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FRACTIONAL ORDER DIFFERENTIAL EQUATION WITH

NONLOCAL INTEGRAL CONDITION

ANTISAR A. A. ALHAMALI

Abstract. This research paper focuses on investigating the solvability of the

Riemann-Liouville differential equation with nonlocal integral condition, study

the existence of solutions in the class of continuous functions, we use the tech-
nique of the Schauder fixed point Theorem. We drive sufficient conditions for

a uniqueness and the continuous dependence on some functions. Additionally,

we delve into the study of the Hyers–Ulam stability. Finally, we given an
examples are provided to illustrate our results.

1. Introduction

The investigation of fractional functional equations has garnered significant at-
tention in recent decades. The theory of fractional differential equations has found
widespread applications in various domains, including astronomy, biology, econom-
ics, and others, as documented in references [1, 2, 7, 8, 15, 11, 13, 14, 17, 9, 10, 12].
Moreover, research efforts have also focused on addressing the challenges associated
with solutions of fractional differential equations on both finite and infinite intervals.

The definition of the fractional derivative of the Riemann-Liouville type played
an important role in the development of the theory of fractional derivatives and
integrals and for its applications in pure mathematics.
However, the demands of modern technology require a certain revision of the well-
established pure mathematical approach. Applied problems require definitions of
fractional derivatives allowing the utilization of physically interpretable initial con-
ditions.
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In this paper we study the nonlocal problem of the fractional order differential
equation,

RDα(x(t)− x(0)) = f(t, x(ϕ(t))), t ∈ I, I = [0, T ], (1)

with nonlocal integral condition

x(0) +

∫ T

0

h(s, x(s))ds = x0, (2)

where RDα is the refers to the fractional derivative of Riemann–Liouville of order
α ∈ (0, 1). Our aim here is study the existence of solutions x ∈ C(I). Moreover,
the continuous dependence of the unique solution on the x0 and on the functions
f , g and ϕ will be proved. The Hyers – Ulam stability of the problem will be given.

The paper is organized as follows: Section 2 contains the solvability of the so-
lutions x ∈ C(I) by Schauder fixed point Theorem [16] and discuss some stability
facts of the of the problem (1)-(2). Moreover, the Hyers – Ulam stability of our
problem will be studied. Some examples in Section 3.

2. Existence of solution

Let C = C(I), be the class of continuous functions with the standard norm

∥x∥ = sup
t∈I

|x(t)|.

Take into account the following assumptions:
(i) ϕ : I → I, ϕ(t) ≤ t; is continuous.
(ii) h : I × R → R is Carathéodory functions [6] and there exist a bounded

measurable function a : I → R and nonnegative constant b1 such that

|h(t, x)| ≤ |a(t)|+ b1|x| ∀ t ∈ I, x ∈ R.
(iii) f : I × R → R is Carathéodory functions [6] and there exist a bounded

measurable function m : I → R and nonnegative constant b2 such that

|f(t, x)| ≤ |m(t)|+ b2|x| ∀ t ∈ I, x ∈ R.

(iv) (b1 T + b2T
α

Γ(α+1) ) < 1.

Now, the following lemma.

Lemma 2.1. The problem (1)-(2) is equivalent to the integral equation

x(t) = x0 −
∫ T

0

h(s, x(s))ds+ Iαf(t, x(ϕ(t))), t ∈ I. (3)

Proof. Let x be a solution of (1)-(2), then

RDα(x(t)− x(0)) = f(t, x(ϕ(t))).

d

dt
I1−α(x(t)− x(0)) = f(t, x(ϕ(t))).

Integrating we obtain

I1−α(x(t)− x(0))− I1−α(x(t)− x(0))

∣∣∣∣
t=0

= If(t, x(ϕ(t))).
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and from the properties of the fractional calculus,[] we can obtain

I1−α(x(t)− x(0)) = If(t, x(ϕ(t)))

and

I(x(t)− x(0)) = I1+αf(t, x(ϕ(t)))

(x(t)− x(0)) = Iαf(t, x(ϕ(t))).

then

x(t) = x(0) + Iαy(t). (4)

Substituting by (2) in (5), we obtain (3).
Conversely, let x be a solution of (3). Substituting by (2) in (3) we obtain

I1−α(x(t)− x(0)) = I1−αIαf(t, x(ϕ(t))).

Differentiation we obtain

d

ds
I1−α(x(t)− x(0)) =

d

ds
If(t, x(ϕ(t))),

then

RDα(x(t)− x(0)) = f(t, x(ϕ(t))).

This proves the equivalent between the problem (1)-(2) and (3). Now, we have the
following existences theorem.

Theorem 2.1. Assume that (i) − (iv) be satisfied, then the integral equation (3)
has at least one solution x ∈ C(I).

Proof. Define the set

Qr = {x ∈ C(I) : ∥x∥ ≤ r}, r =

(
|x0|+ ∥a∥T +

Tα ∥m∥
Γ(α+ 1)

)
÷

(
1− (b1T +

b2T
α

Γ(α+ 1)
)

)
and define the operator F by

Fx(t) = x0 −
∫ T

0

h(s, x(s))ds+ Iαf(t, x(ϕ(t))).

Now, let x ∈ Qr, then

|Fx(t)| =

∣∣∣∣x0 −
∫ T

0

h(s, x(s))ds+ Iαf(t, x(ϕ(t)))

∣∣∣∣
≤ |x0|+

∫ T

0

|h(s, x(s))|ds+
∫ t

0

(t− s)α−1

Γ(α)
|f(s, x(ϕ(s)))|ds

≤ |x0|+
∫ T

0

(|a(s)|+ b1|x(s)|)ds+
∫ t

0

(t− s)α−1

Γ(α)
(|m(s)|+ b2|x(ϕ(s))|)ds

≤ |x0|+ (∥a∥+ b1∥x∥)T +
∥m∥Tα

Γ(α+ 1)
+

b2T
α

Γ(α+ 1)
∥x∥

≤ |x0|+ (∥a∥+ b1 r)T +
∥m∥Tα

Γ(α+ 1)
+

b2T
α

Γ(α+ 1)
r = r,

then

∥Fx∥ ≤ |x0|+ (∥a∥+ b1 r)T +
∥m∥Tα

Γ(α+ 1)
+

b2T
α

Γ(α+ 1)
r = r.
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Hence the operator F maps the ball Qr into itself and the class of functions {Fx}
is uniformly bounded on Qr.
Now, let x ∈ Qr and t1, t2 ∈ I such that t1 ≤ t2 and |t2 − t1| < δ, then we have

|Fx(t2)− Fx(t1)| =

∣∣∣∣x0 −
∫ T

0

h(s, x(s))ds+

∫ t2

0

(t2 − s)α−1

Γ(α)
f(s, x(ϕ(s)))ds

− x0 +

∫ T

0

h(s, x(s))ds−
∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, x(ϕ(s)))ds

∣∣∣∣
≤

∣∣∣∣ ∫ t2

0

(t2 − s)α−1

Γ(α)
f(s, x(ϕ(s)))ds−

∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, x(ϕ(s)))ds

∣∣∣∣
≤

∣∣∣∣ ∫ t1

0

(t2 − s)α−1

Γ(α)
f(s, x(ϕ(s)))ds+

∫ t2

t1

(t2 − s)α−1

Γ(α)
f(s, x(ϕ(s)))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, x(ϕ(s)))ds

∣∣∣∣
≤

∫ t1

0

(t2 − s)1−α − (t1 − s)1−α

Γ(α)(t1 − s)1−α(t2 − s)1−α
|f(s, x(ϕ(s)))|ds

+

∫ t2

t1

1

Γ(α)(t2 − s)1−α
|f(s, x(ϕ(s)))|ds.

This means that the class of functions {Fx} is equicontinuous on Qr and by Arzela-
Ascoli Theorem [16] the class of functions {Fx} is relatively compact, then the
operator F is compact.
Now, let {xn} ⊂ Qr, and xn → x, then

Fxn(t) = x0 −
∫ T

0

h(s, xn(s))ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, xn(ϕ(s)))ds

and

lim
n→∞

Fxn(t) = x0 − lim
n→∞

∫ T

0

h(s, xn(s))ds+ lim
n→∞

∫ t

0

(t− s)α−1

Γ(α)
f(s, xn(ϕ(s)))ds.

Applying Lebesgue dominated convergence Theorem [16], then from our assump-
tions we get

lim
n→∞

Fxn(t) = x0 −
∫ T

0

h(s, lim
n→∞

xn(s))ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, lim

n→∞
xn(ϕ(s)))ds

= x0 −
∫ T

0

h(s, x(s))ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(ϕ(s)))ds = Fx(t).

This means that Fxn(t) → Fx(t). Hence the operator F is continuous.
Now, by Schauder fixed point Theorem [16] there exists at least one solution x ∈
C(I) of (3). Consequently there exists at least one solution x ∈ C(I) of the problem
(1)-(2).

2.1. Uniqueness of the solution. Now, replace the assumption (ii) and (iii) by
(ii)∗ and (iii)∗ as follows:

(ii)∗ h : I × R → R is measurable in t ∈ I ∀x ∈ R and satisfies Lipschitz
condition,

|h(t, x)− h(t, y)| ≤ b1 |x− y| ∀ t ∈ I, x, y ∈ R. (5)
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(iii)∗ f : I × R → R is measurable in t ∈ I ∀x ∈ R and satisfies Lipschitz
condition,

|f(t, x)− f(t, y)| ≤ b2 |x− y| ∀ t ∈ I, x, y ∈ R. (6)

So, we have the following Lemma.

Lemma 2.2. The assumption (ii)∗ and (iii)∗ implies the assumption (ii) and (iii).

Proof. From equation (5), let y = 0, then we have

|h(t, x)| − |h(t, 0)| ≤ |h(t, x)− h(t, 0)| ≤ b1|x|,

|h(t, x)| ≤ |h(t, 0)|+ b1|x|
and

|h(t, x)| ≤ |a(t)|+ b1|x|, where |a(t)| = sup
t∈I

|h(t, 0)|.

Also, from equation (6), then we have

|f(t, x)| ≤ |m(t)|+ b2|x|, where |m(t)| = sup
t∈I

|f(t, 0)|.

Theorem 2.2. Let the assumptions (i), (ii)∗, (iii)∗ and (iv) be satisfied, then the
solution of integral equation (3) is unique.

Proof. Let x1, x2 be two solutions in Qr of (3), then

|x2(t)− x1(t)| =

∣∣∣∣x0 −
∫ T

0

h(s, x2(s))ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, x2(ϕ(s)))ds

− x0 +

∫ T

0

h(s, x1(s))ds−
∫ t

0

(t− s)α−1

Γ(α)
f(s, x1(ϕ(s)))ds

∣∣∣∣
≤

∫ T

0

∣∣∣∣h(s, x2(s))− h(s, x1(s))

∣∣∣∣+ ∫ t

0

(t− s)α−1

Γ(α)

∣∣∣∣f(s, x2(ϕ(s)))− f(s, x1(ϕ(s)))

∣∣∣∣ds
≤ b1

∫ T

0

|x2(s)− x1(s)|ds+ b2

∫ t

0

(t− s)α−1

Γ(α)
|x2(ϕ(s))− x1(ϕ(s))|ds

≤ b1∥x2 − x1∥ T + b2
Tα

Γ(α+ 1)
∥x2 − x1∥.

Hence

∥x2 − x1∥
(
1−

(
b1 T +

b2T
α

Γ(α+ 1)

))
≤ 0,

then x1 = x2 and the solution of (3) is unique. Consequently the solution of the
problem (1) and (2) is unique.

2.2. Continuous dependence.

Theorem 2.3. Let the assumptions of Theorem 2.2 be satisfied for f, f∗, g and
g∗. Then the unique solution x ∈ C(I) depends continuously on the functions f
and g in the sense that

∀ϵ > 0, ∃ δ(ϵ) such that

max { |x0−x∗
0|, |h(t, x(t))−h∗(t, x(t))|, |f(t, x(t))−f∗(t, x(t))|, |ϕ−ϕ∗| } < δ, then ∥x−x∗∥ < ϵ.
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where x∗ be a solution of

x∗(t) = x∗
0 −

∫ T

0

h∗(s, x∗
2(s))ds+

∫ t

0

(t− s)α−1

Γ(α)
f∗(s, x∗(ϕ∗(s)))ds.

Proof.

|x(t)− x∗(t)| =

∣∣∣∣x0 −
∫ T

0

h(s, x(s))ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(ϕ(s)))ds

− x∗
0 +

∫ T

0

h∗(s, x∗(s))ds−
∫ t

0

(t− s)α−1

Γ(α)
f∗(s, x∗(ϕ∗(s)))ds

∣∣∣∣
≤ |x0 − x∗

0|+
∫ T

0

|h(s, x(s))− h∗(s, x(s))|ds+
∫ T

0

|h∗(s, x(s))− h∗(s, x∗(s))|ds

+

∫ t

0

(t− s)α−1

Γ(α)

∣∣∣∣f(s, x(ϕ(s)))− f∗(s, x(ϕ(s)))

∣∣∣∣ds
+

∫ t

0

(t− s)α−1

Γ(α)

∣∣∣∣f∗(s, x(ϕ(s)))− f∗(s, x∗(ϕ(s)))

∣∣∣∣ds
+

∫ t

0

(t− s)α−1

Γ(α)

∣∣∣∣f∗(s, x∗(ϕ(s)))− f∗(s, x∗(ϕ∗(s)))

∣∣∣∣ds
≤ δ + δ T + b1 ∥x− x∗∥ T + δ

Tα

Γ(α+ 1)
+

b2T
α

Γ(α+ 1)
∥x− x∗∥

+ b2

∫ t

0

(t− s)α−1

Γ(α)
|x∗(ϕ(s))− x∗(ϕ∗(s))|ds

≤ δ + δ T + b1 ∥x− x∗∥ T + δ
Tα

Γ(α+ 1)
+

b2T
α

Γ(α+ 1)
∥x− x∗∥

+
b2T

α

Γ(α+ 1)
ϵ∗.

Hence

∥x− x∗∥ ≤

(
1 + T + Tα

Γ(α+1)

)
δ + b2T

α

Γ(α+1) ϵ∗

1−
(
b1 T + b2Tα

Γ(α+1)

) = ϵ.

2.3. Hyers-Ulam stability.

Definition 2.1. [5] Let the solution x ∈ C(I) of the problem (1)-(2) be exists, then
the problem (1)-(2) is Hyers - Ulam stable if ∀ϵ > 0, ∃ δ(ϵ) such that for any
δ − approximate solution xs satisfies,∣∣∣∣ RDα(xs(t)− xs(0))− f(t, xs(ϕ(t)))

∣∣∣∣ < δ, (7)

implies ∥x− xs∥ < ϵ.

Theorem 2.4. Let the assumptions of Theorem 2.2 be satisfied, then the problem
(1)-(2) is Hyers - Ulam stable.
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Proof. From (7), we have

−δ ≤ RDα(xs(t)− xs(0))− f(t, xs(ϕ(t))) ≤ δ

−δ∗ = −δ Iα ≤ xs(t)− xs(0)− Iαf(t, xs(ϕ(t))) ≤ δ Iα = δ∗

−δ∗ ≤ xs(t)−
(
x0 −

∫ T

0

h(s, xs(s))ds+ Iαf(t, xs(ϕ(t)))

)
≤ δ∗.

Now,

|x(t)− xs(t)| =

∣∣∣∣x0 −
∫ T

0

h(s, x(s))ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(ϕ(s)))ds− xs(t)

∣∣∣∣
≤

∣∣∣∣x0 −
∫ T

0

h(s, x(s))ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(ϕ(s)))ds

− x0 +

∫ T

0

h(s, xs(s))ds−
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs(ϕ(s)))ds

∣∣∣∣
+

∣∣∣∣xs(t)− (x0 −
∫ T

0

h(s, xs(s))ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s, xs(ϕ(s)))ds)

∣∣∣∣
≤

∫ T

0

|h(s, x(s))− h(s, xs(s))|ds+
∫ t

0

(t− s)α−1

Γ(α)
|f(s, x(ϕ(s)))− f(s, xs(ϕ(s)))|ds

+ δ∗

≤ b1

∫ T

0

|x(s)− xs(s)|ds+ b2

∫ t

0

(t− s)α−1

Γ(α)
|x(ϕ(s))− xs(ϕ(s))|ds+ δ∗,

then

∥x− xs∥ ≤ b1∥x− xs∥ T +
b2T

α

Γ(α+ 1)
∥x− xs∥+ δ∗.

Hence

∥x− xs∥ ≤ δ∗

1−
(
b1 T + b2Tα

Γ(α+1)

) = ϵ.

3. Examples

Example 1.
Taking into account the equation

RD
1
2 (x(t)− x(0)) =

t

2
+

1

4
|x( t

3
)|, t ∈ (0, 1], (8)

with nonlocal integral condition

x(0) +

∫ 1

0

(
s

3
+

1

6
|x(s)|)ds = 1. (9)

Set

f(t, x(t)) =
t

2
+

1

4
|x( t

3
)|,

h(t, x(t)) =
t

3
+

1

6
|x(t)|.
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Putting

∥a∥ =
1

3
, ∥m∥ =

1

2
,

b1 =
1

6
, b2 =

1

4
,

x0 = 1, α =
1

2
,

ϕ =
1

2
, T = 1.

We can find that

(b1 T +
b2T

α

Γ(α+ 1)
) = 0.4487614584 < 1

and

r =

(
|x0|+ ∥a∥T +

Tα ∥m∥
Γ(α+ 1)

)
÷

(
1− (b1T +

b2T
α

Γ(α+ 1)
)

)
r = 3.325843886.

Then the Riemann-Liouville differential equation with nonlocal integral condition
(8)-(9) has at least one solution x ∈ C(I).
Example 2.
Consider the problem

RD
1
2 (x(t)− x(0)) =

sin t

3
+

1

2
|x( t

5
)|, t ∈ (0, 1], (10)

with nonlocal integral condition

x(0) +

∫ 1

0

(
cos s

5
+

1

6
|x(s)|)ds = 1. (11)

Set

f(t, x(t)) =
sin t

3
+

1

2
|x( t

5
)|,

h(t, x(t)) =
cos t

5
+

1

6
|x(t)|.

Putting

∥a∥ =
1

5
, ∥m∥ =

1

3
,

b1 =
1

6
, b2 =

1

2
,

x0 = 1, α =
1

2
,

ϕ =
1

5
, T = 1.

We can find that

(b1 T +
b2T

α

Γ(α+ 1)
) = 0.7308562502 < 1.
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Moreover, we have

r =

(
|x0|+ ∥a∥T +

Tα ∥m∥
Γ(α+ 1)

)
÷

(
1− (b1T +

b2T
α

Γ(α+ 1)
)

)
= 5.697079477.

It is clear that all assumptions of Theorem 2.1 are satisfied. Hence there exist at
least one solution x ∈ C(I) of (10)-(11).

4. Conclusions

In this investigation, the Riemann-Liouville differential equation with nonlocal
integral condition have been established on finite interval. We proved the existences
of the solutions x ∈ C(I) of the problem (1)-(2), by applying the technique Schauder
fixed point Theorem. Next, we studied the continuous dependence of the unique
solution on the x0 and on the functions f , g and ϕ. Moreover, we thoroughly
investigated the Hyers–Ulam stability of our problem. Finally, we given an examples
are provided to illustrate our results.
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Chen systems. Phys. Lett. A 358(1), 1–4 (2006)

[2] Bouteraa, N., Mustafa, Inc, Hashemi, M.S., Benaicha, S., Study on the existence and nonex-
istence of solutions for a class of nonlinear Erdélyi–Kober type fractional differential equation
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