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ON NABLA SHEHU TRANSFORM AND ITS APPLICATIONS

TUKARAM G. THANGE, SNEHA M. CHHATRABAND

Abstract. Integral transforms on time scales are persuasive and versatile

mathematical operators that extend the concepts of classical integral trans-
forms and are applied to functions dened on arbitrary time scales. Time

scales can involve a combination of continuous, discrete, and some cases of
mixed behaviours. Thus, integral transforms on time scales are more compre-
hensive for the analysis of time-varying phenomenon are therefore essential in

elds where such practices are frequent. In this paper, we introduce the nabla
Shehu transform, which is a generalization of the nabla Laplace and nabla
Sumudu transforms on time scales, and discuss its existence with respect to

fundamental properties such as linearity, transform of derivatives, transform of
integrals, and convolution theorem. Further, we nd the transform of the frac-
tional integral, Riemann-Liouville fractional derivative, Liouville-Caputo frac-

tional derivative, time scale power function, and Mittag-Leer function and
use them to solve fractional dynamic equations involving Riemann-Liouville
and Liouville-Caputo type fractional derivatives in subsequent sections.

1. Introduction
Integral transforms are widely used to solve various dierential and integral

equations. Stefan Hilger (1988) introduced the concept of time scales in his PhD
dissertation [10]. This introduction is a milestone for the development of dynamic
systems in discrete and continuous cases. Calculus on time scales unies continuous
and discrete analysis therefore, it is an extension of calculus on real numbers. Time
scale calculus mainly involves delta and nabla derivatives. Integral transforms on
time scales are mathematical techniques used to analyze functions on time scales,
that combine discrete and continuous components. These transforms generalize
the classical integral transforms and are used as in traditional calculus to set of
time scales. Just as integral transforms in classical calculus provide useful tools for
solving dierential and integral equations, integral transforms on time scales oer
similar advantages for solving equations involving functions dened on time scales.
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Due to some obstacles regarding calculus on time scales under consideration for
solving fractional dynamic equations on time scales, the nabla version of integral
transform is more acceptable. Various integral transforms such as Laplace, Fourier,
Sumudu, Shehu, etc. studied in [2, 5, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 25, 26].

Motivating from this research, we studied the nabla version of the Shehu trans-
form on time scales which is a generalization of the nabla versions of the Laplace
and Sumudu transforms and hence the carrying properties of both were found to be
more benecial. Using this method, we solved fractional dynamic equations with
initial conditions involving Riemann-Lioville and Liouville-Caputo type fractional
derivatives. Concepts related to time scales which will serve as a prerequisite of
our work are taken from [1, 3, 4, 5, 6, 9, 11, 13, 24]. For further study, we require
some preliminary concepts, which are as follows.

For t  T, the forward jump operator σ : T → T is given as σ(t) := infτ 
T : τ > t and backward jump operator ρ : T → T is given as ρ(t) := supτ 
T : τ < t. If σ(t) > t, t is said to be right-scattered, while if ρ(t) < t, then t is
left-scattered. In addition, if t < supT and σ(t) = t, then t is called right dense,
and if t > infT and ρ(t) = t, then t is called left-dense. For t  T, the backward
graininess function ρ : T → R+  0 is ν(t) = t− ρ(t).

Dnition 1.1. A function f : T → C is ld-continuous if it is continuous at every
left-dense point, and the right sided limit exists at every right dense point of T. It
is expressed as f  Cld(T,C).

Note that, if f, g  Cld(T,C), then f ⊕ν g = f + g − νfg and ⊖νf = −f
1−νf .

Dnition 1.2. A function f  Cld(T,C) is called ν−regressive (positively ν−regressive)
if 1− νh ̸= 0 (1− νh ≥ 0) for all t  Tk. The set of all ν−regressive and positively
ν−regressive functions are denoted by Rν(T,C) and R+

ν (T,C), respectively. Here
Tk = T − m, if time scale T has a right scattered minimum m, otherwise take
Tk = T.

For h > 0, we have Ch = z  C : z ̸= 1
h and Zh = z  C : −π

h < Im(z) ≤ π
h,

with C0 = Z0 = C. Further, the sets Reh(z) = 1
h (1 − 1 − hz) and Imh(z) =

1
hArg(1− hz) denotes Hilger real and imaginary parts of a complex number. Note
that Re0(z) = Re(z) and Im0(z) = Im(z).

Dnition 1.3. If f  Rν(T,C), then the nabla exponential function is given

by, ef (t, t0) := exp
  t

t0
ξν(τ)(f(τ))τ


for t, t0  T, where ξh : Ch → Zh is the

ν−cylindrical transformation given as ξh(z) =
−1
h Log(1− zh).

Dnition 1.4. Let s, t  T and α,β > −1 the time scale power functions ĥ(t, s)
are the nonnegative functions that satisfy the following.

(i)
 t

s
ĥα(t, ρ(τ))ĥβ(τ, s) τ = ĥα+β+1(t, s) for t ≥ s.

(ii) ĥ0(s, t) = 1 for t ≥ s.

(iii) ĥα(t, t) = 0 for 0 ≤ α ≤ 1.

Using the above denition, fractional order integrals and derivatives on time
scales are dened as

Dnition 1.5. Let a1, a2  T and [a1, a2]T = T  [a1, a2] for an ld-continuous
function f : [a1, a2]T → C one denes.
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(i) The fractional integral of order α > 0 with lower limit a1 is

a1
−αf(t) :=

 t

a1

ĥα−1(t, ρ(s))f(s)s

when α = 0, we get a1
0f(t) = f(t).

(ii) The Riemann-Liouville fractional derivative of order β > 0 with lower limit
a1 is given by,

a1
βf(t) = [a1

−(n−β)f ]
n

(t) for t  [σ(a1), a2]T

where n = [β] + 1.
(iii) The Liouville-Caputo-fractional derivative of order γ > 0 with lower limit

a1 is given by,

c
a1
γf(t) = (a1−(n−γ)fn

)(t) for t  [σ(a1), a2]T

where n = [γ] + 1.

Dnition 1.6. Suppose τ  T, then an ld-continuous function f : T → C, is said
to be of exponential order c on [τ,∞)T with c  R+

γ ([τ,∞)T,C) if there exists a
constant M > 0, such that f(t) ≤ Mec(t, τ) for t  [τ,∞)T.

Dnition 1.7. The minimal graininess function ν⋆ : T → [0,∞)

ν⋆(τ) := inf
t[τ,∞)

ν(t) for τ  T.

Also if h ≥ 0 and δ  R then

Ch(δ) :=

z  Ch : Rh(z) > δ


.

Lmma 1.1. If f  Rν(T,C), then eρ⊖f (t, t0) =
e⊖f (t,t0)
1−ν(t)f .

Thorm 1.1 (Decay of nabla-exponential function). For an unbounded time scale
T, let s  T and ω  R+

ν ([s,∞)T,R). Then for any z  Cν⋆(s)(ω) we have the
following properties.

(1) eω⊖νz(t, s) ≤ eω⊖νReν⋆(s)(z)(t, s) for all t  [s,∞)T.
(2) lim

t→∞
eω⊖νReν⋆(s)(z)(t, s) = 0.

(3) lim
t→∞

eω⊖νz(t, s) = 0.

2. Nabla Shehu Transform
In this section, we dene the nabla Shehu transform and give its existence.

Hence,fourth, we are going to assume that t0  T and sup T = ∞.

Dnition 2.8 (Nabla Shehu Transform). For f : T → C with f  Cld(T,C), we
dene nabla-Shehu transform of f as

Shf(s, u) :=
 ∞

t0

eρ⊖ν
s
u
(t, t0)f(t) t (1)

for all s
u  Dνf, where Dνf consists of all s

u  Rν(T,C) for which the improper
integral exists.

The below lemma can be proved similarly as lemma 2.1 in [13].

Lmma 2.2. Suppose τ  T and f : [τ,∞)T → C is an ld-continuous function of
exponential order c, then lim

t→∞
f(t)e⊖ν

s
u
(t, τ) = 0, where s

u  Cν⋆(τ)(c).
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Thorm 2.2 (Existence theorem). Let f  Cld([t0,∞)T,C) be a function of the
exponential order c, then the nabla Shehu transform of f exists and the integral

 ∞

t0

eρ⊖ν
s
u
(t, t0)f(t)t

converges absolutely for all s
u  Cν⋆(t0)(c).

Proof. For some xed z  C, the Hilger real part [3] is a non decreasing function
of h ≥ 0,

then Reν(t)

 s

u


≥ Reν⋆(t0)

 s

u


for all t  [t0,∞)T.

We get the inequality
1− ν

s

u

 ≥ 1− νReν⋆(t0)

 s

u


for all t  [t0,∞)T.

Also for t  [t0,∞)T and s
u  Cν⋆(t0)(c) using Denition 1.6 and Lemma 1.1 we get



 τ

t0

eρ⊖ν(
s
u )(t, t0)f(t)t

 ≤
 τ

t0

eρ⊖ν(
s
u )(t, t0)f(t)

 t

≤ M

 τ

t0

ec(t, t0)eρ⊖ν
s
u
(t, t0)

 t

= M

 τ

t0

ec⊖ν
s
u
(t, t0)1− ν s

u

 t

≤ M

 τ

t0

ec⊖νReν⋆(t0)(
s
u )(t, t0)

1− νReν⋆(t0)


s
u

 t

=
M

c−Reν⋆(t0)


s
u


 τ

t0

ec⊖νReν⋆(t0)(
s
u )(t, t0) t

=
M

c−Reν⋆(t0)


s
u

 [ec⊖νReν⋆(t0)(
s
u )(τ, t0)− 1]

=
M

Reν⋆(t0)


s
u


− c

[1− ec⊖νReν⋆(t0)(
s
u )(τ, t0)]

using Theorem 1.1 as τ → ∞ we get

 ∞

t0

eρ⊖ν
s
u
(t, t0) f(t) t

 ≤ M

Reν⋆(t0) − c
for all

s

u
 Cν⋆(t0)(c)

thus the integral
∞
t0

eρ⊖ν
s
u
(t, t0) t converges absolutely for all s

u  Cν⋆(t0)(c). □

3. Fundamental Properties
Now, we give some fundamental properties of the nabla Shehu transform through

the following theorems.

Thorm 3.3 (Linearity). Let αf : T → C, βg : T → C with f, g  Cld(T,C) are
of exponential order c1, c2 respectively then for any α,β  R then we have,

Shαf + βg(s, u) = αShf(s, u) + βShg(s, u)
for all s

u  Cν⋆(t0)(maxc1, c2).
The proof follows directly from Denition 2.8.
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Thorm 3.4 (Shehu transform of derivative). Let f : T → C with f, f 
Cld(T,C) be a function of exponential order c then,

Shf(s, u) = s
uShf(s, u)− f(t0) for all s

u  Cν⋆(t0)(c).

Proof. Applying Denition 2.8,

Shf(s, u) =
 ∞

t0

eρ⊖ s
u
(t, t0)f

(t) t

=

 ∞

t0


e⊖ s

u
(t, t0)f(t)

 − e⊖ s
u
(t, t0)f(t) t

= −f(t0)−
 ∞

t0

e⊖ s
u
(t, t0)f(t) t

= −f(t0) +
s

u

 ∞

t0

f(t)
e⊖ s

u (t,t0)

1− ν(t) su
t

= −f(t0) +
s

u

 ∞

t0

f(t)eρ⊖ s
u
(t, t0) t

= −f(t0) +
s

u
Shf(s, u).

□

From the above theorem, we have if f : T → C is ld-continuous such that
f : T → C is also ld-continuous and is of exponential order c, then

Shf(s, u) = s2

u2Shf(s, u)− s
uf(t0)− f(t0).

Hence in general we can show that

Shfn(s, u) = sn

un
Shf(s, u)−

n−1

k=0

 s

u

n−(k+1)

fk

(t0)

for all s
u  Cν⋆(t0)(c).

The theorem, which relates transform of integral of a function to the transform
of a function can be proved as theorem 3.3 in [14].

Thorm 3.5. Let f : T → C is ld-continuous function such that F (t) =
 t

t0
f(τ)τ

for all t  T is ld-continuous and is of exponential order c, then

ShF(s, u) = u

s
Shf(s, u).

Using our Denition 2.8 we can show that.

(1) If f(t) ≡ 1, then Sh1 = u
s provided lim

t→∞
e⊖ s

u
(t, t0) = 0 for s

u 
Rν(T,C).

(2) If f(t) = hn(t, t0), Taylor’s monomials introduced in [3] for n  N  0
then

Shhn(t, t0)(s, u) =
1


s
u

n+1

with s
u  Rν(T,C), s ̸= 0, u ̸= 0 with lim

t→∞
hn(t, t0)e⊖ s

u
(t, t0) = 0.
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(3) If f(t) = ĥα(t, s), is the time scale power functions dened in [13] then

Shĥα(t, t0)(s, u) =
1


s
u

α+1 .

Convolutions of two functions on time scales is given in the following denition.

Dnition 3.9. [26] For functions f, g : T → C, the convolution f ∗ g of f and g
is dened as follows

(f ∗ g)(t) =
 ∞

t0

f̂(t, ρ(τ))g(τ) τ for t  T,

where for a given f : [t0,∞) → C, f̂ called shift (or decay) is the solution of the
Shifting problem.

ut(t, ρ(s)) = −us(t, s) t, s  T t ≥ s ≥ t0,

u(t, t0) = f(t) t  T, t ≥ t0.

Using above denition of convolution we are ready to give convolution theorem
for nabla Shehu transform as follows.

Thorm 3.6 (The Convolution Theorem). Let f, g : T → C be ld-continuous
functions having the nabla Shehu transforms Shf and Shg respectively,
then

Shf ∗ g(s, u) = Shf(s, u) · Shg(s, u)
for all s

u  Dνf Dνg.
Proof. We have,

Shf ∗ g(s, u) =
 ∞

t0

eρ⊖ν
s
u
(t, t0)(f(t) ∗ g(t)) t

=

 ∞

t0

e⊖ν
s
u
(ρ(t), t0)

 t

t0

f̂(t, ρ(τ))g(τ) τ

=

 ∞

t0

g(τ)e⊖ν
s
u
(ρ(τ), t0)

  ∞

ρ(τ)

e(ρ(t), ρ(τ))f̂(t, ρ(τ))t

τ

=

 ∞

t0

g(τ)e⊖ν
s
u
(ρ(τ), t0) ψ(ρ(τ)) τ

where, ψ(τ) =
∞
τ

e⊖ν
s
u
(ρ(t), τ)f̂(t, τ)t.

Now, applying the nabla-versions of lemma 2.4 and lemma 3.3 from [6], it is clear
that ψ(τ) is a constant function, and hence is independent of τ . So we have,

ψ(t0) =

 ∞

t0

e⊖ν
s
u
(ρ(t), t0)f̂(t, t0) t =

 ∞

t0

e⊖ν
s
u
(ρ(t), t0)f(t)t = Shf.

And we get Shf ∗ g(s, u) = Shf · Shg. □

Thorm 3.7 (Shehu Transform Of Fractional Integral). For a = t0, the Shehu
transform of fractional integral t0−αf is Sht0−αf(s, u), which is given as

Sht0−αf(s, u) =
 s

u

−α

Shf(t)(s, u).
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Proof. First of all note that for a = t0, Denition 1.5 (i) can be rewritten as

t0−αf(t) =

 t

t0

ĥα−1(t, ρ(τ))f(τ) τ.

t0−αf(t) = ĥα−1(t, t0) ∗ f(t)
Sht0−αf(s, u) = Shĥα−1(t, t0) ∗ f(t)(s, u)

= Shĥα−1(t, t0)(s, u) · Shf(t)(s, u)

=
1
s
u

αShf(t)(s, u)

=
 s

u

−α

Shf(t)(s, u).

□

Thorm 3.8 (Shehu Transform of Riemann-Liouville Fractional Derivative). For
a = t0, the Shehu transform of Riemann-Liouville Fractional derivative t0βf is
Sht0βf(s, u) which is given as

Sht0βf(s, u) =
 s

u

β

Shf(s, u)−
n

j=1

 s

u

j−1

( t0β−jf)(t0).

Proof. We have,

Sht0βf(s, u) = Sh[ t0−(n−β)f ]
n(s, u)

=
sn

un
Sh t0−(n−β)f(s, u)−

n−1

j=0

 s

u

n−(j+1)
t0−(n−β)f

j

(t0)

=
sn

un


1


s
u

n−β
Shf(s, u)


−

n−1

j=0

 s

u

n−j−1
t0j−n+βf


(t0)

=
 s

u

β

Shf(s, u)−
n

j=1

 s

u

(j−1)
t0β−jf


(t0)

where


t0−(n−β)f
j

(t0) =


t0j−n+βf

(t0) follows from the denition of

Riemann-Liouville fractional−derivative, also note that

t0β−nf


(t0) = lim

t→t0


t0−(n−β)f


(t0)

(t0 is right dense) and

t0
β−1f


(t0) = 0 (t0 is right scattered). □

Thorm 3.9 (Shehu Transform of Liouville-Caputo Fractional Derivative). For
a = t0, the Shehu transform of the Liouville-Caputo fractional derivative c

t0νf is
Sh c

t0νf(s, u), which is given as

Sh c
t0νf(s, u) =

 s

u

ν

Shf(s, u)−
n−1

j=0

 s

u

ν−j−1

(fj

)(t0).
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Proof.

Sh c
t0νf(s, u) = Sh t0−(n−ν)[fn

](s, u)

=
1


s
u

n−ν Shfn(s, u)

=
1


s
u

n−ν


sn

un
Shf(s, u)−

n−1

j=0

 s

u

n−(j+1)

(fj

)(t0)



=
 s

u

ν

Shf(s, u)−
n−1

j=0

 s

u

ν−j−1

(fj

)(t0).

□

Solutions of fractional dynamic equations on time scales involve the fractional or-
der case of the exponential function ez called the Mittag-Leer function Eα,β(z) =∞

j=0
zj

Γ(αk+β) introduced in [7, 13, 25, 26] .

Dnition 3.10. [25] The time scale −Mittag-Leer function is dened as,

Eα,β(λ, t, t0) =

∞

j=0

λj ĥαj+β−1(t, t0)

for α > 0,β,λ  R.

Now we give the nabla Shehu transform of −Mittag-Leer function through
the following theorem.

Thorm 3.10. Shehu transform of time scale − Mittag-Leer function is

ShEα,β(λ, t, t0) =


s
u



s
u

α − λ

provided
λ


s
u

−α < 1.
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Proof.

ShEα,β(λ, t, t0) = Sh
 ∞

j=0

λj ĥαj+β−1(t, t0)

(s, u)

=

∞

j=0

λjShĥαj+β−1(t, t0)(s, u)

=

∞

j=0

λj 1

s
u

αj+β

=
1


s
u

β

1 +

λ
s
u

α
λ2


s
u

2α + · · ·


=
1


s
u

β
∞

j=0

λj


s
u

αj

=
1


s
u

β


1

1− λ
s
u

α


provided

λ
 s
u

−α
 < 1 for convergence of geometric series,

=
1


s
u

β

 
s
u

α

s
u

α − λ



=


s
u

α−β


s
u

α − λ
.

□

4. Applications
Now in this section, we present some applications of the nabla Shehu transforms

for solving fractional dynamic equations involving Riemann-Liouville and Liouville-
Caputo type fractional derivative.

Exampl 4.1. Consider following Riemann-Liouville type fractional dynamic equa-
tion of order α, n− 1 < α ≤ n


t0αy


(t)− λy(t) = h(t), t  T,

with initial conditions


t0α−k y


(t0) = ak (ak  R, k = 1, 2, 3, · · · , n = [α]).

Applying the nabla Shehu transform on both sides
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 s
u

α
Shy(s, u)−

n

k=1

 s
u

k−1
t0α−ky


(t0)− λ Shy(s, u)

= Shh(s, u)
 s
u

α
Shy(s, u)−

n

k=1

 s
u

k−1
ak − λ Shy(s, u)

= Shh(s, u)
 s

u

α − λ

Shy(s, u) =

n

k=1

 s
u

k−1
ak + Shh(s, u)

Shy(s, u) = 1
s
u

α − λ


n

k=1

 s
u

k−1
ak +

1
s
u

α − λ
Shh(s, u)

Shy(s, u) =
n

k=1


s
u

α−(α−k+1)


s
u

α − λ
 ak +


s
u

α−1


s
u

α − λ
 Shh(s, u)

Shy(s, u) =
n

k=1

ShEα,α−1+k(λ, t, t0)(s, u) ak

+ ShEα,α(λ, t, t0)(s, u) · Shh(s, u)

Shy(s, u) =
n

k=1

ShEα,α−k+1(λ, t, t0)(s, u) · ak

+ ShEα,α(λ, t, t0) ∗ h(t)(s, u)

y(t) =

n

k=1

Eα−k+1(λ, t, t0) · ak

+ Eα,α(λ, t, t0) ∗ h(t)

y(t) =

n

k=1

Eα,α−k+1(λ, t, t0) · ak

+ Eα,α(λ, t, t0) ∗ h(t)

y(t) =

n

k=1

Eα,α−k+1(λ, t, t0) · ak

+

 t

t0
Êα,α(λ, t, ρ(τ)) · h(τ) τ.

Exampl 4.2. Consider the following fractional Cauchy problem of order α, 0 <
α ≤ 1,


t0αy(t)


− λy(t) = h(t), t  T,

with initial conditions


t0α−1y


(t0) = a0, (a0  R).
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Applying the nabla Shehu transform on both sides

 s
u

α
Shy(s, u)−  t0α−1y(t0)− λShy(s, u)

= Shh(s, u)
 s

u

α − λ

Shy(s, u) =  t0α−1y(t0) + Shh(s, u)

Shy(s, u) = 1
s
u

α − λ
 ( t0αy)(t0) +

1
s
u

α − λ
Shh(s, u)

Shy(s, u) = 1
s
u

α − λ
 a0 +

1
s
u

α − λ
Shh(s, u)

Shy(s, u) =

s
u

α−α


s
u

α − λ
 a0 +


s
u

α−α


s
u

α − λ
Shh(s, u)

Shy(s, u) = a0 ShEα,α(λ, t, t0)(s, u)
+ Sh Eα,α(λ, t, t0)(s, u) · Shh(s, u)

Shy(s, u) = a0 Sh Eα,α(λ, t, t0)(s, u)
+ Sh Eα,α(λ, t, t0) ∗ h(t)(s, u)

y(t) = a0 Eα,α(λ, t, t0) + Eα,α(λ, t, t0) ∗ h(t)

y(t) = a0 Eα,α(λ, t, t0) +

 t

t0
Êα,α(λ, t, ρ(τ)) ∗ h(τ) τ.

Exampl 4.3. Consider the following fractional Cauchy problem of order α, 0 <
α ≤ 1


c
t0νy


(t) = g(t), t  T,

with initial condition,

y(t0) = b0, b0  R.

Applying nabla Shehu transform on both sides

 s
u

ν
Shy(s, u)−

 s
u

ν−1
y(t0) = Shg(s, u)

 s
u

ν
Shy(s, u) =

 s
u

ν−1
b0 + Shg(s, u)

Shy(s, u) =

s
u

ν−1


s
u

ν b0 +
1
s
u

ν Shg(s, u)

Shy(s, u) = 1
s
u

ν b0 +
1
s
u

ν Shg(s, u)

Shy(s, u) = Sh1(s, u) b0 + Shĥν−1(t, t0)(s, u) · Shg(s, u)
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Shy(s, u) = b0Sh1(s, u) + Shĥν−1(t, t0) ∗ g(t)(s, u)
y(t) = b0 + ĥν−1(t, t0) ∗ g(t)

y(t) = b0 +

 t

t0

ĥν−1(t, ρ(t))g(t)τ

y(t) = b0 + t0−νg(t).

5. Conclusions
We introduced the nabla Shehu transform, which generalizes the nabla Laplace

and nabla Sumudu transforms on time scales. We discuss its existence conditions
and provide some fundamental properties, including convolution theorem. Trans-
forms of the fractional integral, Riemann-Liouville fractional derivative, Liouville-
Caputo fractional derivative, time scale power function, and Mittag-Leer function
are found. We applied this transform to solve some fractional dynamic equations
involving Riemann-Liouville and Liouville-Caputo type fractional derivatives.
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