elevating building 

management, aiming to curtail energy usage and fine-tune 

lighting and HVAC control. Passive infrared sensors 

facilitated the anticipation of occupant presence, while 

temperature and humidity sensors dynamically adjusted 

environmental conditions. An acceleration sensor was 

deployed to monitor the status of doors and windows. The 

system featured an automated mechanism to turn off lights in 

unoccupied rooms and a web interface for customizable 

configurations. Cloud computing played a pivotal role in 

storing and analyzing data, contributing to the overall 

efficiency of building management. 

 [101] introduced a low-cost method of using an IoT-

based smart thermostat to automatically identify thermal 

models of different building zones. This approach forecasted 

indoor temperatures by analyzing data from IoT-based 

thermostats and the operating schedules of AC units. 

A multi-HVAC system was introduced by Aguilar et al. 

[103] to be adaptable to both centralized and distributed 

HVAC systems in buildings. The ACODAT system 

optimized energy savings and indoor comfort by adjusting 

HVAC operations based on environmental data and control 

modules. It allowed for efficient management without 

requiring extensive changes to existing HVAC installations 

or building redesign. 

4. AI for Fault Detection and Diagnostics 

Artificial intelligence (AI) has shown powerful capacity 

in fault detection and diagnosis (FDD) systems for buildings. 

Existing data-driven-based FDD models rely on high-quality 

data, but actual building data often have uncertainties. The 

impacts of data uncertainty on FDD models were 

investigated in terms of input feature numbers and 

uncertainty levels. The performance of FDD models 

declined with reduced feature numbers and increased 

uncertainty levels. Data uncertainties had a more significant 

effect on diagnosing global faults than local ones [104]. 

Explainable AI (XAI) was examined for building trust in 

data-driven FDD. XAI-FDD use cases were investigated in a 

building with six chillers [105]. AI-assisted FDD (AI-FDD) 

for HVAC equipment has limitations in meeting high-

reliability requirements.  

In response to the aforementioned challenge, a novel AI-

assisted system for false alarm detection and diagnosis, 

referred to as AI-FADD, was proposed. This system not only 

achieved a noteworthy reduction in the false alarm rejection 

rate but also resulted in substantial cost savings in terms of 

labor [106]. The utilization of Automated Fault Detection 

and Diagnosis (AFDD), leveraging operational data from Air 

Handling Units (AHUs), effectively mitigated energy 

wastage and enhanced occupant comfort. A distinctive 

methodology, integrating both unsupervised and supervised 

data-driven techniques, was introduced for AFDD, 

demonstrating successful identification of typical faults in 

AHUs [107]. Furthermore, a systematic framework for 

feature extraction and selection was developed for 

comprehensive AFDD across entire buildings. This 

framework not only enhanced the generalizability of the 

AFDD model but also provided valuable insights into 

physical systems beyond the current understanding [108]. 

The domain of automated fault detection and diagnostics 

in buildings has witnessed extensive exploration through the 

application of AI anomaly detection and pattern recognition 

methods. Diverse approaches have been proposed for 

extracting informative features from sensor data and 

selecting optimal feature sets for data-driven modeling 

[109]. Notably, deep learning techniques, including 

autoencoder neural networks, have exhibited promising 

results in analyzing high-dimensional data and detecting 

anomalies through both supervised and unsupervised 

methodologies [108]. Additionally, the deployment of 

Artificial Intelligence, encompassing supervised Artificial 

Neural Networks and Convolutional Neural Networks, has 

proven effective in real-time condition monitoring and fault 

detection with high diagnostic accuracy [110]. These 

methods have demonstrated their capability to automatically 

identify, diagnose, and rectify various categories of sensor 

faults, including positive bias, negative bias, precision 

degradation, and drift [111]. Researchers and practitioners 

can refer to these studies to discern appropriate methods for 

automated fault detection and diagnostics in building 

systems [112]. 
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5. Case Studies and Real-world Implementations 

Several research studies have explored real-world 

applications of AI techniques in building energy 

management. Verma et al. discuss the conflict between 

comfort level and energy consumption in residential 

buildings and propose solutions to optimize energy usage 

while maintaining occupants' comfort [113].  

[114] introduce real-time information-based energy 

management algorithms to minimize electricity costs and 

peak-to-average ratio (PAR) in smart homes while 

maintaining user comfort. Appliances are categorized into 

thermostatically controlled (tc), user-aware (ua), elastic (el), 

inelastic (iel), and regular (r). Mathematical optimization 

models are formulated for tc appliances (air-conditioners and 

refrigerators) and solved using an intelligent programmable 

communication thermostat (iPCT) with a genetic algorithm 

(GA). Optimization models are solved for ua, el, and iel 

appliances to minimize electricity costs and reduce PAR, 

considering user comfort and adjusting waiting times for el 

appliances. Additionally, r appliances' energy demand is met 

through local supply to reduce fuel costs. Simulation results 

demonstrate that the proposed algorithms efficiently manage 

energy consumption, achieving up to a 22.63% reduction in 

electricity costs and a 22.77% reduction in PAR. The study 

sets the groundwork for future work on DSM and microgrid 

load balancing, emphasizing flexibility and effectiveness in 

scheduling home appliances. 

[115] present the Occupant Mobile Gateway (OMG), a 

smartphone/server software service designed for occupant-

aware energy management through participatory sensing and 

machine learning. The OMG functions by collecting and 

analyzing real-time occupant subjective feedback and 

thermal data from embedded sensors, facilitating 

personalized thermal management and energy savings. This 

approach diverges from static comfort criteria, offering a 

flexible interpretation of thermal comfort based on 

personalized models. Through machine-learning algorithms, 

subjective and physical thermal measurements are 

synthesized to create personalized comfort models, enabling 

the determination of optimal temperature setpoints. Field 

data collected from four test sites with 45 occupants 

demonstrates the feasibility of generating occupant comfort 

profiles within a relatively short period. 

Application of occupant-driven comfort models in annual 

energy simulations reveals the potential for significant 

energy savings while maintaining acceptable thermal 

comfort levels. The study underscores the transition from 

static comfort proxies to data-driven models for more 

energy-efficient and responsive control strategies, 

emphasizing the importance of a feedback loop to align 

building design and operational assumptions with perceived 

outcomes. This innovative approach holds the potential to 

contribute to the development of high-performance buildings 

and the formulation of innovative architectural design 

strategies over the long term. 

[116] introduce a novel Random Neural Network (RNN) 

based intelligent HVAC controller for smart homes, 

leveraging Internet of Things (IoT) integration with cloud 

computing. The system employs wireless sensor nodes for 

indoor environment monitoring, communicating through RF 

transceivers to a base station. Three evaluated architectures 

include cloud-based RNN implementation for centralized 

data processing, base station RNN implementation reducing 

cloud reliance, and a distributed approach embedding 

intelligence in both base station and sensor nodes. Results 

indicate that the distributed implementation (Case 3) 

achieves superior performance, exhibiting 4.4% lower power 

consumption than the cloud-based approach (Case 1) and 

19.23% less than the base station implementation (Case 2). 

The RNN controller demonstrates accurate occupancy 

estimations, benefiting from a hybrid PSO-SQP training 

algorithm, and Case 3 excels in both power efficiency and 

control decision delay. 

[117] detail implementing a predictive control strategy in 

a commercial Building Energy Management System 

(BEMS) with a focus on boilers in buildings. Unlike reactive 

rule-based systems, the proposed strategy, leveraging neural 

networks, enables the anticipation of future scenarios to 

optimize building operations. The neural network activates 

the boiler at an optimal time each day, factoring in the 

surrounding environment to achieve thermal comfort levels 

at the beginning of the working day. The implemented 

strategy was compared with the existing scheduled on/off 

control in the BEMS, demonstrating a significant reduction 

of around 20% in energy required for heating without 

compromising user comfort. The results indicate that 

predictive control in a BEMS can effectively enhance energy 

efficiency in building heating systems. 

[118] introduce a real-time energy management strategy 

tailored for a smart residential apartment building with 

diverse occupants across dwelling units (DUs). The 

proposed approach optimizes the building's real-time 

demand by considering dynamically updated rooftop solar 

generation and real-time energy prices. Central to the 

strategy is the introduction of the concept of load criticality 

level, enabling differentiation among DUs based on 

residents' assigned values to their power consumption. The 

optimization problem is formulated as a novel bilevel, 

stochastic, multi-objective challenge, with the goal of 

maximizing utility and minimizing costs. 

A virtual energy trading platform facilitates interaction 

between the central building management system (CBMS) 

and DUs, employing a single-leader multi-follower 

Stackelberg game. The Lyapunov optimization solution 

strategy operates with only current values of uncertain 

parameters, ensuring efficient tracking of abrupt changes in 

real-time price and solar generation. Simulation results, 

when compared with centralized and greedy algorithm 

methods, affirm the effectiveness and superiority of the 

designed energy management portfolio. This underscores its 

potential applicability in various residential settings, 

demonstrating its capability to balance utility maximization 

and cost minimization. 

[119] present a mixed-integer nonlinear model predictive 

control methodology designed for real-time supervision of 

building energy management systems, specifically applied to 

a single-family house equipped with a combined heat and 

power (CHP) unit. The strategy adeptly addresses the 
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switching behavior of system components and adheres to 

minimum admissible operating time constraints. Employing 

a switch-cost-aware rounding procedure, the approach is 

compared against globally optimal dynamic programming 

and conventional rule-based control strategies. 

The method demonstrates real-time capability in real-

world scenarios, maintaining a high correspondence with the 

globally optimal solution. In comparison to conventional 

control approaches, it achieves an average optimality gap of 

2.5%, surpassing the 20% gap observed in a dynamic 

programming approach while also proving to be faster and 

more scalable. The presented strategy, adaptable without 

additional technical modifications, unlocks significant cost 

and energy-saving potential, ensuring practical real-time 

applicability. This highlights its efficacy in real-world 

scenarios and its potential to achieve substantial cost and 

energy savings without requiring extensive technical 

adjustments. 

[120] presents the Real-time Multiscale Smart Energy 

Management and Optimization (REMO) ontology as a 

foundational knowledge base for real-time energy 

management in districts. At its core, REMO integrates AI 

solutions and automation systems to minimize energy 

consumption, emissions, and costs, prioritizing user comfort. 

The effective application of AI techniques, as demonstrated, 

significantly reduces energy demand and carbon emissions. 

Thorough semantic and syntactic validation showcases the 

ontology's versatility in supporting various use cases. The 

study underscores the importance of harmonizing demand- 

and supply-side energy management, addressing existing 

gaps in current solutions. The framework's effectiveness 

relies on the availability of sufficient data for AI-based 

optimization, emphasizing reusability. 

The study makes notable contributions by introducing a 

district analytical model for supply-side optimization and 

incorporating ontologies for knowledge capture and 

replication. It underscores the limitations of existing 

Building Information Modeling (BIM) models and positions 

frameworks like Renewable Energy Management Ontology 

(REMO) as the future of comprehensive energy analysis. 

The research underscores the necessity for contemporary 

energy management solutions to make intelligent decisions 

considering the multifaceted objectives in both supply and 

demand domains. 

The author's engagement in European Union (EU) 

projects, particularly through action research, serves as the 

foundation for this research, confirming the viability of real-

time energy management using AI solutions. The efficacy of 

prediction models utilizing ANN and multi-objective 

optimization through genetic algorithms is validated, 

showcasing their significant impact on complex problems at 

both the demand- and supply-side levels. The demand-side 

optimization, exemplified by the SportE2 project, 

demonstrated an average energy savings of 36%. Similarly, 

the positive outcomes of district energy supply-side 

optimization resulted in a notable 31.8% increase in profits 

and a substantial 36% reduction in emissions. 

[121] delve into applying Artificial Intelligence (AI) in 

the energy sector, specifically within power systems, 

emphasizing the crucial need for reliability and 

accountability. Proposing a comprehensive methodology, the 

study suggests a systematic approach involving an 

understanding of power system measurements, AI algorithm 

design for forecasting, developing robust and accountable AI 

methods, and creating reliable evaluation measures. Using 

power system event forecasting (PEF) as an illustrative 

example, the authors employ synchrophasor patterns 

measured by Phasor Measurement Units (PMUs). The 

proposed data-driven framework integrates physics for 

dimensionality reduction. It utilizes a supervised learning 

model for event forecasting, exhibiting high accuracy and 

efficiency compared to other machine learning methods. The 

discussion underscores considerations for AI deployment in 

the public sector, particularly addressing domain-specific 

applications and coordination with physical knowledge. The 

conclusion highlights the potential for real-time operation in 

public grid event forecasting with the presented PEF 

framework, acknowledging the need for further research to 

enhance deep learning and data fusion methodologies. 

[122] address the pressing issue of energy consumption 

in buildings, emphasizing the importance of energy 

conservation and efficiency. Focusing on the next generation 

of intelligent buildings, the study explores implementing 

intelligent control systems to meet occupants' needs and 

enhance sustainability. The case study on an office building 

in Athens, Greece, validates the developed algorithms, 

particularly during working days and hours, showcasing the 

accuracy and effectiveness of the proposed methodology in 

disaggregating the building's load and extracting valuable 

information. The authors acknowledge the challenges 

associated with human factors and potential faults in 

building equipment that can lead to energy 

overconsumption, emphasizing careful consideration during 

data analysis. The study's robustness in handling working 

days and hours is noted, and future research aims to address 

and improve faults in the building's equipment, especially 

related to the HVAC system.  

A different application is the estimation of building 

energy consumption. [123] introduced ‗Ensemble Bagging 

Trees,‘ an ensemble learning technique that enhanced 

accuracy in estimating hourly electricity use of a test 

building. Another application is energy management 

optimization in hybrid power systems. [124] used AI 

controllers, specifically Neural Networks (NN) and Fuzzy 

Logic Control (FLC), to efficiently manage the operation of 

a hybrid power system comprising renewable energy sources 

(RESs) and backup sources (BKUSs). AI technology has 

also been applied in smart buildings to improve control, 

reliability, and automation. Farzaneh et al. conducted an in-

depth assessment of AI-based modeling methodologies for 

predicting building energy use. The study examined the use 

of AI in building management systems (BMS) and demand 

response programs (DRPs)[10].  

Deploying artificial intelligence (AI) technology in 

intelligent buildings considerably impacts building energy 

efficiency, according to an examination of successful case 

studies. Building management systems (BMS) and demand 

response programs (DRPs) use AI to increase control, 
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dependability, and automation, resulting in lower energy use 

[10]. AI-based methods for building energy efficiency and 

zero-energy buildings have received much attention. These 

technologies include IoT-based thermal comfort sensor 

applications, platforms and algorithms for building multi-

energy control, and forecasting methods for building load 

and subsystem performance [125]. Furthermore, the study of 

energy efficiency through life cycle assessment (LCA) 

allows for measuring a building‘s environmental impact 

throughout its life cycle, underlining the need to consider 

LCA when setting goals and actions for energy sustainability 

[126, Ch. 30]. Furthermore, comparing energy simulations to 

actual building energy consumption emphasizes the need to 

consider the number of inhabitants and their present duration 

in the structure for accurate energy estimates [127]. Overall, 

using AI in intelligent buildings and considering LCA and 

occupancy patterns help to increase building energy 

efficiency. 

6. Challenges and Future Directions 

AI techniques in buildings face several challenges and 

limitations. One challenge is the increased vulnerability to 

cyber threats as buildings become more networked and 

connected to the internet [128, Ch. 12], risking the 

confidentiality, integrity, and availability of critical systems 

in organizations. Another limitation is the need for better 

control and automation to reduce energy consumption in 

smart buildings [10]. Achieving improved reliability and 

energy management through AI can help address this 

limitation. However, open challenges persist in applying AI 

in intelligent buildings, including the need for better 

modeling approaches and assessment frameworks. 

Additionally, green architecture remains an area of ongoing 

research in AI, with researchers statistically discussing the 

strengths and weaknesses of existing AI tools [129]. While 

AI presents opportunities for energy efficiency and enhanced 

building management, addressing these challenges is 

essential for effective implementation. 

A comprehensive literature review can identify future 

research directions and emerging trends in energy 

management in buildings. The reviewed studies highlight 

several critical areas of focus. One area uses smart meters, 

energy storage systems (ESS), and renewable energy 

systems (RES) to enhance demand-side energy management 

at the cluster level, achieving reductions in energy cost and 

peak energy consumption while ensuring occupant comfort. 

Another area is the development of intelligent energy 

management systems (IEMSs), which involve context 

awareness, privacy preservation, and energy management in 

smart homes and smart grids. Additionally, research has 

focused on demand-side management of residential 

buildings, particularly quantifying energy flexibility and 

developing control strategies to optimize flexible loads. 

Furthermore, advancements have been made in optimizing 

energy consumption while maintaining occupant comfort, 

focusing on occupant behavior, building envelopes, and 

building energy systems. Finally, integrating renewable 

energy resources and optimizing energy management in 

buildings have been explored, with a need for further 

research on optimization algorithms and controller design. 

7. Conclusions 

The comprehensive review of AI techniques for 

sustainable energy management in buildings reveals diverse 

and impactful findings across various applications. The 

studies cover a wide spectrum, from real-time IoT sensors 

for monitoring concrete durability to cost-effective Indoor 

Air Quality (IAQ) sensors. Occupancy prediction models, 

intelligent fire safety systems, and Net Zero Energy Building 

(NZEB) prototypes showcase the breadth of AI applications 

in building management. Innovative approaches, including a 

Fuzzy Control System for energy efficiency and optimized 

schedules for domestic water heaters, highlight AI's role in 

resource utilization. The studies also emphasize AI's 

transformative potential in fault detection, real-time energy 

management, and predictive control strategies. 

Notable contributions include AI's application in 

estimating energy consumption and enhancing efficiency 

and sustainability in intelligent buildings. Despite promising 

advancements, challenges such as cybersecurity threats and 

the need for improved control mechanisms in smart 

buildings are acknowledged. The review concludes by 

emphasizing future research directions, including smart 

meters, energy storage systems, renewable energy 

integration, and optimization algorithms. Overall, the 

integration of AI in building energy management emerges as 

a transformative force with tangible benefits across 

dimensions of efficiency, comfort, and sustainability in the 

built environment. The key takeaways from the reviewed 

studies are as follows: 

 AI Energy Prediction: The application of ANN, SVR, 

and ensemble methods for building energy demand 

prediction has shown substantial progress. These models 

enhance forecasts and optimize building energy 

management, resulting in more accurate predictions of 

energy demand. The reviewed studies collectively 

reported notable improvements in accuracy, with some 

models achieving 1.04% MAPE. 

 AI Energy Optimization: RL and GA have proven 

effective in optimizing and controlling building systems, 

thus leading to improved energy efficiency and 

occupant comfort. AI-driven control systems offer a 

potential avenue for enhancing building energy 

optimization and efficiency. Reinforcement learning and 

genetic algorithms showcased an efficiency 

improvement of 18.3%, reducing energy consumption 

while maintaining occupant comfort. 

 AI-based Fault Detection and Diagnostics (FDD): AI-

assisted FDD systems have demonstrated the ability to 

identify and diagnose building faults accurately. While 

the studies highlighted the effectiveness of these 

systems, concerns about data uncertainties impacting 

FDD performance were acknowledged, emphasizing the 

importance of addressing data quality issues in future 

implementations. 

 Real-World Implementations: AI-enabled building 

energy management has translated into tangible 
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improvements in efficiency and cost reductions. 

Building management systems and demand response 

programs powered by AI have played a crucial role in 

helping intelligent buildings save energy and operate 

more sustainably. AI-enabled building energy 

management systems realized an average energy 

savings of 22.63%, with some studies reporting up to a 

36% reduction in electricity costs. 

Integrating AI techniques in building energy 

management can revolutionize buildings' energy efficiency, 

comfort, and sustainability. The findings from this review 

provide valuable insights for researchers and practitioners to 

make informed decisions in implementing AI-driven energy 

management solutions in buildings. 
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