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Diabetes is a major health problem characterized by inadequate hyperglycemia due to 

relative or absolute insulin deficiency at the cellular level. Dinitrophenol causes weight 

loss by uncoupling oxidative phosphorylation. While caffeine use on a regular basis is 

linked to a decreased risk of diabetes and Parkinson's disease. Dinitrophenol and 

caffeine decrease oxidative stress. Diabetes leads to increased oxidative stress so they 

can decrease blood glucose. In this research, 70 male albino rats were selected, with 

body weight ranging between 100-160 g, and divided into 7 groups, a control group, a 

dinitrophenol group, a caffeine group, and d diabetic group. Rats were given only one 

dosage of alloxan by intraperitoneal injection. Rats with diabetes were separated into 

the diabetic group, diabetic-dinitrophenol, diabetic-caffeine, and diabetic-dinitrophenol-

caffeine treated groups. After 8 weeks, we measured glucose, insulin, lipid indicators, 

antioxidants, and oxidative stress markers. The diabetic group showed a very high 

elevation in glucose levels compared to the control group. The diabetic-dinitrophenol-

caffeine group showed more reduction in blood glucose levels. All treated groups 

showed an increase in insulin levels. Lipid profiles showed variations in different 

groups. All treated groups had increased oxidative stress markers associated with 

increased antioxidant markers. 
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1. Introduction      

Diabetes mellitus is a long-term condition that causes a 

boost in blood glucose levels. Diabetes affects about 463 

million people worldwide in 2019 and causes great 

socioeconomic and medical burdens [1]. It has been 

considered one of the most pressing common health 

problems for humanity [2], [3]. 

   One of the most essential elements of diabetes is that 

over half of all diabetics have hereditary factors. The 

inability of the pancreas to generate adequate insulin, as 

well as the body's inefficient use of insulin, are both 

pathologic causes of diabetes [4]. 

     As diseases progress, various pathophysiological 

studies have advanced our understanding of insulin 

secretion and resistance. Insulin resistance develops 

early in individuals who are at risk of developing type II 

diabetes, which is compensated for by beta cell insulin 

hypersecretion. In contrast, the pancreatic functional 

reserve eventually loses its capacity to produce insulin, 

and by the time diabetes is recognized, beta cells can no 

longer secrete sufficient insulin [5]. 

    Oxidative stress is caused by a relationship between 

the body's antioxidant capacity and oxygen-derived 

radicals. This disturbs the body's regular balance of 

radical production and defense. As a result, lipids, 

proteins, and nucleic acids are oxidatively damaged. 

Over time, oxidative stress causes a variety of disorders, 

including diabetes, atherosclerosis, inflammatory 

problems, hypertension, heart disease, neurological 

diseases, and cancer [6]. 

    2-4-Dinitrophenol causes weight loss via uncoupling 

oxidative phosphorylation, which increases metabolic 

rate and fat metabolism. The fast calorie consumption 

was assumed to be caused by a change in the proton 

electrochemical gradient, which results in energy [7]. 

    Caffeine (1,3,7-trimethylxanthine) is a plant alkaloid 

found in a variety of plants, including coffee beans 

(Coffea arabica and Coffea robusta). It has been found 

to be a protective chemical against cellular damage with 

antioxidant properties. It also functions as an antioxidant 

in several organs by raising the concentration and 

activity of antioxidant enzymes [8]. Caffeine is ingested 

on a regular basis by humans, including those with type 

I or type II diabetes [9]. 

The aim of this study: This study aimed to investigate the 

effect of dinitrophenol and caffeine on diabetic adult 

male albino rats. 

 

2. Materials and methods 

The present research was conducted at the Medical 

Physiology Department, Faculty of Medicine (Boys), Al-

Azahar University, Cairo.  

1- Animals: In this study, 70 adult male albino rats of a 

common strain weighing 100–160 g (by sensitive scale) 

were used. Animals were kept under standard conditions 

in the lab, exposed to (12/12h) light/dark cycle, 

humidity of 60 ± 5 %, and a temperature of 25 ± 2 °C. 

Animals were housed in cages (5 rats/cage) with free 

access to standard laboratory chow diets from (El-Nasr 

Company, Cairo, Egypt) and water ad libitum. The 

study was conducted according to international 

guidelines for animal experiments and consent by the 

Ethical Committee of the Medical Physiology Lab, 

Faculty of Medicine, Al-Azhar University in Cairo, the 

Egyptian capital. 

2-  Drugs and chemicals:  

a- Dinitrophenol: DNP (Nile Pharmaceutical-

Egypt) was dispersed into the water and given 

orally for 8 weeks through gastric intubation at an 

amount of 16 mg per kg b.w.10]. 

b- Caffeine: Caffeine (1,3,7 trimethylxanthine) (Nile 

Pharmaceutical-Egypt) was supplied 

continuously for a period of 8 weeks in water at a 

dosage of 20 mg per kg b.w.[11]. 

c- After an overnight fast, Alloxan was mixed in 0.9% 

sodium chloride solution and given only one 

intraperitoneal injection of 140 mg per kg b.w. [12]. 

Alloxan was administered intraperitoneally in only 

one dose of 140 mg per kg b.w. For 18 hours, rats 

were fed a 5% glucose solution to prevent 

hypoglycemic shock [12]. Fasting blood glucose 

estimations after two days of alloxan administration 

with an Accu-Chek glucometer (Roche, Germany) 

confirmed the development of hyperglycemia in 

rats. In the study, animals that had blood glucose 

values of 200 mg per dL or higher were designated 

as hyperglycemic [13].  

 

3. Experimental design:  

3.1- Animal groups: 

 In this study animals were divided into 7 groups 

equally: 

 Control group: rats were supplied normal animal pellets 

and drinking water (no. =10 rats/100-160g). 

  Control DNP group: rats were given DNP (16 mg per kg 

b.w) daily for 8 weeks orally by gastric intubation (no. 

=10 rats/100-160g).  

Control caffeine group: rats were given caffeine (20 mg 

per kg b.w) orally for 8 weeks by gastric intubation 

(no.10= rats/ 100-160g). 

 Control diabetic group:  With just one intraperitoneal 

administration of alloxan (140 mg per kg b.w) in sterile 

saline and a typical rat chow diet, rats have been given 

diabetes (no. =10 rats/ 100- 160g). 

 Diabetic-DNP-treated group: After inducing diabetes, 

diabetic rats were given DNP (16 mg per kg b.w) orally 

to for 8 weeks (no. =10 rats/100-160g).  

 Diabetic-caffeine-treated group: rats were given caffeine 

(20 mg per kg b.w) for 8 weeks orally after diabetes was 

induced (no. =10 rats/100-160g).  

Diabetic-DNP-caffeine-treated group: After diabetes 

induction, rats were given DNP & caffeine at the same 

dosage as before for 8 weeks orally (no. =10 rats/100-

160g).  
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3.2- Blood Sampling: Using a heparinized capillary 

tube added into the medial canthus, blood was taken out 

of the retro-orbital plexus. Serum was obtained by 

placing blood in a clean, dry, graduated glass centrifuge 

tube. It was quickly turned on for centrifugation at 3000 

r.p.m. for fifteen minutes. A little less than fifty percent 

of the serum was moved to Eppendorf tubes for storage 

at -20ºC, for later use. EDTA was used to collect a 

second blood sample in order to measure glycosylated 

hemoglobin (HbA1C). 

 

 3.3- Biochemical parameters: The measured 

biochemical parameters are:  

I. Fasting glucose level (The method of Burtis by 

using Spinreact kits) [14].  

II. Glycosylated hemoglobin (HbA1c) (The method of 

Nathan) [15]. 

III.  Insulin (using Insulin ELISA Assay Kit to the 

method of Rudovich) [16]. 

IV. Lipid profile:   

a- Total cholesterol (The colorimetric method according 

to Naito by using spinreact kits) [17]. 

b- Triglycerides (The method of Burtis by using 

Spinreact kits) [14].   

c- HDL-C (The colorimetric method according to 

Williams by using beacon kits) [18].   

d- LDL-C levels (The equation used by Tietz by using 

the Spinreact kit) [19].   

V. Serum malondialdehyde (MDA) levels as a result of 

lipid peroxidation (determined by Ohkawa) [20] and 

catalase (CAT) levels as an antioxidant (determined 

by Aebi) [21].  

Statistical Analysis: The Independent Samples T-Test 

was used to assess statistical differences between control 

and test groups using the statistical software SPSS 

(Statistical Package for Social Science) version 22.0.  

Ethical Approval: This study was conducted in 

accordance with ethical procedures and policies 

approved by the Animal Care and Use Committee of the 

Faculty of Science, Al-Azhar University. 

4. Result  

In this study, we found that fasting blood glucose levels 

and HbA1c raised significantly (P<0.01) in the diabetic, 

diabetic- DNP- treated group, diabetic -caffeine- treated 

group, and diabetic- DNP -caffeine -treated group in 

comparison with the control group. DNP and caffeine 

groups were not substantially different in blood glucose 

and HbA1c from the control group table (1). Meanwhile, 

there was a substantial reduction (P<0.05) in insulin 

levels in the caffeine group as compared to the control 

group as described in table (1). Meanwhile, there was a 

substantial reduction (P<0.05) in insulin levels in the 

caffeine group as compared to the control group as 

described in table (1).  

  When compared to the control group, the diabetic-

DNP-caffeine-treated group had a substantial (P<0.05) 

decrease in insulin levels, while a high substantial 

reduction (P<0.01) appeared in insulin levels in the 

diabetic group, diabetic- DNP- treated group and diabetic 

-caffeine- treated group as compared to the control. No 

significant change was found in insulin level in the DNP 

group as described in table (1). 

 Fasting blood glucose levels were significantly 

reduced (P<0.01) in the diabetic- DNP-treated group and 

diabetic-DNP-caffeine-treated group when compared to 

the diabetic group. When compared to the diabetic group, 

there was a significant reduction in HbA1C (P<0.01). 

While a significant decline (P<0.05) in HbA1C in the 

diabetic-DNP-treated group when compared to the 

diabetic group. While fasting blood glucose and HbA1C 

levels were significantly lower (P<0.05) in the diabetic-

caffeine-treated group than the diabetic group, as 

illustrated in table (2).  

A highly significant rise appeared (P<0.01) in insulin 

levels in the diabetic-DNP-caffeine-treated group in 

comparison with the diabetic group. While a significant 

rise (P<0.05) in insulin levels in the diabetic- DNP -

treated group and diabetic-caffeine-treated group when 

compared to the diabetic group as illustrated in table (2). 

 A significant rise appeared (P<0.05) in cholesterol 

and LDL-C levels, while a highly significant rise 

(P<0.01) in triglyceride levels in the diabetic group in 

comparison with the control group.  No significant 

change was found in cholesterol level in the DNP group, 

caffeine group, diabetic-DNP-treated group, diabetic-

caffeine-treated group, and diabetic-DNP-caffeine-

treated group as compared to the control group as 

illustrated in table (3). In comparison with the control 

group, Triglyceride levels increased significantly (P< 

0.01) in the diabetic-DNP-treated, diabetic-caffeine-

treated, and diabetic-DNP-caffeine-treated groups. As 

observed in table (3), there was no significant difference 

in triglyceride levels in DNP and caffeine groups as 

opposed to the control group. A significant reduction 

appeared (P<0.05) in HDL-C in the diabetic-DNP-

treated group and diabetic-caffeine-treated group while a 

highly significant reduction (P<0.01) in the diabetic as 

compared to the control group was observed in table (3). 

As demonstrated in table 3, there was no significant 

change in LDL-C levels in the DNP and caffeine groups 

as compared to the control group. 

A significant reduction clearly appeared (P<0.01) in 

cholesterol and triglyceride levels in diabetic-DNP-

treated and diabetic-DNP-caffeine-treated groups 

compared to the diabetic group.  LDL-C levels were 

significantly decreased (P<0.05) in the diabetic-DNP-

treated group and diabetic-DNP-caffeine-treated group 

compared to the diabetic group. A high significant rise 

clearly appeared (P<0.01) in HDL-C in the diabetic-

DNP-caffeine-treated group while a substantial rise in 

the diabetic-DNP-treated group as contrasted to the 

diabetic group.  In the diabetic-caffeine-treated group, 

cholesterol, triglycerides, and LDL-C levels were 

significantly lower (P<0.05) than in the diabetic group, 

while a significant rise (P<0.05) in HDL-C in the 
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diabetic-caffeine-treated group when compared to 

diabetic group as explained in table 4.  

 

Table (1): The levels of fasting blood glucose, HbA1c, and insulin in diabetic and different treated groups in comparison with 

control. 

- Results were provided as M ± SEM (standard error of the mean) of ten in each group of rats with   *P< 0.05 & **P<0.01 

comparison with the control group. 

 

Table (2): The levels of fasting blood glucose, HbA1c, and insulin in diabetic rats treated with DNP and/or caffeine were 

compared to the diabetic group. 

-Results were provided as M ± SEM of ten in each group of rats with *P< 0.05 & **P<0.01 in comparison to the diabetic group 

 

 

  Groups  

 

 

Parameters  

 

Control 

group 

 

DNP 

group 

 

Caffeine 

group 

 

Diabetic 

Group 

 

Diabetic-

DNP-treated 

group 

 

Diabetic-

caffeine-

treated group 

 

Diabetic-DNP-

caffeine-

treated group 

Fasting blood 

glucose 

(mg/dl) 

84.90±1.37 82.70±1.01 81.60±1.21 374.20±7.11** 226.50±9.15** 279.30±5.03** 174.70±4.79** 

% change 

from control  
 -2.59 -3.89 340.75 166.78 228.98 105.77 

HbA1C (%) 3.75±0.11 3.86±0.08 3.79±0.09 8.00± 0.18** 6.65± 0.22** 6.55±0.19** 5.38± 0.16** 

% change 

from control 
 2.93 1.07 133.33 77.33 74.67 43.47 

Insulin (U/L) 5.48±0.24 5.69±0.14 4.58±0.16* 2.62±0. 13** 3.50± 0. 13** 3.35±0.11** 4.36±0.12* 

% change 

from control 
 3.83 -16.42 -52.19 -36.13 -38.87 -20.44 

 

                                   

Groups  

Parameters  

 

Diabetic 

Group 

 

Diabetic-DNP-treated 

group 

 

Diabetic-caffeine-

treated group 

 

Diabetic-DNP-caffeine-

treated group 

Fasting blood glucose 

(mg/dl) 
374.20±7.11 226.50±9.15** 279.30±5.03* 174.70±4.79** 

% change from diabetic 

group 
 -39.48 -25.36 -53.27 

HbA1C (%) 8.00±0.18 6.65±0.22* 6.55±0.19* 5.38±0.16** 

% change from diabetic 

group 
 -16.88 -18.13 -32.75 

Insulin (U/L) 2.620±0. 13 3.500± 0. 13* 3.350±0.11* 4.360±0.12** 

% change from diabetic 

group 
 33.59 27.86 66.41 
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Table 3: Changes in the lipid profile in the DNP, caffeine on diabetic induced rats groups. 

 

         Groups  

 

 

Parameters  

 

Control 

group 

 

DNP group 

 

Caffeine 

group 

 

Diabetic 

Group 

 

Diabetic-DNP-

treated group 

 

Diabetic-

caffeine-

treated group 

 

Diabetic-

DNP-caffeine-

treated group 

Cholesterol 

(mg/dl) 

96.90±2.61 104.30±2.83 98.10±2.83 141.50±13.02* 98.00±3.07 102.60±3.27 95.60±1.82 

% change 

from control 

 7.64 1.24 46.03 1.14 5.88 -1.34 

Triglycerides 

(mg/dl) 

77.50±1.53 77.80±1.68 77.00±1.37 218.10±7.04** 163.20±4.36** 192.00±6.09** 135.90±1.97** 

% change 

from control 

 0.39 -0.65 181.42 110.58 147.74 75.35 

HDL-C 

(mg/dl) 

24.90±0.59 25.10±0.48 23.40±0.60 19.00±0.75** 22.50±0.60* 21.50±0.79* 23.50±0.50 

% change 

from control 

 0.80 -6.02 -23.69 -9.64 -13.65 -5.62 

LDL -C (mg 

/dl) 

56.50±2.45 63.64±2.69 59.30±2.97 72.15±3.87* 42.86±3.67* 42.70±2.79* 44.92±2.19* 

% change 

from control 

 12.64 4.96 27.70 -24.14 

 

-24.42 -20.50 

 

-Results were provided as M ± SEM of ten in each group of rats with *P< 0.05 & **P<0.01 in comparison with the control group 

 

Table 4: Change in the lipid profile in the DNP, caffeine on diabetic induced rats groups were compared to the diabetic group. 

 

                             Groups  

 

 

Parameters  

 

Diabetic Group 

 

Diabetic-DNP-

treated group 

 

Diabetic-caffeine-

treated group 

 

Diabetic-DNP-

caffeine-treated 

group 

Cholesterol (mg/dl) 141.50±13.02 98.00±3.07** 102.60±3.27* 95.60±1.82* * 

% change from diabetic group  -30.74 -27.49 -32.44 

Triglycerides (mg/dl) 218.10±7.04 163.20±4.36** 192.00±6.09* 135.90±1.97* * 

% change from diabetic group  -25.17 -11.97 -37.69 

HDL (mg/dl) 19.00±0.75 22.50±0.60* 21.50±0.79* 23.50±0.50* * 

% change from diabetic group  18.42 13.16 23.68 

LDL (mg /dl) 72.15±3.87 42.86±3.67* 42.70±2.79* 44.92±2.19* 

% change from diabetic group  -40.60 

 

-40.82 -37.74 

 

-Results were shown as M ± SEM of ten in each group of rats with *P< 0.05 & **P<0.01 in comparison to the diabetic group. 

  

As illustrated in table (5), there was a substantial increase 

(P<0.05) in MDA levels in the diabetic-DNP-treated 

group and a very significant increase (P<0.01) in the 

diabetic as compared to the control group. A significant 

reduction (P<0.05) appeared in the MDA level in the 

DNP group in comparison with the control group.  No 

significant change was noticed in MDA level in the 

caffeine group, diabetic-caffeine-treated group, and 

diabetic-DNP-caffeine-treated group when compared to 

the control group. A high significant decline (P<0.01) in 

catalase levels in the diabetic group, diabetic-DNP-

treated group, diabetic-caffeine-treated group, and 

diabetic- DNP-caffeine-treated group in comparison 

with the control group. Catalase levels in the DNP group 

increased significantly (P<0.05) as compared to the 

control group. There was no significant difference in 

catalase levels between the caffeine and control groups.  

A high significant rise (P<0.01) in catalase level and a 

high significant reduction (P<0.01) in MDA   in the 

diabetic-DNP-treated group and the diabetic-DNP-

caffeine-treated group in comparison with the diabetic 

group. There was a highly significant decline (P<0.01) in 

MDA levels and high significant rise in the diabetic-

caffeine-treated group when compared to the diabetic 

group as seen in table 6.  

5. Discussion    

Diabetes is a peptide hormone synthesized by the β-

cells of the pancreas that regulates the storage and release 

of energy and controls blood glucose levels [22]. In this 

study, we showed the effect of DNP and caffeine on 

diabetic male albino rats and measured blood glucose 

levels and some biochemical parameters. 
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Table 5: Levels of catalase and MDA in the DNP, caffeine on diabetic induced rats groups. 

 

         Groups  

 

 

Parameters  

 

Control 

group 

 

DNP group 

 

Caffeine 

group 

 

Diabetic 

Group 

 

Diabetic-

DNP-treated 

group 

 

Diabetic-caffeine-

treated group 

 

Diabetic-

DNP-caffeine-

treated group 

Catalase 

(U/L) 

25.60±0.70 28.40±0.78* 26.20±0.59 7.08±0.34** 12.40±0.50** 11.20±0.71** 15.61±0.53** 

% change 

from control 

 10.94 2.34 -72.34 -51.56 -56.25 -39.02 

MDA 

(μg/Ml) 

21.81±0.62 18.61±0.55* 20.35±0.53 31.43±0.78** 25.08±0.80* 22.93±0.59 20.66±0.40 

% change 

from control 

 -14.67 -6.69 44.11 14.99 5.14 -5.27 

Results were shown as M± SEM of ten in each group of rats *P< 0.05 & **P<0.01 in comparison to the control.   

 

Table 6: Levels of catalase and MDA in the DNP, and caffeine in diabetic-induced rats groups were compared to the diabetic 

group. 

-Results were shown as M ± SEM of ten in each group of rats with **P<0.01 in comparison to the diabetic.

The current research showed an increase in blood 

glucose levels and HbA1C in diabetic groups as 

compared to the control group. High blood glucose levels 

are induced by the activity of alloxan, which reacts by 

destroying the important component in pancreatic β-cells 

resulting in reduced insulin-carrying granules in 

pancreatic β-cells [23]. The toxic action of alloxan in β- 

cells; is beginning by free radicals produced by redox 

processes. High-stimulated free radicals destroy β- cells 

so blood glucose level is raised [24]. 

   Alloxan induces oxidative stress, which increases the 

formation of reactive oxygen species (ROS) [25]. These 

findings were compatible with Yogal et al. [26] who 

reported a substantial rise in HbA1c in diabetic animals. 

   Insulin levels in the caffeine group were reduced as 

compared to the control group. Caffeine intake in normal 

rats may reduce insulin levels due to increased levels of 

epinephrine and free fatty acids that increase insulin 

resistance [27]. 

    Diabetic groups showed a decrease in insulin levels as 

compared to the control group. Diabetes caused by 

alloxan is related to selective reduction of insulin 

production via glucokinase inhibition and promotion of 

ROS generation. As a result, such a poison will cause 

necrosis of the pancreatic β-cells [28], [29].   

    Current research showed all treated groups decreased 

glucose levels, Hba1c, and elevated insulin levels as 

compared to the diabetic group.  

     DNP acts as a mitochondrial uncoupler, disrupting the 

gradient of the proton, which might be implemented to 

create ATP through single protons passing by the ATP 

synthase process, instead, it spills and is wasted as 

energy. It reduces the membrane hypothetical, distributes 

heat as well as raises ADP. The corresponding rise in 

ADP induces mitochondria to accelerate energy 

consumption by increasing the absorption of glucose 

through the process of glycolysis [30]. These findings 

were compatible with Geisler [30] who mentioned that 

DNP significantly reduces glucose levels and HbA1c.  

Abunasef et al., [31] observed that caffeine significantly 

reduced glucose levels and increased insulin levels in 

diabetic rats. Caffeine decreases blood glucose levels due 

to decreased insulin resistance coupled with a decrease 

in hyperinsulinemia [32]. Goedeke et al. [33] showed 

that DNP significantly increases insulin levels in mice. 

DNP improves energy distribution by decoupling the 

mitochondrial proton gradient from ATP synthesis. 

 

                           Groups  

 

 

Parameters  

 

Diabetic 

Group 

 

Diabetic-DNP-treated 

group 

 

Diabetic-caffeine-treated 

group 

 

Diabetic-DNP-caffeine-

treated group 

Catalase (U/L) 7.08±0.34 12.40±0.50** 11.20±0.71** 15.61±0.53** 

% change from diabetic 

group 

 75.14 58.19 120.48 

MDA (μg/mL) 31.43±0.78 25.08±0.80** 22.93±0.59** 20.66±0.40** 

% change from diabetic 

group 

 -20.20 -27.04 -34.27 
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Mitochondrial uncoupling reduces ROS generation by 

reducing the proton gradient [34]. Abunasef et al. [31] 

reported that caffeine significantly increases insulin 

levels in diabetic rats. Caffeine may improve insulin 

secretion.  Caffeine changes the expression of glucose 

transporter 2 (GLUT2) and glucokinase in cells, which 

are involved in the phosphorylation of the glucose 

mechanism and, as a result, insulin production [35]. 

     In current study showed an elevation in cholesterol, 

triglycerides, and LDL-C levels in the diabetic group. 

Lipolysis and hypertriglyceridemia were caused by 

alloxan administration. Alloxan induction caused an 

elevation in ROS that resulted in damaged β-cells, 

resulting in reduced insulin production and 

hyperglycemia; this state induces lipolysis, resulting in 

an increase in fatty acids in the blood [36]. Lipolysis 

promotes the production of free fatty acids. These fatty 

acids will reach adipose tissue or muscle cells by 

damaging the endothelium and subsequently re-oxidize 

or change back to triglycerides [37]. 

     Lipoprotein lipase is activated by insulin, which 

hydrolyzes triglycerides and prevents lipolysis. Diabetes, 

on the other hand, causes an increase in lipolysis, which 

eventually leads to hyperlipidemia [38]. The elevated 

triglycerides in the diabetic group resulted from 

inhibiting lipoprotein lipase in fatty tissues; because of 

insulin declination [39]. Insulin deficiency causes an 

increase in free fatty acid mobilization from adipose 

tissue which results in increased production of LDL-C 

and dyslipidemia. [36]. These findings were compatible 

with Airaodion et al. [40] who mentioned the most 

significant elevation in total cholesterol and serum 

triglycerides in diabetic animals. 

    This study showed a reduction in HDL-C in diabetic 

groups. This reduction is superior; because suppression 

of lipoprotein lipase caused by alloxan and lipid 

peroxidation is due to stress oxidation. Oxidative stress 

causes lipid degradation and a decrease in HDL-C which 

is important for cholesterol transport from tissues into the 

liver [41]. These findings were compatible with Daniel 

et al. [42] who mentioned that HDL-cholesterol levels 

declined in diabetic animals.  

    All treated groups showed an increase in HDL-C and 

a decrease in cholesterol, triglycerides, and LDL-C 

(especially the combined group) as compared to the 

diabetic group. DNP serves as a mitochondrial 

uncoupler, interrupting the proton that might be utilized 

to create ATP through the unique protons getting via the 

ATP synthase pathway, but ultimately leaked and 

squandered as energy. A corresponding rising rate of 

ADP causes the mitochondria to accelerate the 

consumption of energy by boosting the degradation of 

lipids during β-oxidation [30]. Additionally, 

Belosludtseva et al. [41] showed that DNP decreases 

serum triglyceride levels in /mice.  These findings were 

compatible with those of Goedeke et al. [33] who 

showed that DNP decreases triglycerides and LDL-

cholesterol by increasing the rate of hepatic 

mitochondrial oxidation. 

     These findings were compatible with Mansour et al. 

[43] who recorded that caffeine reduces total cholesterol 

levels in the patient.  These findings were compatible 

with Xu et al. [44] who showed that improving lipid 

profile decreases triglyceride, cholesterol, and LDL-C 

and increases HDL-C. Caffeine increases fat oxidation, 

and lipolysis and decreases body fat [45]. The 

triglyceride reduction is almost certainly caused by 

insulin stimulation, as insulin plays an important role in 

lipolysis inhibition. The HDL-cholesterol level was 

boosted due to an improvement in insulin secretion. 

LDL-cholesterol can be reduced by inhibiting LDL-

cholesterol glycosylation [46]. 

     In current study showed an increase in MDA and 

reduced catalase in the diabetic group. This result is 

compatible with Ogochukwu et al. [47] who reported 

that increased ROS formation is responsible for the 

raised levels of MDA, as an end product of lipid 

peroxidation in diabetic rats. 

     These results are compatible with those of Awan et al. 

[48] who stated that ROS formation is a direct result of 

hyperglycemia and has been linked to vascular 

complications in diabetic patients. These results are also 

compatible with Daniel et al.  [42], who demonstrated 

that elevated levels of ROS in diabetes result in 

decreased levels of catalase making a number of cells 

susceptible to free radicals. All treated groups showed 

reduced MDA and increased catalase (especially the 

combined group). This result is compatible with Samaiya 

et al. [49] who showed that DNP significantly raised 

serum catalase levels. DNP prevents the development of 

oxidative stress by decreasing ROS levels in mice which 

helps to increase catalase [50]. This result is compatible 

with Abdel-Salam et al. [51] who showed that DNP 

significantly decreased MDA levels in rats.  DNP helps 

to decrease ROS which decreases oxidative stress that 

leads to reduced MDA levels in rats. [52].  

     These findings were compatible with Kaczmarczyk-

Sedlak et al. [8] who recorded that; caffeine decreases 

MDA in rats due to reduced oxidative stress by caffeine 

[53]. These findings were compatible with Reddy [53] 

who showed that caffeine increases catalase levels and 

decreases MDA.  The enhanced activity of catalase in 

pancreatic tissue after caffeine treatment demonstrates its 

antioxidative efficiency. The inclusion of polyphenols 

and melanoidins in pure caffeine may contribute to 

improved endogenous antioxidant status [54].  

In our study, we studied the efficacy of DNP with a 

low dose and caffeine on diabetic rats separately and 

combined while previous studies investigated separately 

only. Many parameters were measured as glucose, 

HbA1C, insulin, catalase, and MDA while previous 

studies measured only glucose levels and this gives a 

wide picture to understanding diabetes mellitus disease 

and improving the choice of treatment in animals. 
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6. Conclusion      

According to the findings of this study, caffeine and a 

very low dose of dinitrophenol reduced glucose levels in 

diabetic rats. They also raised insulin and catalase as 

antioxidants and reduced MDA. They improved their 

lipid profile. Therefore, caffeine can be considered a safe 

and effective natural medicine that may help reduce 

blood glucose.  
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