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ON Q-SHIFT DIFFERENCE-DIFFERENTIAL POLYNOMIALS OF

ENTIRE FUNCTIONS THAT SHARE ONE VALUE

ABHIJIT SHAW

Abstract. In this article we addresses the product of q-shift difference of
transcendental entire functions. We primarily examine the zero distribution

of the q-shift difference-differential polynomials of transcendental entire func-

tions while simultaneously preparing the answers to the uniqueness problem in
the case where the q-shift difference-differential polynomials of transcendental

entire functions share a constant value. The findings are based on I. Lahiri’s

[9, 10] introduction of the concept of weighted sharing. The theory of Picard’s
exceptional value play an effective role for finding of our results. To discuss

our results we create certain polynomial equation and analysed entire results
of the article applying the theory of simple and multiple zeros of polynomial

equation. We broadly elaborate our results with remark and corollary, and

give an excellent example for proper justification of our results. Some open
problems are generated from our results for future research. We extend and

improve the results of R.S. Dyavanal and A.M. Hatticat [4], and generalized

the result of P. Sahoo and G. Biswas [21] in effective manner.

1. Introduction, Definitions and Results

In this paper, meromorphic or entire function are defined on the complex plane
and we used the standard notations, symbols, definition, theorems of the Nevan-
linna’s theory of meromorphic functions are explained in [8, 11, 26]. If f has no
poles, then f is called entire function and if f be a nonconstant meromorphic func-
tion, then T (r, f) is called Nevanlinna’s characteristics function of f . We will use
S(r, f) as any quantity satisfying S(r, f) = o(T (r, f)) for all r outside a possible ex-
ceptional set E of the finite logarithmic measure limr→∞

∫
[1,r)∩E

dt
t < ∞. For our

convenience we means that S(f) contains all constant functions and Ŝ = S(f)∪{∞}.
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In addition, let f and g be two meromorphic functions defined in the complex
plane and a be a value in the extended complex plane. Now we say that f and
g share that value a CM(Counting Multiplicities) if the zeros of f − a and g − a
coincide in location as well as in multiplicity and say that f and g share the value
a IM if zeros of f − a and g − a coincide only in location but not in multiplicity.
The counting function of zeros of f − a where m-fold zero is counted m-times if
m ≤ p and p times if m > p is denoted by Np(r, a; f) where p ∈ Z+. In this paper
we always use λ = Σd

j=1sj where d, sj(j = 1, 2, ..., d) are integers.

Many mathematicians already worked out many research papers on entire, mero-
morphic functions, their differential polynomials and sharing(see [5, 13, 14, 15, 19]).
Recently mathematicians are attracted with the problem of difference equations
and difference products in the complex plane . Already a numbers of papers
have been published on the topics difference equation and difference product(see
[3, 6, 7, 12, 20, 24]). Here we worked out another problem on difference product
and it’s derivative.

We introduce following standard definitions of Nevanlinna’s value distribution
theory which enlarge the article in sense of totality:

Definition 1.1. Let p(z) = Σn
i=0aiz

i be a nonzero polynomial, where ai(i =
0, 1, 2, ..., n) are complex constants and an ̸= 0 and n is an integer. We denote
the numbers of single zeros of p(z) by m1 and the number of multiple zeros of p(z)
by m2 and Γ1,Γ2 defined by Γ1 = m1 +m2; Γ2 = m1 + 2m2 respectively.

Definition 1.2. [9, 10] Let a ∈ C∪{∞} and l be a nonnegative integer or infinity,
then we denote by El(a; f) the set of all a-point of f where an a-point of multiplicity
m is counted m times if m ≤ l and l + 1 times if m > l. If El(a; f) = El(a; g) we
say that f , g share the value a with weight l.

Zhang[26] established the following theorem in 2010:

Theorem A. [26] Let α(z) be a small function of two transcendental entire func-
tions of finite order f and g. Let c ∈ C\{0}, a constant and n ≥ 7 be and integer
then if f(z)(f(z) − 1)f(z + c) and g(z)(g(z) − 1)g(z + c) share α(z) CM, then
f(z) ≡ g(z).

Qi, Yang and Liu [18], extend the result of theorem A as follows:

Theorem B. [18] Let f and g be two transcendental entire functions of finite order,
and c be a nonzero complex constant, and let n ≥ 6 be an integer. If fn(z)f(z + c)
and gn(z)g(z+ c) share 1 CM, then either fg = t1 or f = t2g for some constant t1
and t2 satisfying tn+1

1 = tn+1
2 = 1.

In 2012, Chen and Chen [2] studies the uniqueness of difference polynomials

fn(fm−1)
∏d

j=1 f(z+cj)
sj and gn(gm−1)

∏d
j=1 g(z+cj)

sj sharing small function,

where cj ∈ C\{0} (j=1,2,...,d) are distinct constants, n,m, d, sj ∈ N+ and obtained
the following theorem:

Theorem C. [2] Let f and g be two transcendental entire functions of finite order
and cj ∈ C\{0} (j=1,2,...,d) be distinct constants, n,m, d, sj ∈ N+ and α(z) be a
small function with respect to both f(z) and g(z). If n ≥ m + 8λ and fn(fm −
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1)
∏d

j=1 f(z + cj)
sj and gn(gm − 1)

∏d
j=1 g(z + cj)

sj share α(z) CM, then f(z) ≡
tg(z), where tm = tn+λ = 1 and λ = Σd

j=1sj.

Luo and Lin [17], established the result for general polynomial and difference
function:

Theorem D. [17] Let f and g be two transcendental entire functions of finite or-
der, c be a nonzero complex constant and n > 2Γ2+1 be an integer. If p(f)f(z+ c)
and p(g)g(z + c) share 1 CM, then one of the following results hold:
(i) f = tg, where tη = 1 where η = GCD(λ0 + 1, λ1 + 1, ..., λn + 1) and

λi =

 i, if ai ̸= 0,
n, if ai = 0;
i = 0, 1, 2, ..., n.

(ii) f and g satisfy the algebraic equation R(f, g) = 0, where
R(γ1, γ2) = p(γ1)γ1(z + c)− p(γ2)γ2(z + c);
(iii) f = eα, g = eβ, where α(z) and β(z) are two polynomials and α+ β = h, h is
a complex constant satisfying a2ne

(n+1)h = 1.

Example 1.1. Let p(z) = (z − 1)8(z + 1)8z15, f(z) = sin(z) and g(z) = cos(z)
and c = 2π. Now it is clear n > 2Γ2 + 1 and p(f)f(z + c) = p(g)g(z + c). Then
p(f)f(z+c) and p(g)g(z+c) share 1 CM. Then it satisfy condition of theorem D and
f and g satisfy the algebraic equation R(f, g) = 0 where R(γ1, γ2) = p(γ1)γ1(z +
c)− p(γ2)γ2(z + c).

Wang and Xu [22], developed two interesting results for product difference func-
tion:

Theorem E. [22] Let f and g be transcendental entire functions of finite order

such that fand g share 0 CM. Let F (z) = p(f)
∏d

j=1 f(z + cj)
sj and G(z) =

p(g)
∏d

j=1 g(z + cj)
sj , where cj ∈ C and n, d, sj ∈ N+, (j=1,2,...,d). If F (z) and

G(z) share 1 CM and n > 2Γ2 + λ, then one of the following cases holds:
(i) f ≡ tg for a constant t such that tχ = 1 where χ = GCD(λ0+λ, λ1+λ, ..., λn+λ)
and λi(i = 0, 1, ..., n) are state as in theorem D;
(ii) f = eγ , g = µe−γ , where γ is a nonconstant polynomials, µ is a complex con-
stant satisfying a2nµ

n+λ ≡ 1.

Theorem F. [22] Under the assumption of theorem E, if El(1;F (z)) = El(1;G(z))
and l, n, d(> 0), sj(> 0)(j = 1, 2, ..., d) are integers satisfying one of the following
conditions:
(i) l ≥ 3;n > 2Γ2 + λ;
(ii) l = 2;n > 2Γ2 + Γ1 + λ+ d;
(iii) l = 1;n > 2Γ2 + 2Γ1 + λ+ 2d;
(iv) l = 0;n > 2Γ2 + 3Γ1 + λ+ 3d;
then conclusions of theorem E holds.

In 2016, Sahoo and Biswas [21], considered q-shift difference function and estab-
lished following uniqueness result on a difference differential polynomial:

Theorem G. [21] Let f and g be two transcendental entire functions of zero order
and let q ∈ C \ {0}, c ∈ C. If El(1; (p(f)f(qz + c))(k)) = El(1; (p(g)g(qz + c))(k))
and l,m, n are integers satisfy one of the following conditions:
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(i) l ≥ 2;n > 2Γ2 + 2km2 + 1;
(ii) l = 1;n > 1

2 (Γ1 + 4Γ2 + 5km2 + 3);
(iii) l = 0;n > 3Γ1 + 2Γ2 + 5km2 + 4;
then one of the following results holds:
(i) f = tg for a constant t such that tη = 1;
(ii) f and g satisfy the algebraic equation R(f, g) = 0, where
R(γ1, γ2) = p(γ1)γ1(qz + c)− p(γ2)γ2(qz + c);
(iii) fg = ζ, where ζ is a complex constant satisfying a2nζ

n+1 ≡ 1.

Question: Is it possible to derive uniqueness results for product of q-shift
difference-differential polynomial functions?

We consider product of q-shift difference-differential polynomial functions and de-
velop uniqueness result in concern of weighted sharing. We discuss our result elab-
orately in main section.

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We de-
note by H the function as follows :

H = (
F ′′

F ′ − 2F ′

F − 1
)− (

G′′

G′ − 2G′

G− 1
).

Lemma 2.1. [25] Let f be a nonconstant meromorphic function, and p(f) =∑n
i=0 aif

i, where a0, a1, a2, ...., an are complex constants and an ̸= 0. Then T (r, p(f)) =
nT (r, f) + S(r, f).

Note: Throughout the paper we use p(f) as polynomial in f as defined in lemma
2.1.

Lemma 2.2. [27] Let f be a nonconstant meromorphic function, and p, k ∈ Z+.
Then

Np(r,
1

f (k)
) ≤ T (r, f (k))− T (r, f) +Np+k(r,

1

f
) + S(r, f), (2.1)

Np(r,
1

f (k)
) ≤ kN(r, f) +Np+k(r,

1

f
) + S(r, f). (2.2)

Lemma 2.3. [10] Let f and g be two non-constant meromorphic functions. If
E2(1; f) = E2(1; g), then one of the following relation holds:
(i) T (r) ≤ N2(r,

1
f ) +N2(r,

1
g ) +N2(r, f) +N2(r, g) + S(r);

(ii) f = g;
(iii) fg = 1;
where T (r) = max{T (r, f), T (r, g)} and S(r) = o{T (r)}.

Lemma 2.4. [1] Let F and G be two non-constant meromorphic functions such
that E1(1;F ) = E1(1;G) and H ̸≡ 0, then
T (r, F ) ≤ N2(r,

1
F ) + N2(r,

1
G ) + N2(r, F ) + N2(r,G) + 1

2N(r, 1
F ) + 1

2N(r, F ) +
S(r, F ) + S(r,G);
and we can deduce same result for T (r,G).



JFCA-2024/15(1) ON Q-SHIFT DIFFERENCE-DIFFERENTIAL POLYNOMIALS ... 5

Lemma 2.5. [1] Let F and G be two non-constant meromorphic functions which
are share 1 IM and H ̸≡ 0, then,
T (r, F ) ≤ N2(r,

1
F )+N2(r,

1
G )+N2(r, F )+N2(r,G)+2N(r, 1

F )+N(r, 1
G )+2N(r, F )+

N(r,G) + S(r, F ) + S(r,G);
the same inequality holds for T (r,G).

Lemma 2.6. [23] Let f be a transcendental meromorphic function of order zero
and q, c two nonzero complex constants. Then
T (r, f(qz + c)) = T (r, f(z)) + S(r, f);
N(r, f(qz + c)) = N(r, f(z)) + S(r, f);
N(r, 1

f(qz+c) ) = N(r, 1
f(z) ) + S(r, f);

N(r, f(qz + c)) = N(r, f(z)) + S(r, f);
N(r, 1

f(qz+c) ) = N(r, 1
f(z) ) + S(r, f).

Lemma 2.7. [16] Let f(z) be a nonconstant zero-order meromorphic function and

q ∈ C \ {0}. Then, m(r, f(qz+c)
f(z) ) = S(r, f) on a set of logarithmic density 1.

Remark 2.1. For finite nonzero-order meromorphic functions, the conclusion of
the lemma 2.7 may not be true. We can take the following example:

Let f(z) = e2z. Then m(r, f(2z+1)
f(z) ) = e2m(r, f) = e2T (r, f).

Lemma 2.8. Let f be a transcendental meromorphic function of order zero and
qj (̸= 0), cj(j = 1, 2, ..., d) are complex constants. Then

(n−λ+τ)T (r, f)+S(r, f) ≤ T (r, fτp(f)
∏d

j=1 f(qjz+cj)
sj ) ≤ (n+λ+τ)T (r, f)+

S(r, f)
In addition, if f is a transcendental entire function of zero order, then

T (r, fτp(f)
∏d

j=1 f(qjz + cj)
sj ) = T (r, fτp(f)

∏d
j=1 f

sj (z)) + S(r, f) = (n + λ +

τ)T (r, f) + S(r, f).

Proof. Now f(z) is a transcendental entire function and F (z) = fτp(f)
∏d

j=1 f(qjz+

cj)
sj . Then after using lemma 2.7 we have

T (r, F (z)) = m(r, F (z))

= m(r, fτp(f)

d∏
j=1

f(qjz + cj)
sj )

≤ m(r, fτp(f)

d∏
j=1

f(z)sj ) +m(r,

∏d
j=1 f(qjz + cj)

sj∏d
j=1 f(z)

sj
)

≤ (n+ τ)T (r, f) + λT (r, f) + S1(r, f).
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Hence, T (r, F (z)) ≤ (n+ λ+ τ)T (r, f) + S1(r, f).
On the other hand from Lemma 2.7, we have

(n+ λ+ τ)T (r, f) = T (r, fτp(f)

d∏
j=1

f(z)sj ) + S(r, f)

≤ m(r, fτp(f)

d∏
j=1

f(z)sj ) + S(r, f)

≤ m(r, F (z)) +m(r,

∏d
j=1 f(z)

sj∏d
j=1 f(qjz + cj)sj

)

≤ T (r, F (z)) + S1(r, f).

Hence,

T (r, fτp(f)
∏d

j=1 f(qjz + cj)
sj ) = T (r, fτp(f)

∏d
j=1 f(z)

sj ) + S1(r, f) = (n + λ +

τ)T (r, f) + S1(r, f).
If f is a meromorphic function of zero order from lemma 2.6 and lemma 2.1 we have,

T (r, fτp(f)

d∏
j=1

f(qjz + cj)
sj ) ≤ T (r, fτp(f)) + T (r,

d∏
j=1

f(qjz + cj)
sj )

≤ (n+ τ)T (r, f) + λT (r, f) + S1(r, f)

≤ (n+ λ+ τ)T (r, f) + S1(r, f),

On the other hand from lemma 2.7 and lemma 2.1 we have

(n+ λ+ τ)T (r, f) ≤ T (r, fτp(f)

d∏
j=1

f(z)sj ) + S(r, f)

= m(r, fτp(f)

d∏
j=1

f(z)sj ) +N(r, fτp(f)

d∏
j=1

f(z)sj ) + S(r, f)

≤ m(r, F (f)

∏d
j=1 f(z)

sj )∏d
j=1 f(qjz + cj)sj

)

+ N(r, F (f)

∏d
j=1 f(z)

sj )∏d
j=1 f(qjz + cj)sj

) + S(r, f)

≤ T (r, F (f)) + 2λT (r, f) + S(r, f),

hence (n− λ+ τ)T (r, f) ≤ T (r, F (z)) + S(r, f).
Hence the result,

(n−λ+τ)T (r, f)+S1(r, f) ≤ T (r, fτp(f)
∏d

j=1 f(qjz+cj)
sj ) ≤ (n+λ+τ)T (r, f)+

S1(r, f). □

Lemma 2.9. Let f and g be two entire functions, qj , cj(j = 1, 2, ..., d) complex con-

stants and qj ̸= 0 ; n, k, d, sj , τ are positive integers and let F = (fτp(f)
∏d

j=1 f(qjz+

cj)
sj )(k), G = (gτp(g)

∏d
j=1 g(qjz + cj)

sj )(k). If there exists two nonzero constants
b1 and b2 such that
N(r, b1;F ) = N(r, 1

G ) and N(r, b2;G) = N(r, 1
F ), then n ≤ 2Γ1 + km2 + λ+ τ .
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Proof. Let F1 = fτP (f)
∏d

j=1 f(qjz + cj)
sj and G1 = gτP (g)

∏d
j=1 g(qjz + cj)

sj .
By the second main theorem of Nevanlinna, we have

T (r, F ) ≤ N(r,
1

F
) +N(r, c1;F ) + S(r, F ) ≤ N(r,

1

F
) +N(r,

1

G
) + S(r, F ). (2.3)

Using (2.1),(2.2),(2.3) and lemmas 2.1, 2.6, 2.8, we get,

(n+ λ+ τ)T (r, f) ≤ T (r, F )−N(r,
1

F
) +Nk+1(r,

1

F1
) + S(r, f)

≤ N(r,
1

G
) +Nk+1(r,

1

F1
) + S(r, f)

≤ Nk+1(r,
1

F1
) +Nk+1(r,

1

G1
) + S(r, g) + S(r, f)

≤ Nk+1(r,
1

fτp(f)
) +Nk+1(r,

1∏d
j=1 f(qjz + cj)sj

) + S(r, f)

+ Nk+1(r,
1

gτp(g)
) +Nk+1(r,

1∏d
j=1 g(qjz + cj)sj

) + S(r, g)

≤ (m1 +m2 + km2 + λ+ τ)(T (r, f) + T (r, g)) + S(r, g).(2.4)

Similarly,

(n+ λ+ τ)T (r, g) ≤ (m1 +m2 + km2 + λ+ τ)(T (r, f) + T (r, g))

+ S(r, f) + S(r, g). (2.5)

In view of (2.4), (2.5) we have,

(n− 2m1 − 2m2 − 2km2 − λ− τ)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

Which gives n ≤ 2Γ1 + 2km2 + λ+ τ . This proves the lemma. □

3. Main Results

Theorem 3.1. Let f transcendental entire function of zero order and let qj ∈
C \ {0}, cj ∈ C(j = 1, 2, ..., d). If n > Γ1 + km2, then (fτp(f)

∏d
j=1 f(qjz +

cj)
sj )(k) − α(z) = 0 has infinitely many solutions where n, k,τ are integers and

α(z) ∈ S(f)\{0}.

Proof. We take F1 = fτp(f)
∏d

j=1 f(qjz + cj)
sj . Then F1 is transcendental entire

function. In contrary, we assume that F
(k)
1 −α(z) has finitely many solutions. Then

N(r, α;F
(k)
1 ) = O{log r} = S(r, f).

Now using the above result and (2.1) and (2.3) we have from Nevanlinna’s theorem
for three small functions

T (r, F
(k)
1 ) ≤ N(r,

1

F
(k)
1

) +N(r, α;F
(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+1(r,

1

F1
) + S(r, f).
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Now using lemma 2.7 on the above results we have

(n+ λ+ τ)T (r, f) ≤ Nk+1(r,
1

F1
) + S(r, f)

≤ Nk+1(r,
1

p(f)
) +N(r,

1

fτ
)

+ N(r,
1∏d

j=1 f(qjz + cj)sj
) + S(r, f)

≤ (m1 +m2 + km2 + λ+ τ)T (r, f) + S(r, f),

that is,

(n−m1 −m2 − km2)T (r, f) ≤ S(r, f),

which is a contradiction with our assumption that n > Γ1 + km2.
This proves the theorem. □

Theorem 3.2. Let f and g be two transcendental entire functions of zero order and

let qj ∈ C \ {0}, cj ∈ C(j = 1, 2, ..., d). If El(1; (f
τp(f)

∏d
j=1 f(qjz + cj)

sj )(k)) =

El(1; (g
τp(g)

∏d
j=1 g(qjz + cj)

sj )(k)) and l,m, n, d, τ are integers satisfy one of the
following conditions:
(i) l ≥ 2;n > 2Γ2 + 2km2 + λ+ τ ;
(ii) l = 1;n > 1

2 (Γ1 + 4Γ2 + 5km2 + 3λ+ 3τ);
(iii) l = 0;n > 3Γ1 + 2Γ2 + 5km2 + 4λ+ 4τ ;
then one of the following results holds:
(i) f = tg for a constant t such that tχ = 1;
(ii) f and g satisfy the algebraic equation R(f, g) = 0, where

R(γ1, γ2) = γτ
1 p(γ1)

∏d
j=1 γ1(qjz + cj)

sj − γτ
2 p(γ2)

∏d
j=1 γ2(qjz + cj)

sj ;

(iii) f(z) = eγ(z) and g(z) = κe−γ(z), where κ is a complex constant satisfy
a2nκ

n+λ+τ = 1.

Proof. We have f(z) is a transcendental entire functions and we take

F1 = fτp(f)
∏d

j=1 f(qjz + cj)
sj , G1 = gτp(g)

∏d
j=1 g(qjz + cj)

sj and F = F
(k)
1

and G = G
(k)
1 . Then F and G are transcendental meromorphic functions satisfy

El(1;F ) = El(1;G). Now with help of lemma 2.8 and using (2.1) we have,

N2(r,
1

F
) ≤ N2(r,

1

F
(k)
1

) + S(r, f)

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+2(r,

1

F1
) + S(r, f)

≤ T (r, F )− (n+ λ+ τ)T (r, f) +Nk+2(r,
1

F1
) + S(r, f).

Hence,

(n+ λ+ τ)T (r, f) ≤ T (r, F )−N2(r,
1

F
) +Nk+2(r,

1

F1
) + S(r, f). (3.1)
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We can show from (2.2),

N2(r,
1

F
) ≤ N2(r,

1

F
(k)
1

) + S(r, f)

≤ Nk+2(r,
1

F1
) + S(r, f). (3.2)

Now following three cases will be discuss separately:

Case I.

Let l ≥ 2. If possible we assume that (i) of lemma 2.3 holds. We can deduce
from (3.1) with help of (3.2),

(n+ λ+ τ)T (r, f) ≤ N2(r,
1

G
) +N2(r, F ) +N2(r,G) +Nk+2(r,

1

F1
)

+ S(r, f) + S(r, g)

≤ Nk+2(r,
1

F1
) +Nk+2(r,

1

G1
) + S(r, f) + S(r, g)

≤ Nk+2(r,
1

p(f)
) +Nk+2(r,

1

p(g)
) +Nk+2(r,

1

fτ
)

+ Nk+2(r,
1

gτ
) +Nk+2(r,

1∏d
j=1 f(qjz + cj)sj

)

+ Nk+2(r,
1∏d

j=1 g(qjz + cj)sj
) + S(r, f) + S(r, g)

≤ (m1 + 2m2 + km2 + λ+ τ)(T (r, f) + T (r, g))

+ S(r, f) + S(r, g). (3.3)

Same we can show for T (r, g) i.e

(n+λ+ τ)T (r, g) ≤ (m1+2m2+km2+λ+ τ)(T (r, f)+T (r, g))+S(r, f)+S(r, g).
(3.4)

We can obtain from (3.3) and (3.4)

(n− 2m1 − 4m2 − 2km2 − λ− τ)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradict the fact n > 2Γ2 + 2km2 + λ + τ . Then by lemma 2.3 we claim
that either FG = 1 or F = G.
Let FG = 1. Then,

(fτp(f)

d∏
j=1

f(qjz + cj)
sj )(k)(gτp(g)

d∏
j=1

g(qjz + cj)
sj )(k) = 1. (3.5)

If possible, let p(z) = 0 hasm roots α1, α2, α3, ..., αm with multiplicity n1, n2, n3, ..., nm.
Then we have n1 + n2 + n3 + ...+ nm = n. Now from (3.5) we have,

[fτan(f − α1)
n1(f − α2)

n2 ...(f − αm)nm

d∏
j=1

f(qjz + cj)
sj ](k) ×

[gτan(g − α1)
n1(g − α2)

n2 ...(g − αm)nm

d∏
j=1

g(qjz + cj)
sj ](k) = 1. (3.6)
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Since f and g are nonconstant entire functions from (3.6), we see that α1 = α2 =
... = αm = 0. Also we can say that α1, α2, ..., αm are picard’s exceptional values.
By picard’s theorem of entire function, we have at least three picard’s exceptional
values of f and if m ≥ 2 and αi ̸= 0(i = 1, 2, ...,m), then we obtain a contradiction.
Next we assume that p(z) = 0 has only one root. Then p(f) = an(f − a)n and
p(g) = an(g − a)n, where a is any complex constant. Now from (3.5) we can write

[fτan(f − a)n
d∏

j=1

f(qjz + cj)
sj ](k)[gτan(g − a)n

d∏
j=1

g(qjz + cj)
sj ](k) = 1. (3.7)

By picard’s theorem and as f , g are transcendental entire functions, then we can
say that f − a = 0 and g − a = 0 do not have zeros. Then, we obtain that
f(z) = eγ(z) + a and g(z) = eβ(z) + a, γ(z), β(z) being nonconstant polynomials.

From (3.7), we also see that
∏d

j=1 f(qjz+ cj)
sj ̸= 0 and

∏d
j=1 g(qjz+ cj)

sj ̸= 0 and

therefore a = 0. Thus f(z) = eγ(z), g(z) = eβ(z), p(z) = anz
n and

[ane
nγ(z)+τγ(z)+Σd

j=1sjγ(qjz+cj)](k)[ane
nβ(z)+τγ(z)+Σd

j=1sjβ(qjz+cj)](k) = 1. (3.8)

If k = 0, then from (3.8) we have,

a2ne
(n+τ)(γ(z)+β(z))+Σd

j=1sj(γ(qjz+cj)+β(qjz+cj)) = 1.

Since γ(z) and β(z) are two nonconstant polynomials, we get γ(z) + β(z) = ρ
where ρ is a constant. From this we can easily see that f(z) = eγ(z) and g(z) =
κe−γ(z) where γ is a nonconstant polynomial and κ is a complex constant satisfying
a2nκ

n+λ+τ ≡ 1 and κ = eρ.

If k ≥ 1, then we get

[ane
(n+τ)γ(z)+Σd

j=1sjγ(qjz+cj)](k) = ane
(n+τ)γ(z)+Σd

j=1sjγ(qjz+cj)p(γ′γ′
cj , ..., γ

(k)γ(k)
cj ),

where γcj = γ(qjz + cj)(j = 1, 2, ..., d). Obviously, p(γ′γ′
cj , ..., γ

(k)γ
(k)
cj ) has infin-

itely many zeros, and which contradict with (3.8).

Now let F = G. Then
(fτp(f)

∏d
j=1 f(qjz + cj)

sj )(k) = (gτp(g)
∏d

j=1 g(qjz + cj)
sj )(k),

Integrating one time we have

(fτp(f)

d∏
j=1

f(qjz + cj)
sj )(k−1) = (gτp(g)

d∏
j=1

g(qjz + cj)
sj )(k−1) + µk−1,

where µk−1 is a constant. If µk−1 ̸= 0 using lemma 2.9 we say that n ≤ 2Γ1+2km2+
λ + τ , which contradict with the fact that n > 2Γ2 + 2km2 + λ + τ and Γ2 ≥ Γ1.
Hence µk−1 = 0. Now repeating the process upto k-times, we can established

fτp(f)

d∏
j=1

f(qjz + cj)
sj = gτp(g)

d∏
j=1

g(qjz + cj)
sj . (3.9)
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Let h = f
g . If h is a not a constant, then from last equation, we can say that f and

g satisfy the algebraic equation, R(f, g) = 0 where,

R(γ1, γ2) = γτ
1 p(γ1)

d∏
j=1

γ1(qjz + cj)
sj − γτ

2 p(γ2)

d∏
j=1

γ2(qjz + cj)
sj .

If h be a constant, then substituting f = gh into (3.9) we have,

(hg)τp(hg)

d∏
j=1

(hg)(qjz + cj)
sj = gτp(g)

d∏
j=1

g(qjz + cj)
sj ,

,

gτ
d∏

j=1

g(qjz+cj)
sj [ang

n(hn+λ+τ−1)+an−1g
n−1(hn+λ+τ−1−1)+· · ·+a0(h

λ+τ−1)] = 0,

(3.10)
where an(̸= 0), an−1, · · · , a0 are constants. Since g is transcendental entire function,
we have gτ

∏d
j=1 g(qjz + cj)

sj ̸≡ 0. Then from (3.10) we have,

[ang
n(hn+λ+τ − 1) + an−1g

n−1(hn+λ+τ−1 − 1) + · · ·+ a0(h
λ+τ − 1)] = 0. (3.11)

If an ̸= 0 and an−1 = an−2 = · · · = a0 = 0, then from (3.11) we have hn+λ+τ = 1. If
an ̸= 0 and there exists ai ̸= 0(i ∈ {0, 1, 2, · · · , n− 1}). Suppose that hn+λ+τ ̸= 1.
From (3.11), we have T (r, g) = S(r, g) which is a contradiction with that g is a
transcendental function. Then hn+λ+τ = 1. Similar to this discussion, we can see
that hλ+τ+j = 1 when aj ̸= 0 for same j = 0, 1, 2, · · · , n. Thus, we have f = tg for
a constant t such that tχ = 1, χ = GCD(λ0 + λ+ τ, λ1 + λ+ τ, ..., λn + λ+ τ).

Case II.
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Let l = 1 and H ̸≡ 0. Using lemma 2.4 and (3.2) we can established from (3.1)

(n+ λ+ τ)T (r, f) ≤ T (r, F )−N2(r,
1

F
) +Nk+2(r,

1

F1
)

≤ N2(r,
1

G
) +N2(r, F ) +N2(r,G) +

1

2
N(r,

1

F
)

+
1

2
N(r, F ) +Nk+2(r,

1

F1
) + S(r, f) + S(r, g)

≤ N2(r,
1

G
) +

1

2
N(r,

1

F
) +Nk+2(r,

1

F1
) + S(r, f) + S(r, g)

≤ Nk+2(r,
1

F1
) +Nk+2(r,

1

G1
) +

1

2
Nk+1(r,

1

F1
)

+ S(r, f) + S(r, g)

≤ Nk+2(r,
1

p(f)
) +Nk+2(r,

1

p(g)
) +

1

2
Nk+1(r,

1

p(f)
)

+ Nk+2(r,
1

fτ
) +Nk+2(r,

1

gτ
) +

1

2
Nk+1(r,

1

fτ
)

+ Nk+2(r,
1∏d

j=1 f(qjz + cj)sj
) +Nk+2(r,

1∏d
j=1 g(qjz + cj)sj

)

+
1

2
Nk+1(r,

1∏d
j=1 f(qjz + cj)sj

) + S(r, f) + S(r, g)

≤ 1

2
[3m1 + (3k + 5)m2 + 3λ+ 3τ ]T (r, f) + S(r, f)

+ [m1 + (k + 2)m2 + λ+ τ ]T (r, g) + S(r, g).

Similarly we can show that

(n+ λ+ τ)T (r, g) ≤ 1

2
[3m1 + (3k + 5)m2 + 3λ+ 3τ ]T (r, g) + S(r, f)

+ [m1 + (k + 2)m2 + λ+ τ ]T (r, f) + S(r, g),

we have from two inequalities,

(n− 1

2
(5m1 + (5k + 9)m2 + 3λ+ 3τ))(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradict the fact n > 1
2 (Γ1 + 4Γ2 + 5km2 + 3λ+ 3τ).

Now, let H ≡ 0, i.e (F
′′

F ′ − 2F ′

F−1 )− (G
′′

G′ − 2G′

G−1 ) = 0.
After two times integration we have,

1

F − 1
=

A

G− 1
+B, (3.12)

where A,B are constants and A ̸= 0. From (3.12) it is clear that F , G share the
value 1 CM and then they share (1,2). Hence we have n > 2Γ2 + 2km2 + λ + τ .
Now we study the following cases:

Subcase I.
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Let B ̸= 0 and A = B. Then from (3.12) we get,

1

F − 1
=

BG

G− 1
, (3.13)

If B = −1, then from (3.13) FG = 1, from which, we get f(z) = eγ(z), and g(z) =
κe−γ(z), where κ is a constant satisfying a2nκ

n+λ+τ = 1 as in Case I. Now if B ̸= −1,
then from (3.10), we have, 1

F = BG
(1+B)G−1 and then, N(r, 1

1+B ;G) = N(r, 1
F ). Now

from the second main theorem of Nevanlinna, we get using (2.1) and (2.2) that

T (r,G) = N(r,
1

G
) +N(r,

1

1 +B
;G) +N(r,G) + S(r,G)

≤ N(r,
1

F
) +N(r,

1

G
) +N(r,G) + S(r,G)

≤ Nk+1(r,
1

F1
) + T (r,G) +Nk+1(r,

1

G1
)− (n+ λ+ τ)T (r, g) + S(r, g).

This gives,

(n+ λ+ τ)T (r, g) ≤ Nk+1(r,
1

F1
) +Nk+1(r,

1

G1
) + S(r, g)

≤ Nk+1(r,
1

p(f)
) +Nk+1(r,

1

p(g)
) +Nk+1(r,

1

fτ
)

+ Nk+1(r,
1

gτ
) +Nk+1(r,

1∏d
j=1 f(qjz + cj)sj

)

+ Nk+1(r,
1∏d

j=1 g(qjz + cj)sj
) + S(r, f) + +S(r, g)

≤ (m1 + (k + 1)m2 + λ+ τ)(T (r, f) + T (r, g)) + S(r, g).

We can show same result for T (r, f) i.e

(n+ λ+ τ)T (r, f) ≤ (m1 + (k + 1)m2 + λ)(T (r, f) + T (r, g)) + S(r, f),

Thus combining both we obtain

(n− 2m1 − 2(k + 1)m2 − λ− τ)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction as n > 2Γ2 + 2km2 + λ+ τ .

Subcase II.

Let A ̸= 0 and B = 0. Now from (3.12) we have F = G+A−1
A and G = AF −

(A− 1). If A ̸= 1, we have N(r, A−1
A ;F ) = N(r, 1

G ) and N(r, 1−A;G) = N(r, 1
F ).

Then by lemma 2.9, we have n ≤ 2Γ1 + 2km2 + λ + τ , which is a contradiction.
Thus A = 1 and F = G, then the result follows from the proof of Case I.

Subcase III.

Let B ̸= 0 and A ̸= B. Then from (3.12), we obtain F = (B+1)G−(B−A+1)
BG+(A−B) and

therefore N(r, B−A+1
B+1 ;G) = N(r, 1

F ). Proceeding similarly as in Subcase I, we can
get a contradiction.
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Case III.

Let l = 0 and H ̸≡ 0, we can established from (3.1) after using lemma 2.5 and
(3.2)

(n+ λ+ τ)T (r, f) ≤ N2(r,
1

G
) +N2(r, F ) +N2(r,G) + 2N(r,

1

F
) +N(r,

1

G
)

+ 2N(r, F ) +N(r,G) +Nk+2(r,
1

F1
) + S(r, f) + S(r, g)

≤ Nk+2(r,
1

F1
) +Nk+2(r,

1

G1
) + 2Nk+1(r,

1

F1
) +Nk+1(r,

1

G1
)

+ S(r, f) + S(r, g)

≤ Nk+2(r,
1

p(f)
) +Nk+2(r,

1

p(g)
) + 2Nk+1(r,

1

p(f)
)

+ Nk+1(r,
1

p(g)
) +Nk+2(r,

1

fτ
) +Nk+2(r,

1

gτ
) + 2Nk+1(r,

1

fτ
)

+ Nk+1(r,
1

gτ
) +Nk+2(r,

1∏d
j=1 f(qjz + cj)sj

)

+ Nk+2(r,
1∏d

j=1 g(qjz + cj)sj
) + 2Nk+1(r,

1∏d
j=1 f(qjz + cj)sj

)

+ Nk+1(r,
1∏d

j=1 g(qjz + cj)sj
) + S(r, f) + S(r, g)

≤ [3m1 + (3k + 4)m2 + 3λ+ 3τ ]T (r, f)

+ [2m1 + (2k + 3)m2 + 2λ+ 2τ ]T (r, g) + S(r, f) + S(r, g).

Similarly it follows that

(n+ λ+ τ)T (r, g) ≤ [3m1 + (3k + 4)m2 + 3λ+ 3τ ]T (r, g)

+ [2m1 + (2k + 3)m2 + 2λ+ 2τ ]T (r, f) + S(r, f) + S(r, g).

From the above two inequalities we have
(n− 5m1 − (5k + 7)m2 − 4λ− 4τ ](T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),
which contradict with our assumption that n > 3Γ1 + 2Γ2 + 5km2 + 4λ + 4τ .
Therefore H = 0 and then proceeding in similar manner as Case II, we get the
results. This complete the proof of the theorem. □

Theorem 3.3. Let f and g be two transcendental entire functions of zero order and
let q ∈ C \ {0}, c ∈ C. If El(1; (f

τp(f)f(qz + c))(k)) = El(1; (g
τp(g)g(qz + c))(k))

and l,m, n, τ are integers satisfy one of the following conditions:
(i) l ≥ 2;n > 2Γ2 + 2km2 + τ + 1;
(ii) l = 1;n > 1

2 (Γ1 + 4Γ2 + 5km2 + 3τ + 3);
(iii) l = 0;n > 3Γ1 + 2Γ2 + 5km2 + 4τ + 4;
Then one of the following results holds:
(i) f = tg for a constant t such that tη = 1;
(ii) f and g satisfy the algebraic equation R(f, g) = 0, where
R(γ1, γ2) = γτ

1 p(γ1)γ1(qz + c)− γτ
2 p(γ2)γ2(qz + c);

(iii) f(z) = eγ(z) and g(z) = κe−γ(z), where κ is a complex constant satisfy
a2nκ

n+τ+1 = 1.
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Proof. The theorem 3.3 is special case of theorem 3.2, where
∏d

j=1 f(qjz + cj)
sj is

taken as f(qz + c) i.e λ is equivalent to 1. □

Remark 3.1. The theorem 3.1 and theorem 3.2 may not hold for non-zero finite
order transcendental entire function.

Corollary 3.1. We can obtain another interesting result by considering difference-

differential polynomial function like as fm(p(f)
∏d

j=1 f(qjz + cj)
sj )(k).

Example 3.1. Let p(z) = (z − 1)8(z + 1)8z15, f(z) = sin(z) and g(z) = cos(z).
we assume d = 1, Sj = 1, k = 0, qj = 1,m = 0 and cj = 2π for problem of

theorem 3.2. Now it is clear n > 2Γ2 + 2km2 + τ + 1 and (fmp(f)
∏d

j=1 f(qjz +

cj)
sj )(k) = (gmp(g)

∏d
j=1 g(qjz + cj)

sj )(k). Then (fmp(f)
∏d

j=1 f(qjz + cj)
sj )(k) =

(gmp(g)
∏d

j=1 g(qjz + cj)
sj )(k) share 1 CM. Hence it satisfy condition of theorem

3.2 and f and g satisfy the algebraic equation R(f, g) = 0 where R(γ1, γ2) =

γm
1 p(γ1)

∏d
j=1 γ1(qjz + cj)

sj − γm
2 p(γ2)

∏d
j=1 γ2(qjz + cj)

sj .

4. Open Problems

We can pose following problems from our results:
1. Can n be further reduced in theorem 3.2?
2. Is the theorem 3.2 would be valid for any non-constant meromorphic function?
3. Is it possible to discuss the problem of theorem 3.2 under the concept of weakly
weighted sharing?
4. What is the extra condition which need to introduced to develop an uniqueness
result for the problem of theorem 3.2 for a transcendental entire function of finite
non-zero order?
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