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Abstract 

      

       In order to reduce high concentrations of toxic elements in polluted soils, an 

accurate assessment of the heavy metal concentrations in the industrial city of south 

Jeddah is required.In this study, the contamination risks for 14 heavy metals, 

including As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, Al, Se, and V in the soil, were 

evaluated using the contamination degree (CD), pollution load index (PLI), potential 

ecological risk index (RI), and geoaccumulation index (I geo).Support vector 

machine regression's effectiveness was used to predict the CD, PLI, and RI based on 

data for the fourteen heavy metals in the soil,. The results showed thatthere were wide 

variations in the values of the fourteen heavy metals in soil samples, and they are 

much polluted at this area of study. The I-geo values indicated non-pollution 

andpollutionby heavy metals.The soil samples were unpolluted (Igeo< 0) by As, Cd, 

and Se. In contrast, those samples are strongly polluted (Igeo< 3) by Cu, Pb, and 

Zn.All of the soil samples under investigation were found to be highly contaminated 

by the examined elements, per CD, RI, and PLI values. The calibration (Cal.) models 

of support vector machine regression (SVMR) performed the best in predicting the 

CD and R1 based on trace elements, with R2value of 0.99. The validation (Val.) 

models performed the best in predicting the CD and RI based on data for f trace 

elements, with high R2values (0.98 -0.99). 

 

Keywords: heavy elements, Jeddah, pollution Indices, soil, support vector machine regression. 

 

Introduction 

        Heavy elements in the soil system is increasingly becoming a global issue at 

both the private and governmental levels, particularly because soil is such an 

important component of both rural and urban ecosystems (Asio et al., 2009), and it is 

an important "ecological crossroad" in the landscape (Abu Khatita, 2011). Concern 
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over preventing heavy metal accumulation in soil, water, and vegetables has 

significantly shifted as a result of growing awareness of the health risks correlated 

with environmental chemicals. Toxic metals have been found to have serious health 

consequences, including the promotion of carcinogenesis-induced tumours 

(Nagajyoti et al., 2010; Wang et al., 2017). Due to their non-biodegradability and 

lengthy biological half-lives, heavy metals and trace elements are also a cause for 

concern. Significant concentrations of hazardous heavy metals like Cd, Cu, Zn, Cr, 

Ni, Pb, and Mn are carried in surface soil by wastewater from industry and other 

sources, which makes it difficult to use agricultural soil safely and rationally 

(Tchounwou et al., 2012; Hu et al., 2017; Panagos et al., 2018; Pourret et al., 

2018). Long-term irrigation with industrial or municipal wastewater is known to 

significantly affect the amount of heavy and trace elements in surface soil, including 

Cd, Cu, Zn, Cr, Ni, Pb, and Mn (Panagos et al., 2018). 

     Uncontrolled activity is primarily responsible for the deposition of several 

hazardous substances into the soil, which ultimately leads to soil degradation and 

health risks for humans. The primary human factors contributing to the deposition of 

soil-bearing solids are agricultural practices, specifically land usage, pesticides, 

inorganic and petrochemical fertilizers for organic matter (bio-solids, animal manure, 

and organic fertilizers), (Wang et al., 2017). Additionally, human activities have a 

significant effect on the overall quality of soil (Tchounwou et al., 2012). The 

geochemical characteristics of agricultural soils, particularly the concentrations of 

heavy elements, affect the soil's quality (Panagos et al., 2018; Pourret et al., 2018). 

Today, a wide range of soil contamination indices and measuring techniques, like the 

I-geo and PLI, are available for evaluating soil contamination. The majority of 

studieshave focused on the distribution of trace elements in soil and how they move 

through it (Kamani et al., 2015; Zhao et al., 2015). I-geo is a robust tool for 

measuring and analyzing the quantity of trace elements in soil because it naturally 

captures both the effects of human activity on these elements and their effects on the 

environment (Shui et al., 2020). 

 

     The management of the ecosystem at a safe level is critically impacted by the 

forecast of pollution indices. In this field, several deterministic models have already 

been applied during the past few decades (Sarkar & Pandey, 2015). However, these 

cutting-edge models' statistical effectiveness is often low since real-world natural 

ecosystems are frequently too complex for them. SVMR might provide 

straightforward and reliable methods for creating models that estimate various 

pollution indices. SVMR can resolve difficult problems by generalizing non-linear 

patterns seen in a particular dataset (Isiyaka et al., 2019). These data-driven 

approaches can be used to address extremely nonlinear problems (Sarkar  Adnan et 

al., 2019). They have been successfully utilized to assess the precision of the 

predicted soil constituents (Šilji´c et al., 2018). In the industrial city of south Jeddah, 

there is a shortage of information regarding the effectiveness of SVMR models when 

used with components for calculating CD, PLI, and RI of soil. There have been some 

recent attempts to evaluate the effectiveness of ANNs, PLSR, and MLR techniques 

for assessing soil pollution indices. 

     In this context, the current study's particular goals were to (i) Assess the ecological 

risk of soil by calculating Igeo, CD, PLI, and RI; (ii) evaluatethe accuracy of using 

the SVMR models in quantifying the pollution indices of the soil. 
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Materials and Methods 

Study area and experimental framework 

      In this study, the sampling area is selected. Surface soil samples were collected in 

a pollutedarea inside the industrial city of south Jeddah. The industrial area was 

divided into 5 sectors, and 5 replicates were taken from each sector. All the sampling 

sites  located in location station at Jeddah from roadsides at N 21°26'21.25"E 

39°13'13.97"latitude and longitude, second at N 21°25'55.60" E 39°13'41.91"latitude 

and longitude, third sampling station at N 21°25'39.27" E 39°13'56.32"latitude and 

longitude,the fourth sampling station was at Jeddah, located near residential 

complexes at N 21°25'16.53" E 39°14'18.93" latitude and longitude, and the fifth 

sampling station was obtained at Jeddah at N 21°24'43.53” E39°15'2.70". These 

points are shown on the Fig. 1. 

 

 
 
 

Fig. 1. Map sampling locations of the study                    

 

Sampling and laboratory analysis 

     Soil is critical in supplying vegetative resources for human and ecological 

existence and wellbeing. As a result, the kingdom of Saudi Arabia and the city of 

Jeddah must safeguard and monitor soil quality (UNEP, 2011). Prior to sampling 

activities, every sampling glass were cleansed with (HNO3) and rinsed with deionized 

water to ensure there were no pollutants in the bottle that could affect the samples. 

All samples were takento the laboratory in sealed polyethylene bags. The materials 

were mixed, homogenised, air-dried at 25 to 35oC, crushed, and sieved to 2 mm. 

Sample preparations and analysis by ICP Avio in this study  was performed as 

illustrated in Fig. 2. To determine the total element concentration, 1g of powdered 

soil was digested with aqua regia (HNO3: HCl, 1:3). The concentration of heavy 

metals such as As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, Al, Se, and V were 

determined. 
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Fig. 2. Sample preparations and analysis by ICP Avio 200 

                             

 

 

Fig. 3. The experimental framework of this Study 
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Pollution Assessment Indices 

Pollution monitoring indices were developed to assess the degree of 

contamination with potentially harmful elements. The CD, PLI, and RI were used to 

measure the overall risk of several factors, while I geo methods were used to estimate 

single elements. 

Hkanson (1980) proposed using the CD in the processes of total 

contamination evaluation. It is determined using the algorithm in Table 1; four levels 

of contamination are presented in Table 1 based on the contamination level values. 

The PLI is a great tool for assessing overall pollution levels found at different 

locations (Table 1). The PLI was calculated for all elements in each sample as the nth 

root of the CF multiplications (Harikumar et al., 2009). The sample's PLI was 

computed by taking the nth root of the PLI samples. 

The RI was used to estimate the environmental danger of heavy metals. 

According to Hkanson (1980), the RI is divided into four classes, as presented in 

Table 1. 

Müller's (1969) Igeo is a useful tool for detecting whether or not a sample has 

been affected by anthropogenic heavy metals. The Igeo index was calculated using 

the algorithm in Table 1. The soil levels of pollution can be classified using the Igeo 

index values on a scale ranging from 1 to > 5 to the seven groups given in Table 1. 

 

Table 1. The pollution indices, equations, indices criteria, their classifications and reference. 
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Support Vector Machine Regression (SVMR) Model 

     SVM is a well-known machine learning method based on mathematical learning 

theory. It can classify enormous volumes of data, detect features, and do regression 

analysis.  SVR attempts to generate functions using the datasets (x, y) provided, 

where x represents the input vector (where x comprises parameters) and y represents 

the outcome (y represents the projected pollution indices).The following is a 

description of the SVM regression function: 

 

 

Model Evaluation 

     Some of the following statistical indicators were used to assess the efficacy of a 

regression model: RMSE and R2.  
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Fig. 4. Flowchart of the SVMR procedure that was utilized topollution indices of soil 

samples 

[ 

Results and Discussion 

The variation of fourteen heavy metals in soil samples  

     Table 2 presents the lowest, greatest, mean and standard deviation (SD) values of 

the heavy metals in soil samples. There were wide variations in the values of the 

fourteen heavy metals in the soil samples. For example, the As varied from -80.09  to 

-32.79  with mean value of -49.47, Co varied from 4.13  to 8.97  with mean value of 

6.16, Fe varied from 7756.65  to 16568.93  with mean value of 12558.14, and Pb 

varied from 1.81  to 1950.49  with mean value of 144.15. The findings revealed that 

the soil samples in this location are highly contaminated. Water contamination is one 
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of the world's most serious environmental problems. Untreated sewage and industrial 

waste harm the environment. Because the sewage concentration pipes are not 

connected to the inadequate water pipework, sewage flows directly into the water 

source. An industrial waste is a point source of pollution, whereas agriculture and 

urban runoff are non-point sources (Othman &AlaaEdin 2012). In this inquiry, the 

sampling area is identified. The surface dirt was collected in a contaminated area of 

south Jeddah's industrial city. Poorly treated wastewater discharged by the ceramics, 

steel and alloys, and other metal processing sectors is a major source of Ni in the soil. 

Long-term Ni exposure via the food supply may cause skin allergies, dermatitis, 

rhinitis, nasal sinusitis, lung damage, and nasal mucosal injury (Yaylali-Abanuz, 

2011). Zn and Cr are heavy metals with human sources in industrial settings (Yaylali-

Abanuz, 2011). The non-ferrous metal industry and agricultural practices are the 

primary anthropogenic sources of Zn (Kabata-Pendias, 2000; Mondol, 2011). Zinc 

is a highly mobile element. Toxic and carcinogenic effects of high Zn dosages 

include neurologic and haematological problems, hypertension, and renal and liver 

function issues (Roa et al., 2001). 

 

Table 2. Minimum, maximum, mean and standard deviation (SD) of the heavy metals 

values. 

 Minimum Maximum Mean SD 

As -80.09 -32.79 -49.47 12.60 

Cd -2.84 -0.21 -1.47 0.51 

Co 4.13 8.97 6.16 1.22 

Cr 15.47 81.09 27.61 12.89 

Cu 26.23 3631.89 215.40 719.25 

Fe  7756.65 16568.93 12558.14 2513.70 

Mn  129.23 312.24 223.75 46.02 

Ni  10.07 35.15 16.65 6.25 

Pb  1.81 1950.49 144.15 388.98 

Zn  37.07 2155.38 568.01 613.87 

Al  5194.35 15094.98 9304.48 2327.49 

Se  -312.14 -99.30 -165.88 46.84 

V  0.76 30.93 11.19 6.35 

 

  

Correlation Matrix 

      Pearson's correlation matrix was used to assess the rate of similarity and 

investigate the interrelationships between the elements under consideration 

(Adimallaet al., 2019). The r values provided suggested a high degree of positive 

correlation and a significant linear relationship between distinct metal pairings. Table 

3 displays the Pearson's correlation analysis results for heavy metals in soil samples 

collected from25 sites in Jeddah area. The results showed strong correlations between 

As with Cd, Co, Fe, Mn, Al, and Se with r values of 0.90, -0.68, -0.97, -0.82, -0.73, 

and 0.94, respectively. A strong correlations between Mn with Al, and Se with (r = 

0.86, and -0.67, respectively). The highest strong relationship was found between Fe 

and Se with r of-0.97. The lowest strong relationship was found between Cu and Pb 
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as well as between Cr and Se with Ni and between Cr and Cu with r of -0.01, -0.01 

and 0.00, respectively. The close correlations imply that their occurrence may have 

originated from a common source, which is probably through other industrial 

(chemical, paint) activities. Significant correlations between the aforementioned 

elements are regarded to show that they may accumulate in the same way or emanate 

from the same contaminated source. It can originate from a single source, such as 

industrial waste. 

The variation in the values of CD, PLI, and RI  

In Fig. 5 and Table 4 present CD, PLI, and RI of soil samples for each site. There were 

wide variations in the values of the three pollution indices. For example, the CD varied from -

5791  to -1817  with mean value of -3107, PLI varied from -4.17  to 0  with mean value of -

2.3704, RI varied from 3140  to 11686  with mean value of 5183. There were clear differences 

in the values of CD, PLI, and RI between the sites as shown in Table 4. The results showed that 

CD, PLI, and RI indicated highly contaminated conditions. 

 

 

                                  Fig. 5. The statistical description of CD, PLI, and RI. 
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Table 3. Correlation coefficient of the relationships between the soil trace elements. 

 As  

 

Cd  

 

Co  

 

Cr  

 

Cu 

 

Fe  

 

Mn 

 

Ni 

 

Pb 

 

Zn 

 

Al  

 

Se  

 

V  

 

As 1.00             

Cd 0.90** 1.00            

Co -0.68** -0.62** 1.00           

Cr -0.13 0.20 0.04 1.00          

Cu 0.08 0.20 -0.10 0.00 1.00         

Fe  -0.97** -0.87** 0.81** 0.04 -0.10 1.00        

Mn  -0.82** -0.73** 0.85** -0.01 -0.18 0.85** 1.00       

Ni  -0.35 -0.32 0.51** -0.10 0.57** 0.39 0.32 1.00      

Pb  0.19 0.45* -0.27 0.87** -0.01 -0.27 -0.27 -0.19 1.00     

Zn  -0.33 -0.27 -0.06 0.06 0.56** 0.10 0.07 0.31 -0.03 1.00    

Al  -0.73** -0.59** 0.87** 0.11 0.00 0.82** 0.86** 0.30 -0.27 0.06 1.00   

Se  0.94** 0.92** -0.53** -0.07 0.08 -0.97** -0.67** -0.32 0.22 -0.43* -0.57** 1.00  

V  -0.36 -0.24 0.39 0.23 0.21 0.30 0.36 0.10 0.10 0.28 0.39 -0.28 1.00 

 

*,**. Correlation is significant at the 0.05 level and the 0.01 level (2-tailed) respectively.
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Table 4. The values of CD, PLI, and RI of soil samples for each site. 

Sites Pollution indices 

CD PLI RI 

Field1 -1940.58 -1.66 3435.04 

Field2 -2718.64 -2.29 4158.74 

Field3 -3880.69 -3.69 5843.92 

Field4 -1817.42 -2.40 4612.94 

Field5 -1869.36 -1.31 3140.70 

Field6 -2633.95 -2.23 4837.17 

Field7 -2844.22 -2.16 4598.16 

Field8 -2562.52 -2.25 3624.64 

Field9 -2740.16 -1.69 3372.13 

Field10 -2578.02 -3.98 4278.00 

Field11 -2783.46 -2.40 4058.29 

Field12 -2453.14 -2.93 5430.20 

Field13 -3260.12 -2.36 5193.52 

Field14 -3140.31 -1.43 4277.80 

Field15 -3670.09 -3.00 6402.80 

Field16 -2422.37 -1.74 3912.92 

Field17 -3166.90 -2.20 4079.05 

Field18 -2424.28 -2.11 3837.86 

Field19 -5791.15 0.00 11686.27 

Field20 -3654.95 -2.44 5609.49 

Field21 -4005.30 -2.99 7525.34 

Field22 -3609.05 -2.31 5522.72 

Field23 -3967.80 -2.47 6286.16 

Field24 -3837.31 -3.04 6582.24 

Field25 -3912.02 -4.18 7291.32 

 

 

The variation of geoaccumulation index (Igeo) for assessing soils contamination 

The pollution of soils was examined using the I-geo in this investigation. The I-

geovalues indicated pollution by As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, Al, Se, and V in 

Tables 5 &6.I-geo (As) varied from -8.90 to -3.64, I-geo (Cd) varied from -5.68 to -0.43, I-geo 

(Cr) varied from 0.05 to0.24, and I-geo (Cu) varied from 0.10 to 13.21 (Table 5). There were 

clear differences inthe values of I-geo for each heavy metal between sites of thesoil samples, as 

shown in Tables5 &6.The results show that trace element I-geo levels suggested polluted 

circumstances.I-geo is excellent for monitoring andanalyzingheavy metals levels in the soil 

because it intuitively represents the effects of human activities on heavy metals as well as the 

environmental influence of trace elements (Shui et al., 2020). The Igeo values of the examined 

soil samples fluctuated between unpolluted to moderately to extremely polluted. The soil 

samples were unpolluted (Igeo< 0) by As, Cd, and Se. In contrast, those samples very strongly 

polluted (Igeo< 3) by Cu, Pb,and Zn. 
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Table 5. Geoaccumulation index (Igeo) values of each trace element in soil samples. 

Field As Cd Co Cr Cu Fe Mn Ni Pb Zn Al Se V 

1 -3.76 -1.73 0.09 0.05 0.20 0.04 0.03 0.11 0.80 0.61 0.013 -414.15 0.01 
2 -5.49 -2.77 0.13 0.07 0.14 0.05 0.05 0.18 0.45 0.51 0.023 -575.59 0.02 
3 -7.16 -3.66 0.13 0.12 0.24 0.07 0.06 0.18 3.96 3.81 0.027 -827.66 0.02 
4 -3.76 -0.43 0.09 0.24 0.20 0.04 0.03 0.10 26.01 0.56 0.016 -417.98 0.02 
5 -3.68 -1.83 0.10 0.09 0.10 0.03 0.04 0.11 0.21 0.33 0.018 -397.21 0.00 
6 -5.21 -2.88 0.13 0.07 0.15 0.05 0.05 0.14 0.28 0.48 0.025 -561.67 0.03 
7 -5.44 -2.97 0.13 0.06 0.26 0.05 0.06 0.13 0.24 0.55 0.026 -603.48 0.01 
8 -4.36 -2.37 0.11 0.06 0.18 0.04 0.05 0.14 0.88 1.22 0.020 -542.83 0.02 
9 -3.95 -2.44 0.08 0.05 0.17 0.04 0.03 0.10 0.19 0.65 0.016 -576.98 0.01 

10 -4.73 -1.80 0.10 0.08 13.21 0.05 0.04 0.33 1.80 6.16 0.022 -566.86 0.02 
11 -4.45 -2.62 0.11 0.06 0.45 0.05 0.05 0.13 0.45 1.14 0.021 -590.03 0.02 
12 -4.91 -2.96 0.12 0.07 0.30 0.05 0.05 0.16 5.57 0.94 0.022 -533.17 0.02 
13 -5.47 -2.98 0.13 0.09 0.24 0.05 0.05 0.14 0.25 0.61 0.030 -691.90 0.02 
14 -5.20 -3.33 0.15 0.05 0.11 0.05 0.05 0.35 0.02 0.11 0.019 -662.08 0.00 
15 -6.70 -3.67 0.15 0.11 0.22 0.06 0.06 0.19 0.69 1.06 0.033 -782.01 0.02 
16 -4.50 -2.43 0.11 0.07 0.10 0.05 0.04 0.12 0.16 0.39 0.018 -513.87 0.02 
17 -5.59 -3.18 0.12 0.07 0.12 0.05 0.05 0.15 0.22 2.95 0.024 -669.11 0.00 
18 -3.64 -2.09 0.11 0.05 0.17 0.04 0.04 0.12 0.28 4.37 0.019 -518.76 0.01 
19 -8.90 -5.68 0.11 0.10 0.16 0.00 0.06 0.17 2.71 6.03 0.022 -1248.57 0.02 
20 -6.18 -3.50 0.12 0.07 0.16 0.06 0.06 0.15 0.43 0.89 0.023 -774.73 0.01 
21 -7.72 -4.24 0.18 0.09 0.17 0.07 0.07 0.22 0.51 0.69 0.038 -855.09 0.01 
22 -6.05 -3.36 0.13 0.07 0.12 0.06 0.05 0.15 0.65 0.33 0.024 -764.60 0.01 
23 -6.39 -3.64 0.14 0.09 0.17 0.07 0.05 0.20 0.17 1.08 0.025 -842.19 0.01 
24 -7.15 -3.08 0.14 0.09 0.19 0.07 0.07 0.17 0.45 2.19 0.031 -817.89 0.03 
25 -7.03 -4.10 0.17 0.11 2.04 0.06 0.06 0.21 0.68 2.89 0.031 -839.35 0.05 

 

 

Table 6. The statistical description of geoaccumulation index (Igeo) of each trace element of 

              soil samples. 

 Minimum Maximum Mean SD 

As -8.90 -3.64 -5.50 1.40 

Cd -5.68 -0.43 -2.95 1.02 

Co 0.08 0.18 0.12 0.02 

Cr 0.05 0.24 0.08 0.04 

Cu 0.10 13.21 0.78 2.62 

Fe 0.00 0.07 0.05 0.01 

Mn 0.03 0.07 0.05 0.01 

Ni 0.10 0.35 0.17 0.06 

Pb 0.02 26.01 1.92 5.19 

Zn 0.11 6.16 1.62 1.75 

Al 0.01 0.04 0.02 0.01 

Se -1248.57 -397.21 -663.51 187.34 

V 0.00 0.05 0.02 0.01 

 

 

Assessment of CD, RI and PLI in sites of soil samples 

Table 7 shows the descriptive statistical results of CD, RI and PLI in sites of soil 

samples.According to the CD, RI, and PLI the findings presented in Table 7, all of the studied 

soil samples were significantly polluted by the examined elements. The CD, PLI and RI 

outcomes (Table 7) showed that 100% of the soil samples are polluted. These findings are 

consistent with those of Elbehiry et al. (2019), who assessed the hazards of four trace elements 
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in Nile Delta soils near the study region using the PLI. They discovered that the PLI revealed 

pollution in the soil. 

 

Table 7. Assessment of CD, RI and PLI in sites of soil samples. 

 

 

Performance of SVMRmodels based on several elements to assess pollution indices 

     PLIs of soil sites can be calculated with high precision using mathematical procedures (Jorfi 

et al. 2017). However, these procedures take time since they involve several mathematical 

formulas in order to translate a large number of chemical element information into just one 

number corresponding to contaminants in the soil levels.In contrast, the SVMR strategies are 

simple and do not require several phases to calculate the CD, PLI, and RI. In recent years, 

multivariate regression approaches, such as SVMR, have become popular as alternative ways 

to forecast contamination scores based on data for multiple heavy metals.With R2 = 0.99, the 

SVMR calibration (Cal.) models scored exceptionally well when forecasting the CD and R1 

according to trace element data (Table 8). The validation (Val.) models predicted the CD and 

RI according to heavy metal information the best, with R2 = 0.98 -0.99 (Table 8 & Figure 6). In 

overall, the Cal. and Val. of SVMR models predicted the CD and R1 better. The R2 and RMSE 

for the CD and R1 were substantially greater in the Cal. and Val. of SVMR models. 

 

Table 8. Results of validation models of SVMR of the association between observed and 

predicted CD, RI and PLI in soil samples at different sites. 

Variable Calibration Validation 

 R2 RMSE R2 RMSE 

CD 0.999*** 25.81 0.989*** 116.82 

PLI 0.307** 0.71 0.187* 0.782 

RI 0.995*** 125.9 0.980*** 269.29 

  *,*** Statistically significant at P ≤ 0.05 and P ≤ 0.001, respectively. 
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     Fig. 6. Comparison of measuring and validating datasets of CD, RI, and PLI at soil 

sample using the SVMR models. The results of the statistical analysis 

weredisplayed in Table 8. 
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Conclusions 

The results revealed that the values of the fourteen heavy metals in the soil samples 

varied greatly. For example, Fe ranged from 7756.65 to 16568.93, with a mean of 12558.14, 

and Pb ranged from 1.81 to 1950.49, with a mean of 144.15.The CD, PLI, and RI readings 

revealed highly polluted environments. In general, the Cal. and Val. of SVMR models were 

efficientin predictingthe CD and RI. The R2 and RMSE for the CD and RI were greater in the 

Cal. and Val. of SVMR models. In conclusion, combining the I-geo, CD, PLI and RI, and 

SVMR models is a useful and practical method for determining the risk of heavy metal 

contamination. The SVMR models could also be used to assess soil pollution indices by using 

chemometric techniques. 
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