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COEFFICIENT ESTIMATES FOR SUBCLASSES OF
BI-UNIVALENT FUNCTIONS WITH PASCAL OPERATOR

G.THIRUPATHI

ABSTRACT. In the present paper, we introduce two new subclasses of the
function class ¥ of bi-univalent functions defined in the open unit disc U =
{z: z € Cand |z| < 1}. We find the bounds on the initial coefficients |ca| and
|c3] and upper bounds for the Fekete-Szego functional for the functions in this
class.

1. INTRODUCTION, DEFINITION AND PRELIMINARIES
Let A denote the class of normalized functions g(z) of the form
g(2) =242+ 323 -+, (1)

which are analytic in the open unit disc U= {z: z € C and |z| < 1}.

Also we let S to denote the subclass of functions g € A which are univalent in
U.

An analytic function f is subordinate to an analytic function g, written f(z) <
g(z), provided there is a schwarz function w defined on U with

w(0) = 0and |w(z)] < 1 (2)
satisfying
f(z)=g(w(z). 3)
For the functions g(z) of the form and h(z) = 2z + bg2? + b32® + -+ -, the
Hadamard product (or convolution) of g and h is defined by

(gxh)(z) = z—|—ch by, 2~
k=2
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The Pascal distribution has been widely used in Communications and Engineer-
ing fields (see [I1]). Recently, in geometric function theory, there has been a growing
interest in studying the geometric properties of analytic functions associated with
the Pascal distribution (see [5] , [8], [9], [11], [I1]).

A variable ¢ is said to be a Pascal (or Negative Binomial) distribution if it takes
the values 0,1,2,3,... with probabilities

(1— g™, qm(lu— q)m’ g°m(m +21!)(1 9"

respectively, where m and ¢ are parameters, and hence

n+m-—1

p(fn)( )qnuq)m, n=0123,.... (4)

m—1
This distribution is based on the binomial theorem with a negative exponent and
it describes the probability of m success and n failure in (n + m — 1) trials, and
success on (n 4+ m)th trials where (1 — ¢) is the probability of success.
Recently, El-Deeb et al. [I9] defined and investigated the characterization of
Pascal operator of the form

m l4+m—2\ ,_
Ajg(z) =2+ Z < 1 )ql Lozt (5)
1=2

m

where m >1,0< ¢ < 1.

A function f € A is said to be bi-univalent in U if both f(z) and f~!(z2) are
univalent in U.

Let ¥ denote the class of bi-univalent functions in U given by . The Koebe
one-quarter theorem [7] ensures that the image of U under every univalent function

g € S contains a disk of radius 1 Thus every univalent function g has an inverse
g~ satisfying g7t (g(2)) = z,(z € U) and
- 1
o () =, (ol < rola)molo) = )
where
g (w) = w — cow? + (263 — e3)w® — (5¢3 — Beges + eq)wt 4+ - (6)
The coefficient estimate problem for the class S, known as the Bieberbach conjec-

ture, is settled by de Branges [3], who proved that for a function f (z) = Z+Z anz"
n=2

in the class S, |a,| < n, for n = 2,3, .-, with equality only for the rotations of the

Koebe function
z

(1-2)*

For interesting subclasses of functions in the class ¥, see ([II,[2], [4],[6], [21]).

Lewin [I5]investigated the class ¥ of bi-univalent functions and showed that
laz| < 1.51 for the functions belonging to ¥. Subsequently, Brannan and Clunie [4]
conjectured that |az| < v/2.

Ko(z) =
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Motivated by the work of H. M. Srivastava et al. [20], construct a new subclass
of bi-univalent functions governed by the Pascal distribution series. Then, we in-
vestigate the optimal bounds for the Taylor - Maclaurin coefficients |co| and |c3| in
our new subclass.

Definition 1.1. A function g(z) given by is said to be in the class S5 (v,1m)
if the following conditions are satisfied:

Am /
geYX and arg<<1_z(qg(z)) )‘<'y277’ (0<y<1;,0<n<1;2€e0)

n)z +nAmrg(z)
(7)

and

w(AgY(w))’ v . .
arg((l—n)ernAg"bw(w))‘ <55 (0<y<10<n<1L2€l) (8)

2 )
where the function ¥ is given by
Y (w) =g~ (w) = w — cow?® + (2¢2 — c3)w® — (53 — Beges + c)w? +--- . (9)

Definition 1.2. A function g(z) given by is said to be in the class M3, (v,n)
if the following conditions are satisfied:

z(A7g(2))
(1 —=n)z +nAg(z)

geY and R( >>ﬁ, (0<B<1;0<n<1;2€0)

(10)
and

)
(1 —n)w+nAgy
where the function ¥ is given by (@

(w)>>6’ (0<B8<1;0<n<1;2z€D) (11)

For specifying the values of parameters v and 7, one can obtained the following
examples:

Example 1.1. A function g(z) given by is said to be in the class Sg' (v,n) =
S8y (v, 1) if the following conditions are satisfied:

Am /
geX and arg(z(qg(z))ﬂ<w 0<y<1;2€0) (12)

Amg(z) 2’
" (A (w))
w 2" w))’ Yy )

where the function v is given by where the function 1 is given by (@

Example 1.2. A function g(z) given by is said to be in the class Ms?, (v,m)
=M%, (7,1) if the following conditions are satisfied:

2(Ag'9(2)) _
and
WA (w) Ny
R(A,Td)(u})) >p, (0<B<L2€0) (15)

where the function v is given by @
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Example 1.3. A function g(z) given by is said to be in the class S§' (v,n) =
S% . (7,0) if the following conditions are satisfied:

gEX and |arg (Agng(z))/ < %, 0<~y<1;2z€l) (16)
and .
arg (A (w))'| < ”7 (0<y<1;zeU) (17)

where the function ¥ is given by where the function 1 is given by @
Example 1.4. A function g(z) given by is said to be in the class Ms?, (v, )
= M3, (7,0) if the following conditions are satisfied:
geX and R (A;”g(z))l >f8, (0<B<1;2€0) (18)
and )
R(AT9(w) >, (0<B<1;2z€0) (19)
where the function v is given by @

Lemma 1.1. ([I8]) If h € P, then |di| < 2, for each k, where P is the family of
all functions h, analytic in U, for which

R{h(z)} >0,

where
h(z) =1+diz+dez® +---. (20)

2. COEFFICIENT ESTIMATES

This section provides estimates for the coefficients co, c3 for functions belonging
to the class S3%', (v,m) and M, (v,7).

Theorem 2.1. Let g € ¥ given by belongs to the class Sy, (v,m). Then

2y

|02| S ) 5 5 9 37 (21)
VIR0 =207+ (1 =) 2 —n)2m2¢® + 73 —n)m(m + 1)q
4y 4*
< . 22
lesl < (3 —=m)m(m + 1)¢? " (2 —n)?m?¢? (22)
Proof. Let g € qu (v,7n). From 1D and , we have
AP o
(1 —mn)z+nA7g(2)
and ,
) = faw)” en
(1 = n)w +nAye(w) ’
where p(z) and ¢(w) in P and have the following forms:
p(z) =14 prz+paz? +psz® + - (25)
and
q(2) =14+ qw + gouw® + gzw® + -+ . (26)

respectively. Now, equating the coefficients in and , we get
(2 = m)mgez = yp1, (27)
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m(m—+1 1
(n* = 2nym*¢*c3 + (3 — n)%q%g =5 [v(v = Dpi +2vp2] , (28)
— (2 —m)mgea = vq1, (29)
and
m(m+1 1
(n* = 2m)m*q*c + (3 —n)(2¢5 — %)%qz =5 [y =Dai +2ve]  (30)
From and 7 we find that
YP1 —7q1
Cco = = , 31
2T (2-mmq  2-mmg (31)
which implies
P1=—q1 (32)
and
2(2-n)°m?¢*c3 =+* (P} + 4f) - (33)

Adding and 7 we obtain

2072 — 2)m¢ + (3 — mym(m + 1)¢?] & = =1

5 ) (P%+Q%) +7(p2 +q2) .
(34)
Substituting the value of (p% + q%) from [33[in the RHS of 1) we get
(1 =22+ (> =47) m+ B =n)y(m +1)] mg®c; =1*(pa + q2). (35

For a simple computation from , , , and also applying Lemma we
get

2y
|C2| S .
V@ =20y + (1 =) (2 = 0))lm?¢? + 73— n)m(m + 1)¢?
This gives the required bound on |co].
Moreover, if we subtract from , we have

-1
mim + (3 - n)a? (s - ) =72 —a2) + D - g). 0)
It follows from , , and Lemma that
4y 4y
c3| < + .
IS G gm0 T @ e
This completes the proof of Theorem [2.1 (|

Putting 7 = 1 in Theorem we have the following corollary.
Corollary 2.0. A function g(z) given by is said to be in the class S (7, n)
=S¢, (v, 1). Then
jea] < al <5+
c .
1V 2y 2 m{m + )¢

Putting n = 0 in Theorem [2.1} we have the following corollary.

Corollary 2.0. A function g(z) given by is said to be in the class S§' (7, n)

=S¢, (7,0). Then
7 Ay

2y n
m2¢2  m(m+1)¢2’

lea| < 7 5 2
VA =7)m2¢® + 3ymq

and les] <
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Theorem 2.2. Let g € X given by belongs to the class Sy, (8,m). Then

4(1-5)
leal < \/2(n2 = 2n)m?¢? + (3 — m)m(m + 1)¢*’ 37)
4(1-58) e B8)?

= G pmm+ 2 T - P (3)
Proof. Tt follows from and that there exist p, ¢ € P such that
Ape)
(e v SRS (3)
and Am ,
W ) = B4 (1~ B)a(w). (10)

(1 =n)w +nAg(w)
where p(z) and g(w) have the forms and respectively. Equating coefficients
in and 7 we get

(2 —n)mgca = (1 — B)pu, (41)
(n* = 2n)m*q*c3 + (3 — n)wq% = (1= B)p2, (42)
—(2—=n)mgca = (1 - B)qu, (43)

and )
0 2’ + (3 -2k —e) " (g a)

From and (43)), we have
1-8pm _ —-(1-8)a

T @ mmg . @ nma (#2)
which implies
pP1 = —q1. (46)
Also,
22 —n)’m’¢’c; = (1 - B)* (pf + 7). (47)
From and , we get
2(n* = 2n)m?¢® + (3 —m)m(m +1)¢*] & = (1 = B) [p2 + g2] - (48)

By applying , and also using the Lemma we obtain

|C2| < 4(1 — B)
~ V207 = 2mmPq? + (3 —m)m(m + 1)g*
This gives the bound on |ca|. Next, in order to obtain the estimate on |c3|, by
subtracting from , we get
(3 —mm(m +1)¢* (e3 — ¢3) = (1~ B) [p2 — q2] - (49)
It follows from , and Lemma that
W-p) ., _40-pp

c3| < .
o = B—mm(m+1)¢> ~ (2—n)*m?q
This completes the proof of Theorem O

Putting 7 = 1 in Theorem we have the following corollary.



JFCA-2024/15(1)  COEFFICIENT ESTIMATES FOR SUBCLASSES OF BI-UNIVALENT 7
Corollary 2.0. A function g(z) given by is said to be in the class S§, (B,m)
=S5, (B,1). Then
2(1-p)

mq

10-8)  40-5?

el < and 3l <
lea| < |es| < 2m(m+1)q2 m2q>

Putting 7 = 0 in Theorem 2.1} we have the following corollary.

Corollary 2.0. A function g(z) given by is said to be in the class S§, (B,n)
= S, (8,0). Then

41 - 5)

- B) (1-p)?
3m(m + 1)¢? ’

<
ez = 3m(m + 1)¢? * m2q?

and les| <

3. FEKETE-SZEGG INEQUALITY FOR THE FUNCTION CLAss S§, (v,1) AND
S% . (Bym)

In this section, our aim to provide the Fekete-Szego Inequality for the function
classes defined by the previous section 2]

Theorem 3.3. Let g € ¥ given by belongs to the class S, (v,n). Then

[(1—2)2+(n* —4)y]m+~v(3—n) (m+1)

e i [9-1]< S )G

m(m+1)(3—n)g>’

c3 —9ca| < , 2, 2
2y[2]1-9] i -1 > [(1—2)>+(n* —4)7]m+7(3—n) (m+1)
[[(n—2)%+(n>—4)yIm+~(3—n)(m+1)]’ = y(m+1)(3—n) :

(50)

Proof. From and , we have
2
, 7 (p2 + g2) V(P2 — g2)

alignment]cg — ¢z = (1 =0 +
| bes =0 = 0 ) G P = D w2+ 1B = mm(m + D@ B = mmlm+ D

:vKéwy%@—nMLn+Df>m+(¢wy_@—nW£T+Df>%y

where,
(1 —9)
DY) = . 52
(9) [(n—2)% + (n* — 47y m?¢® + (3 — n)m(m + 1)¢* (52)
Then
2l : 1
oy — 3] < § gD 10 = WOIS spmvme (g
2[y[@()], it [®(9)| > I G-

Hence (50)) can be easily obtained from . (I

Corollary 3.0. A function g(z) given by is said to be in the class S§' (7, n)
=S¢, (v, 1). Then

ol ; _ (1=y)m+2y
|c _ 19(:2| < J mim+1)g* if 101l < 2y(m+1) (54)
PUURIS ) 2Pl e gy ) | Gomiy|

T@T—y)ym+27]° 2v(m+1)
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Corollary 3.0. A function g(z) given by is said to be in the class S§' (7, n)
= 5%, (7,0). Then

29| : _ (4—y)m+3y
|03 _ 19Cg| < 3m(’m;,-1)q27 if 9-1< 3y (mt 1) (55)
- 2|y[*[1-9] . (4—y)m+3
|(4j'y)m+3fy\7 Zf |19 B 1‘ < 37’(Ym+1)“/
Theorem 3.4. Let g € ¥ given by belongs to the class qu (B8,m). Then
2(1-p) ; _ 2n(n—2)m+(3—n)(m+1)
o3 — 93| < { mOEIEE W= s | e
Tl = 4(1—p)*|1 -9 if |9 —1| > |o=AmtE-_mmt1)
[[(n—2)2+(n2—4)y]m+~y(B—n)(m+1)]" = (1-B)(m+1)(3—n)
(56)
Proof. From and , we have
. 1—B)*(p2 +4q 1—B)(p2—q
[alignment]cs — 9c2 = (1 — 1) — ( — ) 2_ 2) . (_ ) (p2 2)2
2(n —2)m?q*> + B —mm(m+1)¢> (3 —n)m(m+1)q
1 1
=(1- U (d D) —
=9 | (Y0 + g ) 7+ (40~ G )
(57)
where,
2n(n —2)m2¢% 4+ (3 — n)m(m + 1)g?
Then
_20=-p) : -1
|cs —z9c§| < { mm+1)B=n)q*’ it 0< [P < m(rln-H)(?>—n)q2 (59)
4(1 - 5)2 @(19”7 if |\Ij(?9)| > I DB E "
Hence can be easily obtained from . O
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