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UNIQUENESS RESULTS ON DIFFERENCE PRODUCT OF

ENTIRE FUNCTIONS

HARINA P. WAGHAMORE, NAVEENKUMAR B. N.

Abstract. In this research article, we have studied the results of P. Sahoo
and H. Karmakar, intending to determine, in any manner, whether it is pos-

sible to relax the nature of sharing by replacing the shift of non-constant

transcendental entire functions of finite order with the product of shift. In
this direction, we have investigated the uniqueness of shift difference polyno-

mials of two entire functions when they share a non-zero polynomial with a

finite weight and one being the Mobius transformation of the other satisfying
n ≥ 2d−σ+3, and also when they share a small function with a finite weight

satisfying n ≥ m + σ + 5. We also investigate the same situation when the

original functions f and g share the value zero counting multiplicities (CM)
satisfying n > 2(Γ1 + d)− σ. Our results in this paper extend and generalizes

the previous results of P. Sahoo and H. Karmakar [Journal of Contemporary

Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 (2), pp.
102-110].

1. Introduction and main results

Let C denote the complex plane and f(z) a meromorphic function on C. Here, we
assume that the reader is familiar with the fundamental results and standard notations
of Nevanlinna theory, found in Yang and Yi [31], L. Yang [34], and Hayman [11], such as
T (r, f), N(r, f), and m(r, f) and so on. For any non-constant meromorphic function h(z)
we define S(r, h) = o(T (r, h)), (r → ∞, r ̸∈ E), where E denotes any set of positive real
numbers having finite linear measure. For a given value a ∈ C∪{∞} and two meromorphic
functions f(z) and g(z), we say f and g share a IM (Ignoring multiplicity) if f(z) and
g(z) have the same a-points; we say f and g share a CM (Counting multiplicity) if f(z)
and g(z) have the same a-points with the same multiplicities.
We now recall the following definition from [13].
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Definition 1.1. [13] Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞}. We
denote by Ek(a, f) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), then we say that f
and g share the value a with weight k.

The definition implies that if f and g share a value a with weight k, then z0 is an
a-points of f with multiplicity m ≤ k if and only if it is an a-ponts of g with multiplicity
m ≤ k, and z0 is an a-points of f with multiplicity m > k if and only if it is an a-ponts
of g with multiplicity n > k, where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f and g share the value a with weight k. It is
clear that if f, g share (a, k), then f, g share (a, p) for any integer p, 0 ≤ p ≤ k. Also, note
that f, g share the value a IM or CM if and only if f, g share (a, 0) or (a,∞), respectively.

We denote ρ(f) for order of f(z). ρ2(f) is hyper order of f(z), defined as in [31] and
some of the standard definitions that we have followed in this paper can be found in
[13, 36].

It is well known that for n ≥ 2 and for transcendental entire function f , fn(z)f(z +
η)− P0(z) has infinitely many zeros (see [18]). In 2011, X. M. Li, W. L. Li, H. X. Yi and
Z. T. Wen, considering the sharing value problem and n ≥ 4, proved that uniqueness of
entire functions whose difference polynomials share a nonzero polynomial CM and share
a meromorphic function of a smaller order (see [20]). In the same year X. Luo and W.
C. Lin, dealt with the value distribution of difference products of entire functions and
presented some result on two difference products of entire functions sharing one value
with the same multiplicities (see [21]). Later, in 2016 W. L. Li. and X. M. Li., dealt
with the uniqueness results on two difference products of entire functions sharing one
value by considering that the functions share the value zero, counting multiplicities and
investigate the situation where the difference products share a nonzero polynomial instead,
by confining its degree and generalize the previous concerning results (see [19]).

Regarding Theorems 1.1 , 1.2 (see [20]) and 5 (see [19]), in 2017, P. Sahoo and H.
Karmakar [27] proved the following theorems.
Theorem A [27]. Let f and g be two distinct transcendental entire functions of finite
order, and let P0(̸≡ 0) be a polynomial. Suppose that η is a non-zero complex constant,
and n ≥ 4 is an integer such that 2deg(P0) < n+ 1. Suppose that fn(z)f(z + η)− P0(z)
and gn(z)g(z + η) − P0(z) share (0, 2). If n ≥ 4 and fn(z)f(z + η)/P0(z) is a Mobius
transformation of gn(z)g(z + η)/P0(z), or, if n ≥ 6, then one of the following two cases
hold.

(i) f = tg, where t ̸= 1 is a constant satisfying tn+1 = 1;
(ii) f = eQ and g = te−Q, where P0 reduces to a non-zero constant c, t is a constant

such that tn+1 = c2, and Q is a non-constant polynomial.

Theorem B [27]. Let f and g be two transcendental entire functions of finite order, and
let α( ̸≡ 0,∞) be a meromorphic function such that ρ(α) < ρ(f). Suppose that η is a
non-zero complex number, and n and m are positive integers such that n ≥ m + 6. If
fn(z)(fm(z)− 1)f(z+ η) and gn(z)(gm(z)− 1)g(z+ η) share (α, 2), then f = tg, where t
is a constant satisfying tm = 1.

Theorem C [27]. Let f and g be two transcendental entire functions of finite order
such that f and g share 0 CM, and let P0(̸≡ 0) be a polynomial. Suppose that η is
a non-zero complex constant and n is an integer such that deg(P0) < n + 1. Assume
that P (f(z))f(z + η) − P0 and P (g(z))g(z + η) − P0 share (0, 2). If n > 2Γ1 + 1 and
P (f(z))f(z + η)/P0 is a Mobius transformation of P (g(z))g(z + η)/P0, or if n > 2Γ2 + 1,
then one of the following two cases hold:

(i) f = tg, where td = 1;
(ii) f = eβ , g = te−β , where P0 reduces to a non-zero constant c, t is a constant such

that tn+1 = c2, and β is a non-constant polynomial.
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A number of authors have shown their interest to find the uniqueness of entire and
meromorphic functions whose differential polynomials share certain values or fixed points,
and obtained some remarkable results (see [2, 10, 16, 26, 31]), and in recent years, the
difference variant of the Nevanlinna theory has been established in [7, 8, 9, 23, 24]. Using
these theories, some mathematicians in the world began to study the uniqueness questions
of meromorphic functions sharing values with their shifts, and study the value distribution
and uniqueness of differences and difference polynomials, and produced many fine works,
for example, see ( [5, 6, 12, 16, 17, 21, 25, 28, 29, 30, 35, 37]).

Regarding Theorems A, B and C, naturally, we pose the following question, which is
the motivation of the present paper.
Question 1.1. Is it possible to relax the nature of sharing in some way by replacing shift
with the product of a shift in Theorems A, B, and C ?

In this paper, our aim is to determine a potential response to question 1.1. The following
are the main results of this paper:

Theorem 1.1. Let f(z) and g(z) be two distinct transcendental entire functions of finite
order, and let P0( ̸≡ 0) be a polynomial. Suppose that η is a non-zero complex constant,
and n ≥ 2d − σ + 3 is an integer such that 2deg(P0) < n + σ. Let γ be a non-negative

integer such that fn(z)
∏d

j=1 f(z + ηj)
µj − P0 and gn(z)

∏d
j=1 g(z + ηj)

µj − P0 share

(0, γ). If n ≥ 2d − σ + 3 and fn(z)
∏d

j=1 f(z + ηj)
µj/P0 is a Mobius transformation of

gn(z)
∏d

j=1 g(z + ηj)
µj/P0, or one of the following conditions holds:

(1) γ ≥ 2 and n ≥ σ + 5;
(2) γ = 1 and n ≥ σ + d

2
+ 6;

(3) γ = 0 and n ≥ σ + 2d+ 8,
then one of the following conclusions can be realized:
(a) f = τg, where τ ̸= 1, is a constant satisfying τn+σ = 1;
(b) f = eU and g = τe−U , where P0 reduces to a non-zero constant κ, τ is a

constant such that τn+σ = κ2 and U is a non-constant polynomial.

Theorem 1.2. Let f(z) and g(z) be two transcendental entire functions of finite order
and, let ζ( ̸≡ 0,∞) be a meromorphic function such that ρ(ζ) < ρ(f). Suppose that η is
a non-zero complex number, and n and m are positive integers such that n ≥ m+ σ + 5.
If fn(z)(fm(z)− 1)

∏d
j=1 f(z + ηj)

µj and gn(z)(gm(z)− 1)
∏d

j=1 g(z + ηj)
µj share (ζ, 2),

then f ≡ τg, where τ is a constant satisfying τm = 1.

Theorem 1.3. Let f(z) and g(z) be two transcendental entire functions of finite order
such that f(z) and g(z) share 0 CM, and let P0( ̸≡ 0) be a polynomial. Let Pn(z) be a
non-zero polynomial of degree m. Let Γ1 = m1 + m2 and Γ2 = m1 + 2m2, where m1

and m2 are the number of simple zeros and multiple zeros of Pn(z) respectively. Suppose
that η is a non-zero complex constant and n is an integer such that deg(P0) < n + σ.

Assume that Pn(f(z))
∏d

j=1 f(z + ηj)
µj − P0 and Pn(g(z))

∏d
j=1 g(z + ηj)

µj − P0 share

(0, γ). If n > 2(Γ1 +d)−σ and Pn(f(z))
∏d

j=1 f(z+ ηj)
µj/P0 is a Mobius transformation

of Pn(g(z))
∏d

j=1 g(z + ηj)
µj/P0, or one of the following conditions holds:

(1) γ ≥ 2 and n > 2Γ2 + σ ;

(2) γ = 1 and n > 2Γ2 +
Γ1+d

2
+ σ ;

(3) γ = 0 and n > 2Γ2 + 4(Γ1 + d) + σ,
then one of the following conclusions can be realized:
(a) f = τg, where τd = 1;
(b) f = eQ and g = τe−Q, where P0 reduces to a non-zero constant κ, τ is a

constant such that τn+σ = κ2 and Q is a non-constant polynomial.

Example 1.1. Let f(z) = ez and g = τ 1
e−z , σ = d = 1, and τ is a constant such that

τn+1 = 1, let η be any non-zero complex constant. Then for any given polynomial P0
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such that P0 ̸= 0 with 2deg(P0) < n+σ, f(z)nf(z+ η)−P0(z) and g(z)ng(z+ η)−P0(z)
share 1 CM. Here, f and g satisfy the conclusion (a) of Theorem 1.1.
Example 1.2. Let f(z) = ez, g(z) = τez. Let c and τ are non-zero constants such that
ec ̸= 1, τn+m+1 = 1 and let d = σ = 1, ζ = 1, hence ρ(ζ) < ρ(f) and n ≥ m + 6. Then
fn(fm − 1)(f(z + c)) and gn(gm − 1)(g(z + c)) share 1 CM. Clearly, f and g satisfy the
conclusion of Theorem 1.2.
Example 1.3. Let Pn(z) = z4, f(z) = (z + 2)2(z + 3)e(z−2)2 , g(z) = (z + 2)2(z +

3)e−(z−2)2 ,P0 = (z + 2)8(z + 3)4(z + 4)4(z + 5), σ = 1, d = 1, s1 = 1,Γ1 = 2. Thus, we
have that f, g are of finite order 2 and f, g share 0 CM and n = 4 > 3 = 2(Γ1 + d) − σ.
Clearly, Pn(f)f(z + η)−P0 and Pn(g)g(z + η)−P0 share 1 CM. But, we get f ̸≡ τg for
a constant d such that τd = 1.
Example 1.4. Let f(z) = e2πiz/η

ee
2πiz/η and g(z) = 1

ee
2πiz/η , where η is a non-zero constant.

Then it is easy to verify that f(z)nf(z + η) and g(z)ng(z + η) share 1 CM. But there
does not exist a non-zero constant τ such that f = τg or fg = τ, where τn+1 = 1. This
example shows that Theorem 1.1 is not true for infinite order entire functions.
Remark 1.1. When σ = d = 1 in Theorems 1.1, 1.2 and 1.3, these Theorems reduce to
Theorems A, B and C and the results generalize and extend.

2. Auxiliary Lemmas

In this section, we will present some lemmas that will be used to prove the main results.
Let F and G be two non-constant meromorphic functions. Henceforth, we shall denote by
H the following function.

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G − 1

)
. (2.1)

Lemma 2.1 [31]. Let f(z) be a non-constant meromorphic function in the complex plane,
and let

Pn(f(z)) = anf
n(z) + an−1f

n−1(z) + ...+ a1f(z) + a0, (2.2)

where a0, a1, ..., an are constants and an ̸= 0. Then m(r,P(f)) = nm(r, f) +O(1).

Lemma 2.2 [7]. Let f(z) be a meromorphic function of finite order ρ(f) < ∞, and
let η( ̸= 0) be a complex number. Then, for each ϵ > 0, we have

m

(
r,

f(z + η)

f(z)

)
+m

(
r,

f(z)

f(z + η)

)
= O(rρ−1+ϵ).

Lemma 2.3 [7]. Let f(z) be a meromorphic function of finite order ρ(f) < ∞, and let
η(̸= 0) be a complex number. Then, for each ϵ > 0, we have

T (r, f(z + η)) = T (r, f) +O(rρ−1+ϵ) +O(logr).

Lemma 2.4 [22]. Let f be a non-constant meromorphic function and let

R(f) =

n∑
i=0

aif
i/

m∑
j=0

bjf
j

be an irreducible rational function in f with constant coefficients {ai} and {bi} where,
an ̸= 0 and bm ̸= 0. Then

T (r,R(f)) = dT (r, f) + S(r, f),where d = max{n,m}.

Lemma 2.5. Let f be a transcendental entire function of finite order ρ(α) < ∞, and let

η( ̸= 0) be a complex number. Suppose that F = Pn(f(z))
∏d

j=1 f(z+ ηj)
µj , where Pn(z)

is as in (2.2). Then

T (r,F) = (n+ σ)T (r, f) +O(rρ−1+ϵ) + S(r, f).



EJMAA-2024/12(1) UNIQUENESS RESULTS ON DIFFERENCE PRODUCT... 5

Besides, we have S(r,F) = S(r, f).

Proof. Noting that f is an entire function of finite order ρ, in view of Lemmas 2.1 and 2.2
and the standard Valiron-Mohon’ko theorem, we can write

(n+ σ)T (r, f) = T (r,Pn(f(z))f
σ(z)) + S(r, f)

= m

(
r,

Pn(f(z))f
σ(z)

∏d
j=1 f(z + ηj)

µj∏d
j=1 f(z + ηj)µj

)
+ S(r, f)

≤ m(r,F) +m

(
r,

fσ(z)∏d
j=1 f(z + ηj)µj

)
+O(rρ−1+ϵ) + S(r, f)

≤ T (r,F) +O(rρ−1+ϵ) + S(r, f). (2.3)

On the otherhand, by Lemmas 2.1 and 2.3 and the fact that f is a transcendental entire
function of finite order, we obtain

T (r,F) ≤ T (r,Pn(f(z))) + T

(
r,

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f)

= nT (r, f) + T

(
r,

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f)

≤ (n+ σ)T (r, f) +O(rρ−1+ϵ) + S(r, f). (2.4)

Now the result follows from (2.3) and (2.4). □

Lemma 2.6. Let f(z) and g(z) be two transcendental entire functions of finite order, η( ̸=
0) be a complex constant, ζ(z) be a small function of f and g, Pn(z) = anz

n+an−1z
n−1+

... + a1z + a0 be a non-zero polynomial, where a0, a1, ..., an( ̸= 0) are complex constants,

and let n > Γ1 be an integer. If Pn(f(z))
∏d

j=1 f(z+ ηj)
µj and Pn(g(z))

∏d
j=1 g(z+ ηj)

µj

share ζ(z) IM, then ρ(f) = ρ(g).

Proof. Similar to the proof of Lemma 4 in [19], we can easily obtain the proof of Lemma
2.6. □

Lemma 2.7 [33]. Let F(z) and G(z) be two non-constant meromorphic functions such
that G is a Mobius transformation of F . Suppose that there exists a subset I ⊂ R+ with
linear measure mesI = +∞ such that for r ∈ I and r → ∞

N(r, 0;F) +N(r, 0;G) +N(r,∞;F) +N(r,∞;G) < (λ+ 0(1))T (r,G),

where λ < 1. If there exists a point z0 ∈ C satisfying F(z0) = G(z0) = 1, then either
F = G or FG = 1.

Lemma 2.8 [34]. Let f(z) and g(z) be two non-constant meromorphic functions. Then

N

(
r,∞;

f

g

)
−N

(
r,∞;

g

f

)
= N(r,∞; f) +N(r, 0; g)−N(r,∞; g)−N(r, 0; f).

Lemma 2.9. Let f(z) be a transcendental entire function of finite order and n ∈ N. Let
F = fn(z)

∏d
j=1 f(z + ηj)

µj , where
∏d

j=1 f(z + ηj)
µj ̸≡ 0. Then

nT (r, f) ≤ T (r,F)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f).
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Proof. Using Lemmas 2.2 and 2.8, and the first fundamental theorem of Nevanlinna, we
obtain

m(r, fn+σ+1(z)) = m

(
r,

fσ+1(z)F(z)∏d
j=1 f(z + ηj)µj

)

≤ m(r,F(z)) +m(r, f(z)) +m

(
r,

fσ(z)∏d
j=1 f(z + ηj)µj

)
+ S(r, f)

≤ m(r,F(z)) +m(r, f(z)) + T

(
r,

fσ(z)∏d
j=1 f(z + ηj)µj

)

−N

(
r,∞;

fσ(z)∏d
j=1 f(z + ηj)µj

)
+ S(r, f)

≤ m(r,F(z)) +m(r, f(z)) + T

(
r,

∏d
j=1 f(z + ηj)

µj

fσ(z)

)

−N

(
r,∞;

fσ(z)∏d
j=1 f(z + ηj)µj

)
+ S(r, f)

m(r, fn+σ+1(z) ≤ m(r,F(z)) +m(r, f(z)) +N

(
r,∞;

∏d
j=1 f(z + ηj)

µj

fσ(z)

)

+m

(
r,

∏d
j=1 f(z + ηj)

µj

fσ(z)

)
−N

(
r,∞;

fσ(z)∏d
j=1 f(z + ηj)µj

)
+ S(r, f)

≤ m(r,F(z)) +m(r, f(z)) +N(r, 0; fσ(z))

−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f)

i.e.,

m(r, fn+σ+1(z)) ≤ T (r,F) + (σ + 1)T (r, f)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f).

By Lemma 2.4, we obtain

(n+ σ + 1)T (r, f) = m(r, fn+σ+1) ≤ T (r,F) + (σ + 1)T (r, f)

−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f),

i.e.,

nT (r, f) ≤ T (r,F)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f).

□

Lemma 2.10 [1]. If f, g be two non-constant meromorphic functions sharing (1, 1), then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>2(r, 1; g) ≤ N(r, 1; g)−N(r, 1; g).
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Lemma 2.11 [3]. If f, g be two non-constant meromorphic functions sharing (1, 1), then

Nf>2(r, 1; g) ≤
1

2
N(r, 0; f) +

1

2
N(r,∞; f)− 1

2
N0(r, 0; f

′) + S(r, f),

where N0(r, 0; f
′) is the counting function of those zeros of f ′ which are not the zeros of

f(f − 1).

Lemma 2.12 [32]. If f, g be two non-constant meromorphic functions sharing (1, 0)
and H ̸≡ 0, then

N
1)
E (r, 1; f) ≤ N(r, 0;H) + S(r, f) ≤ N(r,∞;H) + S(r, f) + S(r, g).

Lemma 2.13 [3]. If f, g be two non-constant meromorphic functions such that they share
(1, 0), then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.14 [3]. If f, g be share (1, 0), then

(i) NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f).

(ii) Nf>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N0(r, 0; f
′) + S(r, f).

(iii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N0(r, 0; g
′) + S(r, g).

Lemma 2.15 [15]. If f, g be two non-constant meromorphic functions that share (1, 0), (∞, 0)
and H ̸≡ 0, then

N(r,∞;H) ≤ N(r, 0; f | ≥ 2) +N(r, 0; g| ≥ 2) +N∗(r, 1; f, g) +N∗(r,∞; f, g)

+N0(r, 0; f
′) +N0(r, 0; g

′) + S(r, f) + S(r, g),

where N0(r, 0; f
′) is the reduced counting function of those zeros of f ′ which are not the

zeros of f(f − 1) and N0(r, 0; g
′) is similarly defined.

Lemma 2.16 [14]. If N
(
r, 0; f (k)|f ̸= 0

)
denotes the counting function of those ze-

ros of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its
multiplicity, then

N
(
r, 0; f (k)|f ̸= 0

)
≤ kN(r,∞; f) +N(r, 0; f | < k) + kN(r, 0; f | ≥ k) + S(r, f).

Lemma 2.17 [4]. Let F and G be two non-constant meromorphic functions sharing
(1, 2), (∞, 0) and H ̸= 0. Then the following assertions holds.

(i) T (r,F) ≤ N2(r, 0;F) +N2(r, 0;G) +N(r,∞;F) +N(r,∞;G) +N∗(r,∞;F ,G)

−m(r, 1;G)−N
(3
E (r, 1;F)−NL(r, 1;G) + S(r,F) + S(r,G);

(ii) T (r,G) ≤ N2(r, 0;F) +N2(r, 0;G) +N(r,∞;F) +N(r,∞;G) +N∗(r,∞;F ,G)

−m(r, 1;F)−N
(3
E (r, 1;G)−NL(r, 1;F) + S(r,F) + S(r,G).

Lemma 2.18 [36]. Let F and G be two non-constant meromorphic functions and let
H ≡ 0. If

lim sup
r→∞

N(r, 0;F) +N(r,∞;F) +N(r, 0;G) +N(r,∞;G)
T (r)

< 1,

where T (r) = max{T (r,F), T (r,G)}, r ∈ I and I is a set with infinite linear measure, then
either F ≡ G or FG ≡ 1.



8 HARINA P. WAGHAMORE, NAVEENKUMAR B. N. EJMAA-2024/12(1)

3. Proof of Theorems

Proof of Theorem 1.1.

Proof. Let F =
fn(z)

∏d
j=1 f(z+ηj)

µj

P0(z)
and G =

gn(z)
∏d

j=1 g(z+ηj)
µj

P0(z)
. Then F and G are two

transcendental meromorphic functions that share (1, γ). From Lemma 2.5, we get

T (r,F) = (n+ σ)T (r, f) +O
(
rρ(f)+ϵ−1

)
+O(logr). (3.1)

T (r,G) = (n+ σ)T (r, g) +O
(
rρ(g)+ϵ−1

)
+O(logr). (3.2)

Since f and g are of finite order, it follows from (3.1) and (3.2) that F and G are also of
finite order. Moreover, from Lemma 2.6, we deduce that ρ(f) = ρ(g) = ρ(F) = ρ(G).

We now discuss the following two cases separately.
Case 1. Suppose that F is a Mobius transformation of G. i.e.,

F =
AG +B

CG +D
, (3.3)

where A,B,C and D are complex constants satisfying AD−BC ̸= 0. Let z0 be a 1-point
of F . Since F ,G share (1, γ), z0 is also a 1-point of G. Therefore, from (3.3), we obtain
A+B = C +D, and hence (3.3) can be written as

F − 1 =
G − 1

αG + β
,

where α = C/(A−C) and β = D/(A−C). From this we can say that F ,G share (1, ∞).
Now using the standard Valiron-Mohon’ko Lemma 2.4, we obtain from (3.3) that

T (r,F) = T (r,G) +O(logr).

Then from (3.1) and (3.2) and the fact that f and g are transcendental entire functions
of finite order, we deduce

T (r, f)

T (r, g)
→ 1,

T (r,F)

T (r, f)
→ n+ σ, as r → ∞, r ∈ I. (3.4)

From Lemma 2.3 and the condition that f and g are transcendental entire functions, we
have

N(r, 0;F) +N(r,∞;F) = N(r, 0; fn(z)) +N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+O(logr)

≤ (d+ 1)T (r, f) +O
(
rρ(f)+ϵ−1

)
+O(logr),

as r → ∞ and r ∈ I. Similarly, we get

N(r, 0;G) +N(r,∞;G) = N(r, 0; gn(z)) +N

(
r, 0;

d∏
j=1

g(z + ηj)
µj

)
+O(logr)

≤ (d+ 1)T (r, g) +O
(
rρ(g)+ϵ−1

)
+O(logr),

as r → ∞ and r ∈ I. Thus

N(r, 0;F) +N(r,∞;F) +N(r, 0;G) +N(r,∞;G) ≤ 2(d+ 1)

n+ σ
T (r,F)(1 + o(1)), (3.5)

as r → ∞ and r ∈ I. In view of Nevanlinna’s second fundamental theorem, we obtain

T (r,F) ≤ N(r, 0;F) +N(r,∞;F) +N(r, 1;F) +O(logr)

≤ N(r, 0; f) +N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+N(r, 1;F) +O(logr)

≤ (d+ 1)T (r, f) +N(r, 1;F) +O
(
rρ(f)+ϵ−1

)
+O(logr),
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which together with (3.1) gives

(n+ σ)T (r, f) ≤ (d+ 1)T (r, f) +N(r, 1;F) + S(r, f),

as r → ∞ and r ∈ I. From this and the fact that F and G share (1, 2), we conclude that
there exists a point z0 ∈ C such that F(z0) = G(z0) = 1. Hence from (3.5), Lemma 2.7
and the condition n ≥ 2d− σ + 3, we infer that either FG = 1 (or) F = G.

Now we consider the following subcases.
Subcase 1.1. F ≡ G. Then we get

fn(z)

d∏
j=1

f(z + ηj)
µj ≡ gn(z)

d∏
j=1

g(z + ηj)
µj . (3.6)

Let h(z) = f(z)/g(z). Then we deduce that

hn+1 ≡ f∏d
j=1 f(z + ηj)µj

.

∏d
j=1 g(z + ηj)

µj

g
. (3.7)

If h is not a constant, then we have

(n+ 1)T (r, h) = T (r, hn+1) ≤ T

(
r,

f∏d
j=1 f(z + ηj)µj

)
+ T

(
r,

∏d
j=1 g(z + ηj)

µj

g

)
≤ (σ + 1) [T (r, f) + T (r, g)] + S(r, f) + S(r, g).

Combining above inequality with T (r, h) = T
(
r, f

g

)
= T (r, f)+T (r, g)+S(r, f)+S(r, g),

we obtain (n− σ) [T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g), which is impossible. Therefore h
is a constant, then substituting f = gh into (3.6), we have hn+σ = 1. Therefore f = τg,
where τ is a constant with τn+σ = 1, which is the conclusion (a).
Subcase 1.2. Suppose FG ≡ 1. Then we get

fn(z)

d∏
j=1

f(z + ηj)
µj .gn(z)

d∏
j=1

g(z + ηj)
µj ≡ P2

0 (z). (3.8)

From (3.8) and the condition that f and g are transcendental entire functions, one can
immediately say that both f and g have at most finitely many zeros. So, we may write

f(z) = P1(z)e
α(z), g(z) = P2(z)e

β(z), (3.9)

where P1,P2, α, β are polynomials, and α, β are non-constants. Substituting (3.9) in (3.8),
we obtain

(P1P2)
nen(α+β)+

∑d
j=1 (α(z+ηj)+β(z+ηj))µj

d∏
j=1

P1(z + ηj)
µj .P2(z + ηj)

µj ≡ P2
0 (z), (3.10)

for all z ∈ C. To avoid a contradiction, from (3.10) we must have

n(α(z) + β(z)) +

d∑
j=1

(α(z + ηj) + β(z + ηj))µj = A, (3.11)

for all z ∈ C, where A is a constant. Let α(z) + β(z) = w(z). Then (3.11) can be written
as

nw(z) +

d∑
j=1

w(z + ηj)µj = A, (3.12)

for all z ∈ C. From (3.12), we must have w = B, where B is a constant, and therefore, we
have

β = B − α. (3.13)
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Keeping in view of (3.13), (3.9) can be written as

f(z) = P1(z)e
α(z), g(z) = P2(z)e

Be−α(z). (3.14)

Now (3.10) can be written as

(P1P2)
n

d∏
j=1

P1(z + ηj)
µj .P2(z + ηj)

µj ≡ eAP2
0 (z). (3.15)

If P1P2 is not a constant, then the degree of the left side of (3.15) is at least n+ σ. But
the condition 2deg(P0) < n + σ implies that the degree of the right side of (3.15) is less
than n+ σ, which is a contradiction. Thus P1P2 and P0 reduces to non-zero constants.

Since P1,P2 are both polynomials and their product is constant, each of them must be
constant. Therefore, (3.14) can be written as

f(z) = eU , g(z) = eBe−U , (3.16)

where U is a non-constant polynomial. Using the above forms of f and g and keeping in
mind that P0 is a constant, say κ2, (3.6) reduces to

eB(n+σ) ≡ κ2.

Set eB = τ . Then (3.16) can be written as

f(z) = eU , g(z) = τe−U ,where τ is a constant such that τn+σ = κ2,

which is the conclusion (b).
Case 2. Suppose n ≥ σ + 5.
Since fn(z)

∏d
j=1 f(z + ηj)

µj − P0(z) and gn(z)
∏d

j=1 g(z + ηj)
µj − P0(z) share (0, γ), it

follows that F and G share (1, γ).
Let H ̸≡ 0. First suppose γ ≥ 2.
Using Lemmas 2.12 and 2.15, we obtain

N(r, 1;F) = N(r, 1;F| = 1) +N(r, 1;F| ≥ 2) ≤ N(r,∞;H) +N(r, 1;F ≥ 2)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F ,G) +N(r, 1;F| ≥ 2)

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r,F) + S(r,G). (3.17)

Keeping in view of the above observation and Lemma 2.16, we see that

N0(r, 0;G′) +N(r, 1;F| ≥ 2) +N∗(r, 1;F ,G)

≤ N0(r, 0;G′) +N(r, 1;F| ≥ 2) +N(r, 1;F| ≥ 3) + S(r,F)

≤ N0(r, 0;G′) +N(r, 1;G| ≥ 2) +N(r, 1;G| ≥ 3) + S(r,F) + S(r,G)

≤ N0(r, 0;G′) +N(r, 1;G)−N(r, 1;G) + S(r,F) + S(r,G)

≤ N0(r, 0;G′|G ̸= 0) ≤ N(r, 0;G) + S(r,G). (3.18)
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Using (3.17) and (3.18), Lemmas 2.2, 2.9 and applying second fundamental theorem of
Nevanlinna to F , we obtain

nT (r, f) ≤ T (r,F)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f)

≤ N(r, 0;F) +N(r,∞;F) +N(r, 1;F)−N(r, 0;F ′)

−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f)

≤ N2(r, 0;F) +N2(r, 0;G)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f) + S(r, g)

≤ N2

(
r, 0; fn

d∏
j=1

f(z + ηj)
µj

)
+N2

(
r, 0; gn

d∏
j=1

g(z + ηj)
µj

)

−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f) + S(r, g)

≤ 2N(r, 0; f) + 2N(r, 0; g) +N

(
r, 0;

d∏
j=1

g(z + ηj)
µj

)
+ S(r, f) + S(r, g)

≤ 2T (r, f) + (2 + σ)T (r, g) + S(r, f) + S(r, g). (3.19)

Similarly, we have

nT (r, g) ≤ 2T (r, g) + (2 + σ)T (r, f) + S(r, f) + S(r, g). (3.20)

Combining (3.19) and (3.20), we get

(n− σ − 4)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g), (3.21)

which contradicts with n ≥ σ + 5.
When γ = 1, keeping in view of Lemmas 2.10, 2.11, 2.12, 2.15 and 2.16, we obtain

N(r, 1;F) = N(r, 1;F| = 1) +NL(r, 1;F) +NL(r, 1;G) +N
(2
E (r, 1;F)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F ,G) +NL(r, 1;F)

+NL(r, 1;G) +N
(2
E (r, 1;F) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r,F)

+ S(r,G)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F) + 2NL(r, 1;G)

+N
(2
E (r, 1;F) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r,F) + S(r,G)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +NF>2(r, 1;G) +N(r, 1;G)

−N(r, 1;G) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r,F) + S(r,G)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +N(r, 0;G′|G ̸= 0) +
1

2
N(r, 0;F)

+N0(r, 0;F ′) + S(r,F) + S(r,G)

≤ N(r, 0;F| ≥ 2) +
1

2
N(r, 0;F) +N2(r, 0;G) +N0(r, 0;F ′) + S(r,F)

+ S(r,G). (3.22)
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Using (3.22), Lemmas 2.2, 2.9 and applying second fundamental theorem of Nevanlinna
to F , we obtain

nT (r, f) ≤ T (r,F)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f)

≤ N(r, 0;F) +N(r, 1;F)−N(r, 0;F ′)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f)

≤ N2(r, 0;F) +N2(r, 0;G) +
1

2
N(r, 0;F)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f) + S(r, g)

≤ 2N(r, 0; f) +
1

2
N(r, 0; f) +

1

2
N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ 2N(r, 0; g)

+N

(
r, 0;

d∏
j=1

g(z + ηj)
µj

)
+ S(r, f) + S(r, g)

≤
(
5 + d

2

)
T (r, f) + (2 + σ)T (r, g) + S(r, f) + S(r, g). (3.23)

In a similar manner, we may obtain

nT (r, g) ≤
(
5 + d

2

)
T (r, g) + (2 + σ)T (r, f) + S(r, f) + S(r, g). (3.24)

Combining (3.23) and (3.24), we obtain(
n−

(
2σ + d+ 9

2

))
[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

which is a contradiction with n ≥ σ + d
2
+ 6.

When γ = 0, using Lemmas 2.12, 2.13, 2.14, 2.15 and 2.16, we obtain

N(r, 1;F) = N(r, 1;F| = 1) +NL(r, 1;F) +NL(r, 1;G) +N
(2
E (r, 1;F)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F ,G) +NL(r, 1;F)

+NL(r, 1;G) +N
(2
E (r, 1;F) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r,F)

+ S(r,G)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F) + 2NL(r, 1;G)

+N
(2
E (r, 1;F) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r,F) + S(r,G)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +NL(r, 1;F) +NF>1(r, 1;G)

+NG>1(r, 1;F) +N(r, 1;G)−N(r, 1;G) +N0(r, 0;F ′) +N0(r, 0;G′)

+ S(r,F) + S(r,G)

≤ N(r, 0;F| ≥ 2) +N(r, 0;G| ≥ 2) +N(r, 0;G′|G ̸= 0) + 2N(r, 0;F)

+N(r, 0;G) +N0(r, 0;F ′) + S(r,F) + S(r,G)

≤ N2(r, 0;F) +N(r, 0;F) +N2(r, 0;G) +N(r, 0;G) +N0(r, 0;F ′)

+ S(r,F) + S(r,G). (3.25)
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Using (3.25), Lemmas 2.2, 2.9 and applying second fundamental theorem of Nevanlinna
to F , we obtain

nT (r, f) ≤ T (r,F)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f)

≤ N(r, 0;F) +N(r, 1;F)−N(r, 0;F ′)−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f)

≤ N2(r, 0;F) +N2(r, 0;G) + 2N(r, 0;F) +N(r, 0;G)

−N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ S(r, f) + S(r, g)

≤ 4N(r, 0; f) + 2N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ 3N(r, 0; g)

+N

(
r, 0;

d∏
j=1

g(z + ηj)
µj

)
+N

(
r, 0;

d∏
j=1

g(z + ηj)
µj

)
+ S(r, f)

+ S(r, g)

≤ (2d+ 4)T (r, f) + (σ + d+ 3)T (r, g) + S(r, f) + S(r, g). (3.26)

In a similar manner, we may obtain

nT (r, g) ≤ (2d+ 4)T (r, g) + (σ + d+ 3)T (r, f) + S(r, f) + S(r, g). (3.27)

Combining (3.26) and (3.27), we obtain

(n− σ − 3d− 7)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

which is a contradiction with n ≥ σ + 3d+ 8.
Thus H ≡ 0. Then by integration we obtain (3.3). Therefore, the result follows from Case
1. This completes the proof of theorem. □

Proof of Theorem 1.2.

Proof. Let F1 =
fn(z)(fm(z)−1)

∏d
j=1 f(z+ηj)

µj

ζ(z)
and G1 =

gn(z)(gm(z)−1)
∏d

j=1 g(z+ηj)
µj

ζ(z)
. Then

F1 and G1 are two transcendental meromorphic functions that share (1, 2). Noting that
ρ(ζ) < ρ(f), from Lemma 2.5, we see that

T (r,F1) = (n+m+ σ)T (r, f) +O(rρ(f)+ϵ−1) +O(rρ(ζ)+ϵ),

T (r,G1) = (n+m+ σ)T (r, g) +O(rρ(g)+ϵ−1) +O(rρ(ζ)+ϵ). (3.28)

From (3.28), we get

ρ(F1) ≤ max{ρ(f), ρ(ζ)}, ρ(f) ≤ max{ρ(F1), ρ(ζ)},
ρ(G1) ≤ max{ρ(g), ρ(ζ)}, ρ(g) ≤ max{ρ(G1), ρ(ζ)}. (3.29)

Using (3.29) and the fact that ρ(ζ) < ρ(f), we obtain

ρ(F1) = ρ(f). (3.30)
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Now, using Nevanlinna’s second fundamental theorem, we can write

T (r,F1) ≤ N(r, 0;F1) +N(r,∞;F1) +N(r, 1;F1) + S(r, f)

≤ N(r, 0; f) +N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+N(r, 1; fm) +N(r, 1;G1)

+O
(
rρ(ζ)+ϵ

)
+ S(r, f)

≤ (σ +m+ 1)T (r, f) + T (r,G1) +O
(
rρ(f)+ϵ−1

)
+O

(
rρ(ζ)+ϵ

)
+ S(r, f).

(3.31)

Similarly, we get

T (r,G1) ≤ (σ +m+ 1)T (r, g) + T (r,F1) +O
(
rρ(g)+ϵ−1

)
+O

(
rρ(ζ)+ϵ

)
+ S(r, g).

(3.32)

From (3.28), (3.30), and (3.31) and the condition ρ(ζ) < ρ(f) < ∞, we see that

ρ(F1) ≤ ρ(G1), (3.33)

and from (3.29), (3.30), and (3.32) and the condition ρ(ζ) < ρ(f) < ∞, we see that

ρ(G1) = ρ(g). (3.34)

Also, from (3.28), (3.30), and (3.32)-(3.34) and the condition ρ(ζ) < ρ(f) < ∞, we see
that

ρ(G1) ≤ ρ(F1). (3.35)

Combining (3.28) and (3.33)-(3.35) we obtain

ρ(f) = ρ(g) = ρ(F1) = ρ(G1). (3.36)

Suppose that H ̸≡ 0. Then using Lemmas 2.3 and 2.17 we can write

T (r,F1) + T (r,G1) ≤ 2N2(r, 0;F1) + 2N2(r, 0;G1) + 2N(r,∞;F1) + 2N(r,∞;G1)

+ 2N∗(r,∞;F1,G1) + S(r,F1) + S(r,G1)

≤ 4N(r, 0; f) + 4N(r, 0; g) + 2N(r, 1; fm) + 2N(r, 1; gm)

+ 2N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)
+ 2N

(
r, 0;

d∏
j=1

g(z + ηj)
µj

)
+ S(r, f) + S(r, g)

≤ (2σ + 2m+ 4){T (r, f) + T (r, g)}+O
(
rρ(f)−1+ϵ

)
+O

(
rρ(g)−1+ϵ

)
+ S(r, f) + S(r, g). (3.37)

Therefore, from (3.28) and (3.37), we obtain

(n− σ −m− 4){T (r, f) + T (r, g)} ≤ O
(
rρ(f)−1+ϵ

)
+O

(
rρ(g)−1+ϵ

)
+ S(r, f)

+ S(r, g),
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yielding a contradiction with the assumption that n ≥ σ + m + 5. Thus we must have
H ≡ 0. Taking into account that

N(r, 0;F1) +N(r,∞;F1) +N(r, 0;G1) +N(r,∞;G1)

≤ N(r, 0; f) +N(r, 0; g) +N(r, 1; fm) +N(r, 1; gm) +N

(
r, 0;

d∏
j=1

f(z + ηj)
µj

)

+N

(
r, 0;

d∏
j=1

g(z + ηj)
µj

)
+ S(r, f) + S(r, g)

≤ (σ +m+ 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ 2σ + 2m+ 2

n+m+ σ
T (r),

where, T (r) = max{T (r,F1), T (r,G1)}, by Lemma 2.18, we deduce that either F1 ≡ G1

(or) F1G1 ≡ 1. Let F1G1 ≡ 1. Then we have

fn(z) (fm(z)− 1)

d∏
j=1

f(z + ηj)
µjgn(z) (gm(z)− 1)

d∏
j=1

g(z + ηj)
µj ≡ ζ2. (3.38)

Noting that f and g are transcendental entire functions of finite order, it is easily seen from
the above equality that N(r, 0; f) = S(r, f), N(r, 1; f) = S(r, f) and N(r,∞; f) = S(r, f),
for r ∈ I and r → ∞, where I ⊂ (0,+∞) is a subset of infinite linear measure. Thus, we
obtain

T (r, f) ≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) = S(r, f),

for r ∈ I and r → ∞, which is meaningless. Thus, we must have F1 ≡ G1, and hence

fn(z) (fm(z)− 1)

d∏
j=1

f(z + ηj)
µj ≡ gn(z) (gm(z)− 1)

d∏
j=1

g(z + ηj)
µj . (3.39)

Set τ = f
g
. If τ is not a constant, from (3.39), we have

gm(z) =
τn(z)

∏d
j=1 τ(z + ηj)

µj − 1

τn+m(z)
∏d

j=1 τ(z + ηj)µj − 1
. (3.40)

If 1 is a Picard value of τn+m(z)
∏d

j=1 τ(z + ηj)
µj , applying the Nevanlinna second fun-

damental theorem, we get

T

(
r, τn+m(z)

d∏
j=1

τ(z + ηj)
µj

)
≤ N

(
r,∞; τn+m(z)

d∏
j=1

τ(z + ηj)
µj

)

+N

(
r, 0; τn+m(z)

d∏
j=1

τ(z + ηj)
µj

)
+ S(r, τ)

≤ (2d+ 2)T (r, τ) + S(r, τ). (3.41)

On the otherhand, combining the standard Valiron-Mohon’ko theorem, we get

(n+m+ σ)T (r, τ) = T (r, τn+m+σ) + S(r, h)

≤ T

(
r, τn+m(z)

d∏
j=1

τ(z + ηj)
µj

)
+ T

(
r,

d∏
j=1

τ(z + ηj)
µj

)
≤ (2d+ 3)T (r, τ) + S(r, h).

Therefore, 1 is not a Picard exceptional value of τn+m(z)
∏d

j=1 τ(z+ηj)
µj . Thus ∃ z0 such

that τn+m(z0)
∏d

j=1 τ(z0 + ηj)
µj = 1, by (3.39), we have τn+m(z0)

∏d
j=1 τ(z0 + ηj)

µj = 1.
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Hence τm
0 = 1, and

N

(
r, 0; τn+m(z)

d∏
j=1

τ(z + ηj)
µj − 1

)
≤ N(r, 0; τm − 1)

≤ mT (r, τ) + S(r, τ). (3.42)

From the above inequality and by the second fundamental theorem of Nevanlinna, we have

T

(
r, τn+m(z)

d∏
j=1

τ(z + ηj)
µj

)
≤ N

(
r,∞;hn+m(z)

d∏
j=1

τ(z + ηj)
µj

)

+N

(
r, 0; τn+m(z)

d∏
j=1

τ(z + ηj)
µj − 1

)
+ S(r, h)

≤ (m+ 2d+ 2)T (r, τ) + S(r, τ), (3.43)

which is a contradiction with n ≥ m+ σ + 5. Therefore τ is not a constant. Substituting
f = gτ into (3.39), we can get

d∏
j=1

g(z + ηj)
µj
(
gn+m(z)(τn+m+σ − 1) + gn(z)(τn+σ − 1)

)
= 0. (3.44)

Since g is an entire function, we have
∏d

j=1 g(z + ηj)
µj ̸= 0. Thus

gn+m(z)(τn+m+σ − 1) + gn(z)(τn+σ − 1) = 0. (3.45)

If τn+σ ̸= 1, by (3.45) we can deduce T (r, g) = S(r, g), which contradicts with a transcen-
dental function g. So τn+σ = 1. We can also deduce that τn+m+σ = 1. Then τm = 1.
This completes the proof of theorem. □

Proof of Theorem 1.3.

Proof. Let F2 =
Pn(f(z))

∏d
j=1 f(z+ηj)

µj

P0(z)
and G2 =

Pn(g(z))
∏d

j=1 g(z+ηj)
µj

P0(z)
. Then F2 and

G2 are two transcendental meromorphic functions that share (1, γ). Applying arguments
similar to those used in the proof of Theorem 1.1, we can get a Theorem 1.3. Here, we
omit the details. □

4. Conclusion

Nevanlinna Theory is a powerful quantitative tool used to study the growth and be-
haviour of entire and meromorphic functions on the complex plane. It has a wide range
of applications within and outside function theory. By understanding the properties of
these functions is essential for solving difference-differential equations, analyzing complex
systems, and studying mathematical physics phenomena.

P. Sahoo and H. Karmakar [27] proved that uniqueness results when two difference
polynomials of entire functions share a nonzero polynomial or a small function with a
finite weight (0, 2). They also investigate the situation when the original functions share 0
CM. In this paper, we investigates the same situation for (0, γ), where γ = 0, γ = 1, γ ≥ 2
for the product of shift operator; hence, the results extend and generalize. Related to our
results, we also point out possible examples that show the conclusions of all the theorems
actually hold.

We pose the following open questions to the readers:
Open questions:

(1) What happens to condition n if we study meromorphic functions by using weakly
weighted sharing, truncated weighted sharing, or partial sharing?



EJMAA-2024/12(1) UNIQUENESS RESULTS ON DIFFERENCE PRODUCT... 17

(2) Keeping all the assumptions of Theorems 1.1-1.3, what can be said about the
relation between two non-constant entire functions f and L if(

fnP(f)

d∏
j=1

f(z + ηj)
µj

)(k)

and

(
LnP(L)

d∏
j=1

L(z + ηj)
µj

)(k)

share the same polynomial, where L is a L-Function ?
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