

COEFFICIENT ESTIMATES FOR SUBCLASSES OF BI-UNIVALENT FUNCTIONS WITH PASCAL OPERATOR

G.THIRUPATHI

Abstract

In the present paper, we introduce two new subclasses of the function class Σ of bi-univalent functions defined in the open unit disc $\mathbb{U}=$ $\{z: z \in \mathbb{C}$ and $|z|<1\}$. We find the bounds on the initial coefficients $\left|c_{2}\right|$ and $\left|c_{3}\right|$ and upper bounds for the Fekete-Szegö functional for the functions in this class.

1. Introduction, Definition and Preliminaries

Let \mathcal{A} denote the class of normalized functions $g(z)$ of the form

$$
\begin{equation*}
g(z)=z+c_{2} z^{2}+c_{3} z^{3}+\cdots \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$.
Also we let \mathcal{S} to denote the subclass of functions $g \in \mathcal{A}$ which are univalent in \mathbb{U}.

An analytic function f is subordinate to an analytic function g, written $f(z) \prec$ $g(z)$, provided there is a schwarz function w defined on \mathbb{U} with

$$
\begin{equation*}
w(0)=0 \text { and }|w(z)|<1 \tag{2}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
f(z)=g(w(z)) . \tag{3}
\end{equation*}
$$

For the functions $g(z)$ of the form (1) and $h(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$, the Hadamard product (or convolution) of g and h is defined by

$$
(g * h)(z)=z+\sum_{k=2}^{\infty} c_{k} b_{k} z^{k}
$$

[^0]The Pascal distribution has been widely used in Communications and Engineering fields (see [11]). Recently, in geometric function theory, there has been a growing interest in studying the geometric properties of analytic functions associated with the Pascal distribution (see [5], [8, 9], [11], [17]).

A variable ξ is said to be a Pascal (or Negative Binomial) distribution if it takes the values $0,1,2,3, \ldots$ with probabilities

$$
(1-q)^{m}, \frac{q m(1-q)^{m}}{1!}, \frac{q^{2} m(m+1)(1-q)^{m}}{2!} \ldots
$$

respectively, where m and q are parameters, and hence

$$
\begin{equation*}
p(\xi=n)=\binom{n+m-1}{m-1} q^{n}(1-q)^{m}, \quad n=0,1,2,3, \ldots \tag{4}
\end{equation*}
$$

This distribution is based on the binomial theorem with a negative exponent and it describes the probability of m success and n failure in $(n+m-1)$ trials, and success on $(n+m)$ th trials where $(1-q)$ is the probability of success.

Recently, El-Deeb et al. [19] defined and investigated the characterization of Pascal operator of the form

$$
\begin{equation*}
\Lambda_{q}^{m} g(z)=z+\sum_{l=2}^{\infty}\binom{l+m-2}{m-1} q^{l-1} c_{l} z^{l} \tag{5}
\end{equation*}
$$

where $m \geq 1,0 \leq q<1$.
A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}.

Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). The Koebe one-quarter theorem [7] ensures that the image of \mathbb{U} under every univalent function $g \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. Thus every univalent function g has an inverse g^{-1} satisfying $g^{-1}(g(z))=z,(z \in \mathbb{U})$ and

$$
g\left(g^{-1}(w)\right)=w,\left(|w|<r_{0}(g), r_{0}(g) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
g^{-1}(w)=w-c_{2} w^{2}+\left(2 c_{2}^{2}-c_{3}\right) w^{3}-\left(5 c_{2}^{3}-5 c_{2} c_{3}+c_{4}\right) w^{4}+\cdots \tag{6}
\end{equation*}
$$

The coefficient estimate problem for the class \mathcal{S}, known as the Bieberbach conjecture, is settled by de Branges [3], who proved that for a function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ in the class $\mathcal{S},\left|a_{n}\right| \leq n$, for $n=2,3, \cdots$, with equality only for the rotations of the Koebe function

$$
K_{0}(z)=\frac{z}{(1-z)^{2}}
$$

For interesting subclasses of functions in the class Σ, see ([1], [2], [4, [6], 21]).
Lewin 15 investigated the class Σ of bi-univalent functions and showed that $\left|a_{2}\right|<1.51$ for the functions belonging to Σ. Subsequently, Brannan and Clunie [4] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$.

Motivated by the work of H. M. Srivastava et al. 20, construct a new subclass of bi-univalent functions governed by the Pascal distribution series. Then, we investigate the optimal bounds for the Taylor - Maclaurin coefficients $\left|c_{2}\right|$ and $\left|c_{3}\right|$ in our new subclass.
Definition 1.1. A function $g(z)$ given by 1 is said to be in the class $S_{\Sigma, q}^{m}(\gamma, \eta)$ if the following conditions are satisfied:
$g \in \Sigma \quad$ and $\quad\left|\arg \left(\frac{z\left(\Lambda_{q}^{m} g(z)\right)^{\prime}}{(1-\eta) z+\eta \Lambda_{q}^{m} g(z)}\right)\right|<\frac{\gamma \pi}{2}, \quad(0<\gamma \leq 1 ; 0 \leq \eta \leq 1 ; z \in \mathbb{U})$
and

$$
\begin{equation*}
\left|\arg \left(\frac{w\left(\Lambda_{q}^{m} \psi(w)\right)^{\prime}}{(1-\eta) w+\eta \Lambda_{q}^{m} \psi(w)}\right)\right|<\frac{\gamma \pi}{2}, \quad(0<\gamma \leq 1 ; 0 \leq \eta \leq 1 ; z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

where the function ψ is given by

$$
\begin{equation*}
\psi(w)=g^{-1}(w)=w-c_{2} w^{2}+\left(2 c_{2}^{2}-c_{3}\right) w^{3}-\left(5 c_{2}^{3}-5 c_{2} c_{3}+c_{4}\right) w^{4}+\cdots \tag{9}
\end{equation*}
$$

Definition 1.2. A function $g(z)$ given by $\sqrt{17}$ is said to be in the class $M_{\Sigma, q}^{m}(\gamma, \eta)$ if the following conditions are satisfied:

$$
\begin{equation*}
g \in \Sigma \quad \text { and } \quad \mathcal{R}\left(\frac{z\left(\Lambda_{q}^{m} g(z)\right)^{\prime}}{(1-\eta) z+\eta \Lambda_{q}^{m} g(z)}\right)>\beta, \quad(0 \leq \beta \leq 1 ; 0 \leq \eta \leq 1 ; z \in \mathbb{U}) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}\left(\frac{w\left(\Lambda_{q}^{m} \psi(w)\right)^{\prime}}{(1-\eta) w+\eta \Lambda_{q}^{m} \psi(w)}\right)>\beta, \quad(0 \leq \beta \leq 1 ; 0 \leq \eta \leq 1 ; z \in \mathbb{U}) \tag{11}
\end{equation*}
$$

where the function ψ is given by (6).
For specifying the values of parameters γ and η, one can obtained the following examples:
Example 1.1. A function $g(z)$ given by 1) is said to be in the class $S_{\Sigma, q}^{m}(\gamma, \eta)=$ $S_{\Sigma, q}^{m}(\gamma, 1)$ if the following conditions are satisfied:

$$
\begin{equation*}
g \in \Sigma \quad \text { and } \quad\left|\arg \left(\frac{z\left(\Lambda_{q}^{m} g(z)\right)^{\prime}}{\Lambda_{q}^{m} g(z)}\right)\right|<\frac{\gamma \pi}{2}, \quad(0<\gamma \leq 1 ; z \in \mathbb{U}) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w\left(\Lambda_{q}^{m} \psi(w)\right)^{\prime}}{\Lambda_{q}^{m} \psi(w)}\right)\right|<\frac{\gamma \pi}{2}, \quad(0<\gamma \leq 1 ; z \in \mathbb{U}) \tag{13}
\end{equation*}
$$

where the function ψ is given by where the function ψ is given by (9).
Example 1.2. A function $g(z)$ given by 1 is said to be in the class $M_{\Sigma, q}^{m}(\gamma, \eta)$ $=M_{\Sigma, q}^{m}(\gamma, 1)$ if the following conditions are satisfied:

$$
\begin{equation*}
g \in \Sigma \quad \text { and } \quad \mathcal{R}\left(\frac{z\left(\Lambda_{q}^{m} g(z)\right)^{\prime}}{\Lambda_{q}^{m} g(z)}\right)>\beta, \quad(0 \leq \beta \leq 1 ; z \in \mathbb{U}) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}\left(\frac{w\left(\Lambda_{q}^{m} \psi(w)\right)^{\prime}}{\Lambda_{q}^{m} \psi(w)}\right)>\beta, \quad(0 \leq \beta \leq 1 ; z \in \mathbb{U}) \tag{15}
\end{equation*}
$$

where the function ψ is given by (9).

Example 1.3. A function $g(z)$ given by 1$)$ is said to be in the class $S_{\Sigma, q}^{m}(\gamma, \eta)=$ $S_{\Sigma, q}^{m}(\gamma, 0)$ if the following conditions are satisfied:

$$
\begin{equation*}
g \in \Sigma \quad \text { and } \quad\left|\arg \left(\Lambda_{q}^{m} g(z)\right)^{\prime}\right|<\frac{\gamma \pi}{2}, \quad(0<\gamma \leq 1 ; z \in \mathbb{U}) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\Lambda_{q}^{m} \psi(w)\right)^{\prime}\right|<\frac{\gamma \pi}{2}, \quad(0<\gamma \leq 1 ; z \in \mathbb{U}) \tag{17}
\end{equation*}
$$

where the function ψ is given by where the function ψ is given by (9).
Example 1.4. A function $g(z)$ given by 1 is said to be in the class $M_{\Sigma, q}^{m}(\gamma, \eta)$ $=M_{\Sigma, q}^{m}(\gamma, 0)$ if the following conditions are satisfied:

$$
\begin{equation*}
g \in \Sigma \quad \text { and } \quad \mathcal{R}\left(\Lambda_{q}^{m} g(z)\right)^{\prime}>\beta, \quad(0 \leq \beta \leq 1 ; z \in \mathbb{U}) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}\left(\Lambda_{q}^{m} \psi(w)\right)^{\prime}>\beta, \quad(0 \leq \beta \leq 1 ; z \in \mathbb{U}) \tag{19}
\end{equation*}
$$

where the function ψ is given by (9).
Lemma 1.1. (18) If $h \in \mathcal{P}$, then $\left|d_{k}\right| \leq 2$, for each k, where \mathcal{P} is the family of all functions h, analytic in \mathbb{U}, for which

$$
\mathcal{R}\{h(z)\}>0,
$$

where

$$
\begin{equation*}
h(z)=1+d_{1} z+d_{2} z^{2}+\cdots \tag{20}
\end{equation*}
$$

2. Coefficient estimates

This section provides estimates for the coefficients c_{2}, c_{3} for functions belonging to the class $S_{\Sigma, q}^{m}(\gamma, \eta)$ and $M_{\Sigma, q}^{m}(\gamma, \eta)$.

Theorem 2.1. Let $g \in \Sigma$ given by (1) belongs to the class $S_{\Sigma, q}^{m}(\gamma, \eta)$. Then

$$
\begin{gather*}
\left|c_{2}\right| \leq \frac{2 \gamma}{\sqrt{\left[2\left(\eta^{2}-2 \eta\right) \gamma+(1-\gamma)(2-\eta)^{2}\right] m^{2} q^{2}+\gamma(3-\eta) m(m+1) q^{2}}} \tag{21}\\
\left|c_{3}\right| \leq \frac{4 \gamma}{(3-\eta) m(m+1) q^{2}}+\frac{4 \gamma^{2}}{(2-\eta)^{2} m^{2} q^{2}} \tag{22}
\end{gather*}
$$

Proof. Let $g \in S_{\Sigma, q}^{m}(\gamma, \eta)$. From (7) and (8), we have

$$
\begin{equation*}
\frac{z\left(\Lambda_{q}^{m} g(z)\right)^{\prime}}{(1-\eta) z+\eta \Lambda_{q}^{m} g(z)}=[p(z)]^{\gamma} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left(\Lambda_{q}^{m} \psi(w)\right)^{\prime}}{(1-\eta) w+\eta \Lambda_{q}^{m} \psi(w)}=[q(w)]^{\gamma} \tag{24}
\end{equation*}
$$

where $p(z)$ and $q(w)$ in \mathcal{P} and have the following forms:

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
q(z)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots \tag{26}
\end{equation*}
$$

respectively. Now, equating the coefficients in 23 and 24 , we get

$$
\begin{equation*}
(2-\eta) m q c_{2}=\gamma p_{1} \tag{27}
\end{equation*}
$$

$$
\begin{align*}
\left(\eta^{2}-2 \eta\right) m^{2} q^{2} c_{2}^{2}+(3-\eta) \frac{m(m+1)}{2} q^{2} c_{3} & =\frac{1}{2}\left[\gamma(\gamma-1) p_{1}^{2}+2 \gamma p_{2}\right] \tag{28}\\
-(2-\eta) m q c_{2} & =\gamma q_{1} \tag{29}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\eta^{2}-2 \eta\right) m^{2} q^{2} c_{2}^{2}+(3-\eta)\left(2 c_{2}^{2}-c_{3}\right) \frac{m(m+1)}{2} q^{2}=\frac{1}{2}\left[\gamma(\gamma-1) q_{1}^{2}+2 \gamma q_{2}\right] \tag{30}
\end{equation*}
$$

From (27) and 29), we find that

$$
\begin{equation*}
c_{2}=\frac{\gamma p_{1}}{(2-\eta) m q}=\frac{-\gamma q_{1}}{(2-\eta) m q} \tag{31}
\end{equation*}
$$

which implies

$$
\begin{equation*}
p_{1}=-q_{1} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
2(2-\eta)^{2} m^{2} q^{2} c_{2}^{2}=\gamma^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{33}
\end{equation*}
$$

Adding (28) and (30), we obtain

$$
\begin{equation*}
\left[2\left(\eta^{2}-2 \eta\right) m^{2} q^{2}+(3-\eta) m(m+1) q^{2}\right] c_{2}^{2}=\frac{\gamma(\gamma-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right)+\gamma\left(p_{2}+q_{2}\right) \tag{34}
\end{equation*}
$$

Substituting the value of $\left(p_{1}^{2}+q_{1}^{2}\right)$ from 33 in the RHS of 36 , we get

$$
\begin{equation*}
\left[\left((\eta-2)^{2}+\left(\eta^{2}-4\right) \gamma\right) m+(3-\eta) \gamma(m+1)\right] m q^{2} c_{2}^{2}=\gamma^{2}\left(p_{2}+q_{2}\right) \tag{35}
\end{equation*}
$$

For a simple computation from (31), (32), (34), and also applying Lemma 1.1, we get

$$
\left|c_{2}\right| \leq \frac{2 \gamma}{\sqrt{\left[2\left(\eta^{2}-2 \eta\right) \gamma+(1-\gamma)(2-\eta)^{2}\right] m^{2} q^{2}+\gamma(3-\eta) m(m+1) q^{2}}}
$$

This gives the required bound on $\left|c_{2}\right|$.
Moreover, if we subtract (30) from 28), we have

$$
\begin{equation*}
m(m+1)(3-\eta) q^{2}\left(c_{3}-c_{2}^{2}\right)=\gamma\left(p_{2}-q_{2}\right)+\frac{\gamma(\gamma-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) \tag{36}
\end{equation*}
$$

It follows from (31), 32, (36) and Lemma 1.1 that

$$
\left|c_{3}\right| \leq \frac{4 \gamma}{(3-\eta) m(m+1) q^{2}}+\frac{4 \gamma^{2}}{(2-\eta)^{2} m^{2} q^{2}}
$$

This completes the proof of Theorem 2.1.
Putting $\eta=1$ in Theorem 2.1, we have the following corollary.
Corollary 2.0. A function $g(z)$ given by 1) is said to be in the class $S_{\Sigma, q}^{m}(\gamma, \eta)$ $=S_{\Sigma, q}^{m}(\gamma, 1)$. Then

$$
\left|c_{2}\right| \leq \frac{2 \gamma}{\sqrt{(1-\gamma) m^{2} q^{2}+2 \gamma m q^{2}}} \quad \text { and } \quad\left|c_{3}\right| \leq \frac{4 \gamma^{2}}{m^{2} q^{2}}+\frac{2 \gamma}{m(m+1) q^{2}}
$$

Putting $\eta=0$ in Theorem 2.1, we have the following corollary.
Corollary 2.0. A function $g(z)$ given by 1) is said to be in the class $S_{\Sigma, q}^{m}(\gamma, \eta)$ $=S_{\Sigma, q}^{m}(\gamma, 0)$. Then

$$
\left|c_{2}\right| \leq \frac{2 \gamma}{\sqrt{(4-\gamma) m^{2} q^{2}+3 \gamma m q^{2}}} \quad \text { and } \quad\left|c_{3}\right| \leq \frac{\gamma^{2}}{m^{2} q^{2}}+\frac{4 \gamma}{m(m+1) q^{2}}
$$

Theorem 2.2. Let $g \in \Sigma$ given by 11) belongs to the class $S_{\Sigma, q}^{m}(\beta, \eta)$. Then

$$
\begin{gather*}
\left|c_{2}\right| \leq \sqrt{\frac{4(1-\beta)}{2\left(\eta^{2}-2 \eta\right) m^{2} q^{2}+(3-\eta) m(m+1) q^{2}}} \tag{37}\\
\quad\left|c_{3}\right| \leq \frac{4(1-\beta)}{(3-\eta) m(m+1) q^{2}}+\frac{4(1-\beta)^{2}}{(2-\eta)^{2} m^{2} q^{2}} \tag{38}
\end{gather*}
$$

Proof. It follows from (10) and 11 that there exist $p, q \in \mathcal{P}$ such that

$$
\begin{equation*}
\frac{z\left(\Lambda_{q}^{m} g(z)\right)^{\prime}}{(1-\eta) z+\eta \Lambda_{q}^{m} g(z)}=\beta+(1-\beta) p(z) \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left(\Lambda_{q}^{m} \psi(w)\right)^{\prime}}{(1-\eta) w+\eta \Lambda_{q}^{m} \psi(w)}=\beta+(1-\beta) q(w) \tag{40}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms 25 and 26 respectively. Equating coefficients in $\sqrt{39}$) and 40 , we get

$$
\begin{gather*}
(2-\eta) m q c_{2}=(1-\beta) p_{1} \tag{41}\\
\left(\eta^{2}-2 \eta\right) m^{2} q^{2} c_{2}^{2}+(3-\eta) \frac{m(m+1)}{2} q^{2} c_{3}=(1-\beta) p_{2} \tag{42}\\
-(2-\eta) m q c_{2}=(1-\beta) q_{1} \tag{43}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\eta^{2}-2 \eta\right) m^{2} q^{2} c_{2}^{2}+(3-\eta)\left(2 c_{2}^{2}-c_{3}\right) \frac{m(m+1)}{2} q^{2}=(1-\beta) q_{2} \tag{44}
\end{equation*}
$$

From (41) and 43), we have

$$
\begin{equation*}
c_{2}=\frac{(1-\beta) p_{1}}{(2-\eta) m q}=\frac{-(1-\beta) q_{1}}{(2-\eta) m q} \tag{45}
\end{equation*}
$$

which implies

$$
\begin{equation*}
p_{1}=-q_{1} \tag{46}
\end{equation*}
$$

Also,

$$
\begin{equation*}
2(2-\eta)^{2} m^{2} q^{2} c_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{47}
\end{equation*}
$$

From (42) and (44), we get

$$
\begin{equation*}
\left[2\left(\eta^{2}-2 \eta\right) m^{2} q^{2}+(3-\eta) m(m+1) q^{2}\right] c_{2}^{2}=(1-\beta)\left[p_{2}+q_{2}\right] \tag{48}
\end{equation*}
$$

By applying (45), 46) and also using the Lemma 1.1, we obtain

$$
\left|c_{2}\right| \leq \sqrt{\frac{4(1-\beta)}{2\left(\eta^{2}-2 \eta\right) m^{2} q^{2}+(3-\eta) m(m+1) q^{2}}}
$$

This gives the bound on $\left|c_{2}\right|$. Next, in order to obtain the estimate on $\left|c_{3}\right|$, by subtracting (44) from (42), we get

$$
\begin{equation*}
(3-\eta) m(m+1) q^{2}\left(c_{3}-c_{2}^{2}\right)=(1-\beta)\left[p_{2}-q_{2}\right] \tag{49}
\end{equation*}
$$

It follows from 45, 49) and Lemma 1.1 that

$$
\left|c_{3}\right| \leq \frac{4(1-\beta)}{(3-\eta) m(m+1) q^{2}}+\frac{4(1-\beta)^{2}}{(2-\eta)^{2} m^{2} q^{2}}
$$

This completes the proof of Theorem 2.2 .
Putting $\eta=1$ in Theorem 2.1, we have the following corollary.

Corollary 2.0. A function $g(z)$ given by 1 is said to be in the class $S_{\Sigma, q}^{m}(\beta, \eta)$ $=S_{\Sigma, q}^{m}(\beta, 1)$. Then

$$
\left|c_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{m q}} \quad \text { and } \quad\left|c_{3}\right| \leq \frac{4(1-\beta)}{2 m(m+1) q^{2}}+\frac{4(1-\beta)^{2}}{m^{2} q^{2}}
$$

Putting $\eta=0$ in Theorem 2.1, we have the following corollary.
Corollary 2.0. A function $g(z)$ given by (1) is said to be in the class $S_{\Sigma, q}^{m}(\beta, \eta)$ $=S_{\Sigma, q}^{m}(\beta, 0)$. Then

$$
\left|c_{2}\right| \leq \sqrt{\frac{4(1-\beta)}{3 m(m+1) q^{2}}} \quad \text { and } \quad\left|c_{3}\right| \leq \frac{4(1-\beta)}{3 m(m+1) q^{2}}+\frac{(1-\beta)^{2}}{m^{2} q^{2}}
$$

3. Fekete-Szegö Inequality for the Function Class $S_{\Sigma, q}^{m}(\gamma, \eta)$ and

$$
S_{\Sigma, q}^{m}(\beta, \eta)
$$

In this section, our aim to provide the Fekete-Szego Inequality for the function classes defined by the previous section 2 .

Theorem 3.3. Let $g \in \Sigma$ given by (1) belongs to the class $S_{\Sigma, q}^{m}(\gamma, \eta)$. Then

$$
\left|c_{3}-\vartheta c_{2}^{2}\right| \leq\left\{\left.\begin{array}{lll}
\frac{2|\gamma|}{m(m+1)(3-\eta) q^{2}}, & \text { if } & |\vartheta-1| \leq \left\lvert\, \frac{\left[(\eta-2)^{2}+\left(\eta^{2}-4\right) \gamma\right] m+\gamma(3-\eta)(m+1)}{\gamma(m+1)(3-\eta)}\right. \tag{50}\\
\frac{2|\gamma|^{2}|1-\vartheta|}{\left|\left[(\eta-2)^{2}+\left(\eta^{2}-4\right) \gamma\right] m+\gamma(3-\eta)(m+1)\right|}, & \text { if } & |\vartheta-1| \geq \left\lvert\, \frac{\left[(\eta-2)^{2}+\left(\eta^{2}-4\right) \gamma\right] m+\gamma(3-\eta)(m+1)}{\gamma(m+1)(3-\eta)}\right.
\end{array} \right\rvert\,\right.
$$

Proof. From (35) and (36), we have

$$
\begin{aligned}
{[\text { alignment }] c_{3}-\vartheta c_{2}^{2} } & =(1-\vartheta) \frac{\gamma^{2}\left(p_{2}+q_{2}\right)}{\left[(\eta-2)^{2}+\left(\eta^{2}-4\right) \gamma\right] m^{2} q^{2}+\gamma(3-\eta) m(m+1) q^{2}}+\frac{\gamma\left(p_{2}-q_{2}\right)}{(3-\eta) m(m+1) q^{2}} \\
& =\gamma\left[\left(\Phi(\vartheta)+\frac{1}{(3-\eta) m(m+1) q^{2}}\right) p_{2}+\left(\Phi(\vartheta)-\frac{1}{(3-\eta) m(m+1) q^{2}}\right) q_{2}\right]
\end{aligned}
$$

where,

$$
\begin{equation*}
\Phi(\vartheta)=\frac{\gamma(1-\vartheta)}{\left[(\eta-2)^{2}+\left(\eta^{2}-4\right) \gamma\right] m^{2} q^{2}+\gamma(3-\eta) m(m+1) q^{2}} \tag{52}
\end{equation*}
$$

Then

$$
\left|c_{3}-\vartheta c_{2}^{2}\right| \leq \begin{cases}\frac{2|\gamma|}{m(m+1)(3-\eta) q^{2}}, & \text { if } \quad 0 \leq|\Phi(\vartheta)| \leq \frac{1}{m(m+1)(3-\eta) q^{2}} \tag{53}\\ 2|\gamma||\Phi(\vartheta)|, & \text { if } \quad|\Phi(\vartheta)| \geq \frac{1}{m(m+1)(3-\eta) q^{2}}\end{cases}
$$

Hence (50) can be easily obtained from (53).
Corollary 3.0. A function $g(z)$ given by (1) is said to be in the class $S_{\Sigma, q}^{m}(\gamma, \eta)$ $=S_{\Sigma, q}^{m}(\gamma, 1)$. Then

$$
\left|c_{3}-\vartheta c_{2}^{2}\right| \leq\left\{\begin{array}{cll}
\frac{|\gamma|}{m(m+1) q^{2}}, & \text { if } & |\vartheta-1| \leq \left\lvert\, \frac{(1-\gamma) m+2 \gamma}{2 \gamma(m+1)}\right. \tag{54}\\
\frac{2|\gamma|^{\mid}|1-\vartheta|}{|(1-\gamma) m+2 \gamma|}, & \text { if } & |\vartheta-1| \geq\left|\frac{(1-\gamma) m+2 \gamma}{2 \gamma(m+1)}\right| .
\end{array}\right.
$$

Corollary 3.0. A function $g(z)$ given by (1) is said to be in the class $S_{\Sigma, q}^{m}(\gamma, \eta)$ $=S_{\Sigma, q}^{m}(\gamma, 0)$. Then

$$
\left|c_{3}-\vartheta c_{2}^{2}\right| \leq\left\{\begin{array}{lll}
\frac{2|\gamma|}{3 m(m+1) q^{2}}, & \text { if } & |\vartheta-1| \leq \left\lvert\, \frac{(4-\gamma) m+3 \gamma}{3 \gamma(m+1)}\right. \tag{55}\\
\frac{2|\gamma|^{2}|1-\vartheta|}{|(4-\gamma) m+3 \gamma|}, & \text { if } & |\vartheta-1| \leq\left|\frac{(4-\gamma) m+3 \gamma}{3 \gamma(m+1)}\right|
\end{array}\right.
$$

Theorem 3.4. Let $g \in \Sigma$ given by (1) belongs to the class $S_{\Sigma, q}^{m}(\beta, \eta)$. Then

$$
\left|c_{3}-\vartheta c_{2}^{2}\right| \leq\left\{\begin{array}{lll}
\frac{2(1-\beta)}{m(m+1)(3-\eta) q^{2}}, & \text { if } \quad|\vartheta-1| \leq \left\lvert\, \frac{2 \eta(\eta-2) m+(3-\eta)(m+1)}{(1-\beta)(m+1)(3-\eta)}\right. \tag{56}\\
\frac{4(1-\beta)^{2}|1-\vartheta|}{\left[\left[(\eta-2)^{2}+\left(\eta^{2}-4\right) \gamma\right] m+\gamma(3-\eta)(m+1) \mid\right.}, & \text { if } \quad|\vartheta-1| \geq\left|\frac{2 \eta(\eta-2) m+(3-\eta)(m+1)}{(1-\beta)(m+1)(3-\eta)}\right|
\end{array}\right.
$$

Proof. From 47) and 49, we have

$$
\begin{align*}
{[\text { alignment }] c_{3}-\vartheta c_{2}^{2} } & =(1-\vartheta) \frac{(1-\beta)^{2}\left(p_{2}+q_{2}\right)}{2 \eta(\eta-2) m^{2} q^{2}+(3-\eta) m(m+1) q^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{(3-\eta) m(m+1) q^{2}} \\
& =(1-\beta)\left[\left(\Psi(\vartheta)+\frac{1}{(3-\eta) m(m+1) q^{2}}\right) p_{2}+\left(\Phi(\vartheta)-\frac{1}{(3-\eta) m(m+1) q^{2}}\right) q_{2}\right] \tag{57}
\end{align*}
$$

where,

$$
\begin{equation*}
\Psi(\vartheta)=\frac{(1-\beta)(1-\vartheta)}{2 \eta(\eta-2) m^{2} q^{2}+(3-\eta) m(m+1) q^{2}} \tag{58}
\end{equation*}
$$

Then

$$
\left|c_{3}-\vartheta c_{2}^{2}\right| \leq\left\{\begin{array}{lll}
\frac{2(1-\beta)}{m(m+1)(3-\eta) q^{2}}, & \text { if } \quad 0 \leq|\Psi(\vartheta)| \leq \frac{1}{m(m+1)(3-\eta) q^{2}} \tag{59}\\
4(1-\beta)^{2}|\Phi(\vartheta)|, & \text { if } \quad|\Psi(\vartheta)| \geq \frac{1}{m(m+1)(3-\eta) q^{2}}
\end{array}\right.
$$

Hence (56) can be easily obtained from 59.

Acknowledgements

The author would like to thank the referees for their careful reading and helpful comments.

References

[1] R. M. Ali et al., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25, no. 3, 344-351, 2012.
[2] W.G. Atshan, I.A.R. Rahman, A.A. Lupas, Some Results of New Subclasses for Bi-Univalent Functions Using Quasi Subordination, Symmetry, 13, 1653, 2021.
[3] L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154, no. 1-2, 137-152, 1985.
[4] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22, 476-485, 1970.
[5] T. Bulboaca, G. Murugusundaramoorthy, Univalent functions with positive coefficients involving Pascal distribution series, Commun. Korean Math. Soc., 35, 867-877, 2020.
[6] S. Bulut, Coefficient Estimates for a Class of Analytic and Bi-univalent Functions. Novi. Sad. J. Math., 43, 59-65, 2013.
[7] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
[8] B.A. Frasin, Subclasses of analytic functions associated with Pascal distribution series. Adv. Theory Nonlinear Anal. Appl., 4, 92-99, 2020.
[9] B.A. Frasin, S.R. Swamy, A.K. Wanas, Subclasses of starlike and convex functions associated with Pascal distribution series, Kyungpook Math. Journal, 61, 99—110, 2021.
[10] A. W. Goodman, Univalent functions. Vol. II, Mariner Publishing Co., Inc., Tampa, FL, 1983.
[11] P.D. Inuwa, P. Dalatu, A critical review of some properties and applications of the negative binomial distribution (NBD) and its relation to other probability distributions, Int. Ref. Eng. Sci., 2, 33-43, 2013.
[12] G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., 329, no. 2, 922-934, 2007.
[13] A.M.Y. Lashin, M.K. Aouf, A.O. Badghaish, A.Z. Bajamal, Some Inclusion Relations of Certain Subclasses of Strongly Starlike, Convex and Close-to-Convex Functions Associated with a Pascal Operator. Symmetry, 14, 1079, 2022. https://doi.org/10.3390/ sym14061079
[14] A.Y. Lashin, A.O. Badghaish, A.Z. Bajamal, Certain subclasses of univalent functions involving Pascal distribution series. Bol. Soc. Mat. Mex., 28, 1—11, 2022.
[15] M.Lewin , On a coefficient problem for bi-unilvalent functions, Appl. Math.Lett., 24, 15691573, 2011.
[16] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin), 157-169, 1992. Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.
[17] G. Murugusundaramoorthy, Certain subclasses of Spiral-like univalent functions related with Pascal distribution series. Moroc. Pure Appl. Anal., 7, 312-323, 2021.
[18] C. Pommerenke, Univalent functions, Vandenhoeck \& Ruperecht, Gottingen, 1975.
[19] Sheeza M. El-Deeb, Teodor Bulboacă, Jacek Dziok, Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J., 59, no. 2, 301-314, 2019.
[20] H.M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of biunivalent functions associated with the Hohlov operator, Global Journal of Mathematical analysis, 1 (2), 67-73, 2013.
[21] F. Yousef, S. Alroud, M. Illafe, New Subclasses of Analytic and Bi-univalent Functions Endowed with Coefficient Estimate Problems, Anal. Math. Phys., 11, 58, 2021.

Ayya Nadar Janaki Ammal College (affiliated to Madurai Kamaraj University), Sivakasi-626 124, Tamilnadu, India.

Email address: gtvenkat79@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. analytic functions, bi-univalent functions, starlike and convex functions, coefficient bounds, Pascal operator.

 Submitted July 7, 2023. Revised January 31, 2024.

