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SOME RESULTS ON NONLINEAR FRACTIONAL

INTEGRO-DIFFERENTIAL EQUATIONS WITH POSITIVE

CONSTANT COEFFICIENT

H. L. TIDKE, V. V. KHARAT

Abstract. In this paper, we study the main results of existence and unique-
ness of mild solutions of fractional Volterra integrodifferential equation in-

volving Caputo fractional derivative of special class n − 1 < α ≤ n, n > 1.

Furthermore, the various type of dependency of mild solutions of the proposed
problem have been studied such as dependence on given initial data, continu-

ously depends on the functions involved in the right side of the problem and

on real parameters. The result of existence and uniqueness is obtained with
help of well known Banach contraction principle and the integral inequality

established by B. G. Pachpatte which provides explicit bound on the unknown
function. A suitable example is given to demonstrate the obtained results.

1. Introduction

In the present paper, we study existence, uniqueness and other properties of mild
solutions of the following nonlinear Caputo fractional integro-differential equations
with constant coefficient λ ∈ (0, 1) of the type:

D∗
αy(t) = λy(t) + f

(
t, y(t),

∫ t

0

K(s, y(s))ds

)
, (1)

for t ∈ I = [0, b], n− 1 < α ≤ n, n > 1; with initial conditions:

y(j)(0) = cj , (j = 0, 1, 2, . . . , n− 1) (2)

where f : I ×X ×X → X, K : I ×X → X are continuous functions and cj (j =
0, 1, 2, . . . , n− 1) are given points in X.
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For the most of differential or integro-differential equations of fractional order, the
solution is presented in terms of equivalent integral equation with singular kernel
and few inequalities are there to study other properties of special version of such
equations. Further, in case of singular kernel, there are several research papers in
the literature using the fact that (t− s)α−1 ≤ bα, s ≤ t ∈ [0, b] with 0 < α < 1.
This is incorrect, in fact for α = 1

2 and the interval [0, 1] with t = 1
2 , s = 1

3 , one
can observe that

(t− s)α−1 = (
1

2
− 1

3
)

1
2−1 = (

3− 2

6
)−

1
2 = (

1

6
)−

1
2 =

√
6 ≰ bα = 1

1
2 = 1.

By keeping these in mind, authors considered a class of special equations where
singularities are removed and we are free to use general integral inequalities to
discuss the various properties of solutions. This study may be the new motivation
towards the class of more general type.

Recently, several researchers have been studied the results such as existence, unique-
ness and other properties of solutions for the nonlinear fractional equations involv-
ing various types of fractional derivatives by different techniques, see [2, 3, 5, 7, 8,
9, 10, 12, 13, 15, 16, 17, 21, 22, 23, 24, 26] and the detailed literature for fractional
calculus can be found in [1, 4, 6, 14, 18, 20, 25].

The paper is organized as follows. In section 2, we present the preliminaries and
hypotheses. Section 3, deal with existence and uniqueness by contraction principle.
Section 4 devoted to the existence of at most one mild solution and estimates on mild
solutions via inequality. In Section 5, we discuss results on continuous dependence
of mild solutions on initial data, functions involved therein and parameters. Finally,
in section 6, we present a suitable example to demonstrate the obtained results.

2. Preliminaries

Before proceeding to the statement of our main results, we shall setforth some
preliminaries and hypotheses that will be used in our subsequent discussion.

Let X be a Banach space with norm ∥ · ∥ and I = [0, b] denotes an interval of the
real line R. Let B = C(I,X) denote the Banach space of continuous functions from
I into X, endowed with the norm

∥y∥B = sup
t∈I

{∥y(t)∥ : y ∈ B}.

Definition 2.1. [20] The Riemann-Liouville fractional integral (left-sided) of a
function h ∈ C[a, b] of order α ∈ R+ = (0,∞) is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s) ds,

where Γ is the Euler gamma function.

Definition 2.2. [20] Let n− 1 < α < n, n ∈ N. Then the expression

Dα
ah(t) =

dn

dxn

[
In−α
a h(t)

]
, x ∈ [a, b]

is called the (left sided) Riemann Liouville derivative of h of order α whenever the
expression on the right-hand side is defined.
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Definition 2.3. [14] Let h ∈ Cn[a, b] and n − 1 < α ≤ n, n ∈ N. Then the
expression (

Dαi
∗a
)
h(t) = In−α

a h(n)(t), x ∈ [a, b]

is called the (left sided) Caputo derivative of h of order α.

In the further discussion, we will denote Iαa , D
α
a and Dα

∗0 as Iα, Dα and Dα
∗ .

Lemma 2.1. [11] If the function f = (f1, · · · , fn) ∈ C1, then the initial value
problem

Dαi
∗ yi(t) = fi(t, y1, · · · , yn), y

(k)
i (0) = cik, i = 1, 2, · · · , n, k = 1, 2, · · · ,mi

where mi < αi ≤ mi+1 and Dαi
∗ denotes Caputo fractional derivative, is equivalent

to Volterra integral equations:

yi(t) =

mi∑
k=0

cik
tk

k!
+ Iαifi(t, y1, · · · , yn), 1 ≤ i ≤ n.

Lemma 2.2. If the function H = λy(t) + f
(
t, y(t),

∫ t

0
K(s, y(s))

)
∈ C1[0, b], then

the corresponding Volterra integral equation of the initial value problem (1)− (2) is

y(t) =

n−1∑
j=0

cj
j!

tj +
λ

Γ(α)

∫ t

0

(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1f

(
s, y(s),

∫ s

0

K(τ, y(τ))dτ

)
ds, (3)

which represents the mild solution of the problem (1)− (2).

Proof. The proof is similar to Lemma 2.1 as proved in [11]. Hence, we omit the
details. □

We require the following Lemma known as Pachpatte’s inequality in our further
discussion.

Lemma 2.3. [19] Let u(t), q1(t) and q(t) be real valued nonnegative continuous
functions defined on R+ and w(t) be a positive and nondecreasing continuous func-
tion on R+, for which the inequality

u(t) ≤ w(t) +

∫ t

0

q1(s)

[
u(s) +

∫ s

0

q2(τ)u(τ)dτ

]
ds,

holds for t ∈ R+. Then

u(t) ≤ w(t)

[
1 +

∫ t

0

q1(s)exp

(∫ s

0

[q1(τ) + q2(τ)]dτ

)
ds

]
,

for t ∈ R+.

We list the following hypotheses for our convenience.

(H1) There exists a function p ∈ C(I,R+) such that

||f(t, x, y)− f(t, x̄, ȳ)|| ≤ p(t)
[
||x− x̄||+ ||y − ȳ||

]
,

for t ∈ J and x, y, x̄, ȳ ∈ X.
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(H2) There exists q ∈ C(I,R+) such that

∥K(t, x)−K(t, x̄)∥ ≤ q(t)∥x− x̄∥,

for t ∈ J and x, x̄ ∈ X.

(H3) Assume that d1 = sup
t∈I

∥f(t, 0,
∫ t

0

K(s, 0)ds)∥ and M = sup
t∈I

n−1∑
j=0

∥cj∥
j!

tj .

3. Existence and Uniqueness

The following theorem deals with existence and uniqueness of mild solution of the
problem (1)− (2).

Theorem 3.1. Assume that hypotheses (H1)− (H3) hold. If

β =

[
λ+ P (1 + bQ)

Γ(α+ 1)

]
bα < 1,

where P = max
t∈I

{p(t)}, Q = max
t∈I

{q(t)}, then the IVP problem (1)−(2) has a unique

mild solution on y ∈ B.

Proof. We use the Banach contraction principle to prove existence and uniqueness
of solution to the problem (1) − (2). Let Er = {y ∈ B : ∥y∥B ≤ r}, where

r ≥
[
1−

(
λ+P (1+bQ)

Γ(α+1)

)
bα
]−1 [

M + d1b
α

Γ(α+1)

]
be closed and bounded set. Define an

operator on the Banach space B by

(Ty)(t) =

n−1∑
j=0

cj
j!

tj +
λ

Γ(α)

∫ t

0

(t− s)α−1y(s) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1f

(
s, y(s),

∫ s

0

K(τ, y(τ))dτ

)
ds. (4)

Firstly, we show that the operator T maps Er into itself.

By using hypotheses, we have

∥(Ty)(t)∥

≤
n−1∑
j=0

∥cj∥
j!

tj +
λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f
(
s, y(s),

∫ s

0

K(τ, y(τ))dτ

)
∥ ds

≤ M +
λ

Γ(α)

∫ t

0

(t− s)α−1r ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f
(
s, y(s),

∫ s

0

K(τ, y(τ))dτ

)
− f

(
s, 0,

∫ s

0

K(τ, 0)dτ

)
∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f
(
s, 0,

∫ s

0

K(τ, 0)dτ

)
∥ ds

≤ M +
λr

Γ(α)

tα

α
+

d1
Γ(α)

∫ t

0

(t− s)α−1ds
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+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
∥y(s)∥+

∫ s

0

q(τ)∥y(s)∥dτ
]
ds

≤ M +
λrbα

Γ(α+ 1)
+

d1b
α

Γ(α+ 1)
+

1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
r +

∫ s

0

q(τ)rdτ

]
ds

≤ M +

(
λr + d1
Γ(α+ 1)

)
bα +

1

Γ(α)

∫ t

0

(t− s)α−1P

[
r +

∫ s

0

Qrdτ

]
ds

≤ M +

(
λr + d1
Γ(α+ 1)

)
bα +

1

Γ(α)

∫ t

0

(t− s)α−1P [r +Qrb] ds

≤ M +

(
λr + d1
Γ(α+ 1)

)
bα +

Pr [1 +Qb]

Γ(α)

tα

α

≤ M +

(
λr + d1
Γ(α+ 1)

)
bα +

Pr [1 +Qb]

Γ(α+ 1)
bα

≤ M +

(
d1b

α

Γ(α+ 1)

)
+

[
λ+ P [1 +Qb]

Γ(α+ 1)

]
rbα

≤
(
1−

[
λ+ P [1 +Qb]

Γ(α+ 1)

]
bα
)
r +

[
λ+ P [1 +Qb]

Γ(α+ 1)

]
rbα

= r −
[
λ+ P [1 +Qb]

Γ(α+ 1)

]
rbα +

[
λ+ P [1 +Qb]

Γ(α+ 1)

]
rbα

= r

Thus,

∥(Ty)∥B ≤ r. (5)

The equation (5) shows that the operator T maps Er into itself.

Now, for every x, y ∈ Er and for t ∈ I, we obtain

∥(Tx)(t)− (Ty)(t)∥

≤ λ

Γ(α)

∫ t

0

(t− s)α−1∥x(s)− y(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f
(
s, x(s),

∫ s

0

K(τ, x(τ))dτ

)
− f

(
s, y(s),

∫ s

0

K(τ, y(τ))dτ

)
∥ ds

≤ λ

Γ(α)

tα

α
∥x− y∥B

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
∥x(s)− y(s)∥+

∫ s

0

q(τ)∥x(τ)− y(τ)∥dτ
]
ds

≤ λ

Γ(α+ 1)
bα∥x− y∥B

+
1

Γ(α)

∫ t

0

(t− s)α−1P

[
∥x− y∥B +

∫ s

0

Q∥x− y∥Bdτ
]
ds

≤
(

λ

Γ(α+ 1)
bα
)
∥x− y∥B +

P (1 +Qb)

Γ(α+ 1)
bα∥x− y∥B
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=

(
λ+ P (1 +Qb)

Γ(α+ 1)
bα
)
∥x− y∥B

≤ β∥x− y∥B .

Hence, we have

∥(Tx)− (Ty)∥B ≤ β∥x− y∥B ,

where 0 < β < 1. This proves that the operator T is a contraction on the complete
metric space B. Therefore, by Banach fixed point theorem, the operator T has a
unique fixed point in the space B and this is the required unique mild solution of
the IVP (1)− (2) on I. □

4. Estimates on Mild Solutions

The following Theorem shows uniqueness of mild solutions to the IVP (1) − (2)
without the existence part.

Theorem 4.2. Suppose that the hypotheses (H1)− (H2) hold. Then the IVP prob-
lem (1)− (2) has at most one mild solution on I.

Proof. Let x(t) and y(t) be two mild solutions of the problem (1)− (2) and u(t) =
∥x(t)− y(t)∥, t ∈ I. Now by using hypotheses, we have

u(t) = ∥x(t)− y(t)∥

≤ λ

Γ(α)

∫ t

0

(t− s)α−1∥x(s)− y(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
∥x(s)− y(s)∥+

∫ s

0

q(τ)∥x(τ)− y(τ)∥dτ
]
ds

≤ λ

Γ(α)

∫ t

0

(t− s)α−1u(s) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
u(s) +

∫ s

0

q(τ)u(τ)dτ

]
ds

=

∫ t

0

(
λ+ p(s)

Γ(α)

)
(t− s)α−1

[
u(s) +

∫ s

0

q(τ)u(τ)dτ

]
ds.

Thus,

u(t) < ϵ+

∫ t

0

(
λ+ p(s)

Γ(α)

)
(b− s)α−1

[
u(s) +

∫ s

0

q(τ)u(τ)dτ

]
ds, (6)

where ϵ > 0.
By applying Pachpatte’s inequality to the inequality (6) with

w(t) = ϵ, q1(s) =

(
λ+ p(s)

Γ(α)

)
(b− s)α−1, q2(τ) = q(τ),

we obtain,

u(t) ≤ ϵ
[
1 +

∫ t

0

(
λ+ p(s)

Γ(α)

)
(b− s)α−1

× exp

{∫ s

0

[(
λ+ p(τ)

Γ(α)

)
(b− τ)α−1 + q(τ)

]
dτ

}
ds
]
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≤ ϵ
[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
Thus,

u(t)
[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]−1

≤ ϵ, (7)

for every ϵ > 0. This shows that every non-negative value is less than every positive
real number. Therefore it is possible only if

u(t)
[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]−1

= 0 ⇒ u(t) = 0,

since [
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
̸= 0.

Therefore x(t) = y(t), which proves that there exists at most one mild solution. □

First, we prove the following result concerning the estimates on the mild solution
of the problem (1)− (2) and shows that the boundedness of mild solution.

Theorem 4.3. Suppose that the hypotheses (H1) − (H3) hold. If y(t), t ∈ I is a
mild solution of the problem (1)− (2), then

∥y∥B ≤
(
M +

d1b
α

Γ(α+ 1)

)[
1 +

( λ+ P

Γ(α+ 1)

)
bα exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
.

Proof. By using the fact that the mild solution y(t) of the problem (1)−(2) satisfies
the equivalent equation (1) and the hypotheses, we have

∥y(t)∥ ≤
n−1∑
j=0

∥cj∥
j!

tj +
λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f
(
s, y(s),

∫ s

0

K(τ, y(τ))dτ

)
∥ ds

≤ M +
λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f
(
s, y(s),

∫ s

0

K(τ, y(τ))dτ

)
− f

(
s, 0,

∫ s

0

K(τ, 0)dτ

)
∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f
(
s, 0,

∫ s

0

K(τ, 0)dτ

)
∥ ds

≤ M +
1

Γ(α)

∫ t

0

(t− s)α−1d1ds+
λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)∥ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
∥y(s)∥+

∫ s

0

q(τ)∥y(τ)∥dτ
]
ds

≤ M +
d1t

α

Γ(α+ 1)
+

λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)∥ds



8 H. L. TIDKE AND V. V. KHARAT JFCA-2024/15(1)

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
∥y(s)∥+

∫ s

0

q(τ)∥y(τ)∥dτ
]
ds

which implies

∥y(t)∥ ≤ M +
d1t

α

Γ(α+ 1)

+

∫ t

0

(
λ+ p(s)

Γ(α)

)
(b− s)α−1

[
∥y(s)∥+

∫ s

0

q(τ)∥y(τ)∥dτ
]
ds (8)

Hence, by an application of Lemma 2.3 to (8) with

u(t) = ∥y(t)∥, w(t) = M +
d1t

α

Γ(α+ 1)
, q1(s) =

λ+ p(s)

Γ(α)
(b− s)α−1, q2(τ) = q(τ),

we obtain

∥y(t)∥ ≤
(
M +

d1t
α

Γ(α+ 1)

)[
1 +

∫ t

0

(
λ+ p(s)

Γ(α)

)
(b− s)α−1

× exp

(∫ s

0

(
λ+ p(τ)

Γ(α)

)
(b− τ)α−1 + q(τ)

)
ds
]

≤
(
M +

d1t
α

Γ(α+ 1)

)[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
≤
(
M +

d1b
α

Γ(α+ 1)

)[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
, t ∈ I.

(9)

Hence, we have

∥y∥B ≤
(
M +

d1b
α

Γ(α+ 1)

)[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
, (10)

which implies the boundedness of all mild solutions of the problem (1)− (2). □

5. Continuous Dependence

In this section, we shall deal with continuous dependence of the problem (1)− (2)
on the initial data, functions induced therein and also on parameters.

5.1. Dependence on initial data. We first discuss dependence of mild solution
on given initial data.

Theorem 5.4. Suppose that the hypotheses (H1)− (H2) hold. If y(t) and z(t) are
mild solutions of (1) with initial data

y(j)(0) = cj , (j = 0, 1, 2, . . . , n− 1) (11)

and

z(j)(0) = dj , (j = 0, 1, 2, . . . , n− 1) (12)

respectively, then

∥y − z∥B ≤
n−1∑
j=0

∥cj − dj∥
j!

bj
[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
. (13)
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Proof. By using the fact that y(t) and z(t) are mild solutions of (1). Then by the
hypotheses, we have

∥y(t)− z(t)∥

≤
n−1∑
j=0

∥cj − dj∥
j!

tj +
λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)− z(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
∥y(s)− z(s)∥+

∫ s

0

q(τ)∥y(τ)− z(τ)∥dτ
]
ds

≤
n−1∑
j=0

∥cj − dj∥
j!

tj +
λ

Γ(α)

∫ t

0

(t− s)α−1u(s) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
u(s) +

∫ s

0

q(τ)u(τ)dτ

]
ds

≤
n−1∑
j=0

∥cj − dj∥
j!

tj +

∫ t

0

(
λ+ p(s)

Γ(α)

)
(b− s)α−1

[
u(s) +

∫ s

0

q(τ)u(τ)dτ

]
ds. (14)

Now, on application of Lemma 2.3 to (14), we obtain

∥y(t)− z(t)∥ ≤
n−1∑
j=0

∥cj − dj∥
j!

tj
[
1 +

∫ t

0

(
λ+ p(s)

Γ(α)

)
(b− s)α−1

× exp

(∫ s

0

(
λ+ p(τ)

Γ(α)

)
(b− τ)α−1 + q(τ)

)
ds
]
, (15)

implies that

∥y − z∥B ≤
n−1∑
j=0

∥cj − dj∥
j!

bj
[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
. (16)

The term

n−1∑
j=0

∥cj − dj∥
j!

bj present from the right hand side of (16) depends con-

tinuously on initial conditions cj , dj , (j = 0, 1, 2, . . . , n − 1). Therefore, the mild
solutions of equation (1) are continuously depends on given initial data. □

5.2. Dependence on functions. Consider the problem (1) − (2) and the corre-
sponding problem

D∗
αz(t) = λz(t) + f̄

(
t, z(t),

∫ t

0

K̄(s, z(s))ds

)
, (17)

for t ∈ I := [0, b], b > 0, n − 1 < α ≤ n, n > 1, λ ∈ (0, 1) with condition (2),
where f̄ and K̄ are defined as f and K.

The following Theorem deals with the continuous dependence of mild solutions of
the problem (1)− (2) on the functions involved therein.

Theorem 5.5. Suppose that the hypotheses (H1)−(H2) hold. Furthermore, suppose
that

∥f

(
t, z(t),

∫ t

0

K(s, z(s))ds

)
− f̄

(
t, z(t),

∫ t

0

K̄(s, z(s))ds

)
∥ < ϵ,
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where ϵ > 0, is an arbitrary small constant and z(t) is a mild solution of the problem
(17) with (2). Then the mild solution y(t), t ∈ I of the problem (1) − (2) depends
continuously on the functions involved in the right side of the equation (1).

Proof. Let y(t) and z(t) be mild solutions of the problem (1) − (2) and (17) with
(2) respectively. Then, by hypotheses, we have

∥y(t)− z(t)∥

≤ λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)− z(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f

(
s, y(s),

∫ s

0

K(τ, y(τ))dτ

)

− f̄

(
s, z(s),

∫ s

0

K̄(τ, z(τ))dτ

)
∥ds

≤ λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)− z(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f

(
s, y(s),

∫ s

0

K(τ, y(τ))dτ

)

− f

(
s, z(s),

∫ s

0

K(τ, z(τ))dτ

)
∥ds

+
1

Γ(α)

∫ t

0

(t− s)α−1∥f

(
s, z(s),

∫ s

0

K(τ, z(τ))dτ

)

− f̄

(
s, z(s),

∫ s

0

K̄(τ, z(τ))dτ

)
∥ds

≤ λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)− z(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
∥y(s)− z(s)∥+

∫ s

0

q(τ)∥y(τ)− z(τ)∥dτ
]
ds

+
1

Γ(α)

∫ t

0

(t− s)α−1ϵds

≤ ϵ

Γ(α+ 1)
tα +

λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)− z(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)

[
∥y(s)− z(s)∥+

∫ s

0

q(τ)∥y(τ)− z(τ)∥dτ
]
ds

≤ ϵ

Γ(α+ 1)
tα

+

∫ t

0

(
λ+ p(s)

Γ(α)

)
(b− s)α−1

[
∥y(s)− z(s)∥+

∫ s

0

q(τ)∥y(τ)− z(τ)∥dτ
]
ds

(18)
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Therefore, on application of Lemma 2.3 to (18), we get

∥y(t)− z(t)∥ ≤ ϵtα

Γ(α+ 1)

[
1 +

∫ t

0

(
λ+ p(s)

Γ(α)
(b− s)α−1

)
× exp

[∫ s

0

{(
λ+ p(s)

Γ(α)

)
(b− s)α−1 + q(τ)

}
dτ

]
ds
]

≤ ϵbα

Γ(α+ 1)

[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
, t ∈ I.

This gives

∥y − z∥B ≤ ϵbα

Γ(α+ 1)

[
1 + bα

( λ+ P

Γ(α+ 1)

)
exp

( λ+ P

Γ(α+ 1)
bα +Qb

)]
. (19)

From (19), it follows that the mild solutions of problem (1)− (2) and (17) with (2)
are close to each other if f is near to f̄ . Thus, the mild solutions of the problem
(1) − (2) depends continuously on the functions involved in the right side of the
problem (1). □

5.3. Dependence on Parameters. We next consider the following problem

D∗
αy(t) = λy(t) + F

(
t, y(t),

∫ t

0

K(s, y(s))ds, µ1

)
, (20)

for t ∈ I := [0, b], b > 0, n− 1 < α ≤ n, n > 1, λ ∈ (0, 1) with condition (2) and

D∗
αy(t) = λy(t) + F

(
t, y(t),

∫ t

0

K(s, y(s))ds, µ2

)
, (21)

for t ∈ I := [0, b], b > 0, n − 1 < α ≤ n, n > 1, λ ∈ (0, 1) with condition (2),
where F ∈ C(I ×X ×X × R, X), K ∈ C(I,X) and constants µ1 and µ2 are real
parameters.

The following Theorem shows that the dependency of mild solutions of the problem
(20) with condition (2) and (21) with condition (2) on parameters.

Theorem 5.6. Assume that (H2) holds and the function F satisfying the conditions

∥F

(
t, y(t), z(t), µ1

)
− F

(
t, ȳ(t), z̄(t), µ1

)
∥

≤ p1(t)[∥y(t)− ȳ(t)∥+ ∥z(t)− z̄(t)∥], (22)

and

∥F

(
t, y(t), z(t), µ1

)
− F

(
t, y(t), z(t), µ2

)
∥ ≤ p2(t)|µ1 − µ2|, (23)

where p1, p2 ∈ C(I,R+). Let y(t) and z(t) be the mild solutions of the problem (20)
with condition (2) and (21) with condition (2). Then

∥y − z∥B ≤ |µ1 − µ2|P̄2

Γ(α+ 1)
bα
[
1 + bα

( λ+ P̄1

Γ(α+ 1)

)
exp

( λ+ P̄1

Γ(α+ 1)
bα +Qb

)]
.

Proof. From the hypotheses, it follows that

∥y(t)− z(t)∥
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≤ λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)− z(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1
∥∥∥F(s, y(s),∫ s

0

K(τ, y(τ))dτ, µ1

)

− F

(
s, z(s),

∫ s

0

K(τ, z(τ))dτ, µ2

)∥∥∥ds
≤ λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)− z(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1
∥∥∥F(s, y(s),∫ s

0

K(τ, y(τ))dτ, µ1

)

− F

(
s, z(s),

∫ s

0

K(τ, z(τ))dτ, µ1

)∥∥∥ds
+

1

Γ(α)

∫ t

0

(t− s)α−1
∥∥∥F(s, z(s),∫ s

0

K(τ, z(τ))dτ, µ1

)

− F

(
s, z(s),

∫ s

0

K(τ, z(τ))dτ, µ2

)∥∥∥ds
≤ λ

Γ(α)

∫ t

0

(t− s)α−1∥y(s)− z(s)∥ ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p1(s)

[
∥y(s)− z(s)∥+

∫ s

0

q(τ)∥y(τ)− z(τ)∥dτ
]
ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p2(s)|µ1 − µ2|ds

≤ |µ1 − µ2|
Γ(α)

∫ t

0

(t− s)α−1p2(s)ds

+

∫ t

0

(
λ+ p1(s)

Γ(α)

)
(b− s)α−1

[
∥y(s)− z(s)∥+

∫ s

0

q(τ)∥y(τ)− z(τ)∥dτ
]
ds

≤
[
|µ1 − µ2|P̄2

Γ(α+ 1)
tα
]

+

∫ t

0

(
λ+ P̄1

Γ(α)

)
(b− s)α−1

[
∥y(s)− z(s)∥+

∫ s

0

Q∥y(τ)− z(τ)∥dτ
]
ds, (24)

where P̄1 = sup
t∈I

{p1(t)}, P̄2 = sup
t∈I

{p2(t)}.

Now, an application of Lemma 2.3 to (24), we obtain

∥y(t)− z(t)∥ ≤ |µ1 − µ2|P̄2

Γ(α+ 1)
tα
[
1 +

∫ t

0

(
λ+ P̄1

Γ(α)

)
(b− s)α−1

× exp

[∫ s

0

{(
λ+ P̄1

Γ(α)

)
(b− τ)α−1 +Q

}
dτ

]
ds
]
, t ∈ I
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which gives

∥y − z∥B ≤ |µ1 − µ2|P̄2

Γ(α+ 1)
bα
[
1 + bα

( λ+ P̄1

Γ(α+ 1)

)
exp

( λ+ P̄1

Γ(α+ 1)
bα +Qb

)]
. (25)

This shows the dependence of mild solutions of the problems (20) with condition
(2) and (21) with condition (2)on parameters µ1 and µ2. □

6. Example

Here, we illustrate our results through the following example by taking the fractional
order α, 1 < α ≤ 2.
Consider the following fractional integro-differential equation

D∗
3/2y(t) =

1

10
y(t) +

e−t

(8 + et)

[
|y(t)|

1 + |y(t)|

]
+

1

9

∫ t

0

e−s

(2 + s)2
y(s)ds, (26)

for t ∈ I := [0, 1], 1 < α ≤ 2, λ ∈ (0, 1) with conditions:

y(0) = c1, y′(0) = c2. (27)

Problem (26)− (27) is of the form (1)− (2) with α = 3
2 , λ = 1

10 ,

f

(
t, y(t),

∫ t

0

K(s, y(s))ds

)
=

e−t

(9 + et)

[
|y(t)|

1 + |y(t)|

]
+

1

9

∫ t

0

e−s

(2 + s)2
y(s)ds

Clearly, for each y, z ∈ X = R and t ∈ [0, 1],

||f(t, y, z)− f(t, ȳ, z̄)|| ≤ 1

9

[
||y − ȳ||+ ||z − z̄||

]
.

Also, we have

∥K(t, y)−K(t, ȳ)∥ ≤ 1

9
∥y − ȳ∥.

Hence all hypotheses (H1)− (H3) are satisfied with λ = 1
10 , P = 1

9 , Q = 1
9 .

Thus, we have

β =

[
λ+ P (1 + bQ)

Γ(α+ 1)

]
bα =

[
1
10 + 1

9

(
1 + 1

9

)
Γ
(
5
2

) ]
= 0.0845 < 1.

It follows from Theorem 3.1 that the problem (26)−(27) has a unique mild solution
in C([0, 1],R).
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