SUPERLATIVE TOTAL DOMINATION IN GRAPHS

VEENA BANKAPUR AND B. CHALUVARAJU

Abstract

Let $G=(V, E)$ be a simple graph with no isolated vertices and $p \geq 3$. A set $D \subseteq V$ is a dominating set, abbreviated as $D S$, of a graph G, if every vertex in $V-D$ is adjacent to some vertex in D, while a total dominating set, abbreviated as $T D S$, of G is a set $T \subseteq V$ such that every vertex in G is adjacent to a vertices in T. A set T is a superlative total dominating set, abbreviated as $S T D S$, of G if $V-T$ is not contains a $T D S$ but it contains a $D S$ of G. The superlative total domination number $\gamma_{s t}(G)$ is the minimum cardinality of a $S T D S$ of G. In this paper, we initiate a study on $\gamma_{s t}(G)$ and its exact values for some classes of graphs. Furthermore, bounds in terms of order, size, degree and other domination related parameters are investigated.

1. Introduction

All the graphs $G=(V, E)$ considered here are simple, finite, nontrivial and undirected, where $|V|=p$ denotes number of vertices and $|E|=q$ denotes number of edges of G. In general, we use $\langle A\rangle$ to denote the subgraph induced by the set of vertices A. The set of all vertices which are adjacent to a vertex v is called open neighborhood of v and denoted by $N(v)$. The closed neighborhood set of a vertex v is the set $N[v]=N(v) \cup\{v\}$. Let $\operatorname{deg}(v)$ be the degree of vertex v and usual $\delta(G)$, the minimum degree and $\Delta(G)$, the maximum degree of G. If v has degree one, then the vertex v is known as end-vertex of G (i.e., $\delta(G)=1$). The complement graph $\bar{G}=(V, \bar{E})$ is a graph with $u v \in \bar{E}(\bar{G})$ if and only if $u v \notin E(G)$ for all $\{u, v\} \subseteq V(G)$. For a real number $n>0$, let $\lfloor n\rfloor$ (or, $\lceil n\rceil$) be the greatest (least) integer not greater (less) than or equal to n. For graph-theoretic terminology and notation not defined here, we follow [8].

[^0]The domination in graphs has been an extremely researched branch of graph theory. For more and comprehensive details of domination-related parameters and their applications, the reader refereed to $[6,7,9,10,11,12]$.

A set $D \subseteq V$ is a dominating set, abbreviated as $D S$, of a graph G with no isolated vertex, if every vertex in $V-D$ is adjacent to some vertex in D, while a total dominating set T of G, abbreviated as $T D S$, is a subset of $V(G)$, such that every vertex in G is adjacent to a vertex in T, see [3].

Further, let D and T be a minimum $D S$ and $T D S$ of a graph G, respectively.
(i) If $V-D$ contains a $D S$, say D^{\prime}, then D^{\prime} is called an inverse dominating set, abbreviated as $I D S$ of G with respect to D, see [20].
(ii) If $V-D$ contains no a $D S$, then D is called a maximal dominating set, abbreviated as $M D S$, of G, see [19].
(iii) If $V-T$ contains a $T D S$, say T^{\prime}, then T^{\prime} is called an inverse total dominating set, abbreviated as $I T D S$ of G with respect to T, see [5, 18].
(iv) If $V-T$ contains no a $T D S$, then T is called a maximal total dominating set, abbreviated as $M T D S$, of G, see [21].
(v) The domatic number of G, denoted $d(G)$, is the maximum number of disjoint $D S$ of G, see $[3,10]$.
(vi) The total domatic number of G, denoted $d_{t}(G)$, is the maximum number of disjoint $T D S$ of G, see $[2,4,23]$.
Analogously, the domination, total, inverse, maximal, inverse total and maximal total domination number of G, denoted by $\gamma(G), \gamma_{t}(G), \gamma_{i}(G), \gamma_{m}(G), \gamma_{i t}(G)$ and $\gamma_{m t}(G)$, is the minimum cardinality of a $D S, T D S, I D S, M D S, I T D S$ and $M T D S$ of a graph G, respectively.

2. Superlative total domination

In this paper, motivated by the work of Michael Henning and others [4, 13, 14, 15, $16,17]$, towards the contributions of total domination and its related parameters, we introduce $S T D S$ of graphs as follows:

A set $T \subseteq V$ is a superlative total dominating set, abbreviated as $S T D S$, of a graph G with no isolated vertex if $V-T$ is not a $T D S$ but it is a $D S$ of G. The superlative total domination number $\gamma_{s t}(G)$ is the minimum cardinality of a $S T D S$ of G. A $\gamma_{s t}$-set is a minimum $S T D S$ of G. Similarly, other sets (i.e, domination related parameters) can be expected. We note that, if the connected graph G satisfying $\gamma_{s t}$-set T with $p \geq 3$, then $\langle V-T\rangle$ is either disconnected or K_{1}.
Observation 2.1. Let D and T be the γ-set and γ_{t}-set of a connected graph G with $p \geq 3$. Then, the vertex $v \in D^{\prime}$, which is an IDS, as well as its support vertex (cut-vertex) $u \in D \subseteq T$ must be included in every $D S$, TDS, STDS of G, where $e=u v$ represents an edge in G.

To prove next couple of results towards $S T D S$, we construct the graph G^{*} as follows (see, Figure 1):
Step 1. The graph G^{*} is obtained by taking a single copy of a non-trivial connected graph G_{1} with vertices $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$.
Step 2. Attach k copies of a subgraph $H_{i}(1 \leq i \leq k)$ with vertices $\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ from graph G_{2} to each vertex u_{i} in $V\left(G_{1}\right)$, such that $\cup_{i=1}^{k} V\left(H_{i}\right)=V\left(G_{2}\right)$, | $V\left(H_{i}\right) \mid=t$ and $V\left(G_{2}\right) \mid=k t$. Here, the components H_{i} in G_{2} may be connected or disconnected.

Step 3. Additionally, every vertex in G_{1} is adjacent to k copies of totally disconnected subgraphs $I_{i}(1 \leq i \leq k)$ in a totally disconnected graph G_{3}. Each subgraph I_{i} has vertices $\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$, such that $\cup_{i=1}^{k} V\left(I_{i}\right)=V\left(G_{3}\right),\left|V\left(I_{i}\right)\right|=s$ and $\left|V\left(G_{3}\right)\right|=k s$.

As a result, the total number of vertices in G^{*} is given by $\left|V\left(G^{*}\right)\right|=k(1+t+s)$.
In the graph G^{*}, we encounter the following cases:
Case 1. $G^{*}-G_{3} \cong G_{1} \circ H_{i}(1 \leq i \leq k)$. This corresponds to a corona product graph, where G_{1} is a non-trivial connected graph. In other words, the corona product of G_{1} and H_{i} is defined as the graph obtianed by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of H_{i} and joining the $j^{t h}$ vertex of G_{1} to every vertex in the $j^{\text {th }}$ copy of H_{i}.
Case 2. The double star graph $d\left(p_{1}, p_{2}\right)$ is formed by connecting two stars, each with p_{1} and p_{2} vertices, with an edge. This is characterized by $s=0, k=2$, and $\left\langle H_{i}\right\rangle \cong \overline{K_{t}}(i=1,2)$, where $\overline{K_{t}}$ represents the complementary graph of the complete graph K_{t} with $t \geq 1$.

Figure 1. Graph of G^{*}.

For example, let's consider the graph G^{*} constructed with a non-trivial connected graph G_{1} with vertices $V\left(G_{1}\right)=\left\{u_{1}, u_{2}\right\}$. Consider a graph G_{2} composed of two components: H_{1} and H_{2}, where each component is isomorphic to a path P_{2}. Specifically, $H_{1} \cong P_{2}=\left\{v_{1}, v_{2}\right\}$ and $H_{2} \cong P_{2}=\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$. Each component of G_{2} forms a path P_{2}. Now, introduce a totally disconnected graph G_{3} composed of two components: I_{1} and I_{2}, where each component is isomorphic to the complementary graph $\overline{K_{2}}$. Specifically, $I_{1} \cong \overline{K_{2}}=\left\{w_{1}, w_{2}\right\}$ and $I_{2} \cong \overline{K_{2}}=\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\}$.

Therefore, the vertices in the resulting graph G^{*} are arranged as $V\left(G^{*}\right)=$ $\left\{u_{1}, u_{2}, v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}, w_{1}, w_{2}, w_{1}^{\prime}, w_{2}^{\prime}\right\}$.

In this context, the following sets are $S T D S$ of $G^{*}:\left\{u_{1}, u_{2}\right\},\left\{u_{1}, u_{2}, v_{1}\right\}$ and $\left\{u_{1}, u_{2}, v_{1}, v_{1}^{\prime}\right\}$. Among these sets, $\gamma_{s t}$-set is $\left\{u_{1}, u_{2}\right\}$. Hence, we have $\gamma_{s t}\left(G^{*}\right)=2$ in this specific example, where $k=t=s=2$ (see, Figure 2).

Figure 2. Graph with $S T D S$ and $\gamma_{s t}\left(G^{*}\right)$ for $s=t=k=2$.
An application of $S T D S$ is found in a computer network. Suppose $D \subseteq T \subseteq$ $V(G)$ is a $D S$ and $T D S$ of a graph (or network) G, when the network fails in some vertices (or nodes) in D, the set $D^{\prime} \subseteq V-T$ is an $I D S$ will take care of the role of D. In this aspect, it is worthwhile to concentrate to protect the $D S$ (or core group) D in such way that every node of network has a neighbor in T, whether or not it lies in T itself. This type of conceptional comparison is very essential to facilitate the communication between processors in parallel computers. So we require the minimum $S T D S$ (or $\gamma_{s t}(G)$) of a graph G.

The following computed values of $\gamma_{s t}(G)$ for some specific families of graphs are stated without proof.
Proposition 2.1. For any graph G^{*} with $p=k(t+1)+s$ and $k \geq 2$,

$$
\gamma_{s t}\left(G^{*}\right)= \begin{cases}k & \text { if } s, t \geq 1 \\ \frac{p}{2} & \text { if } s=0, t=1 \text { or } s=1, t=0\end{cases}
$$

Proposition 2.2.
(i) For any Path P_{p} with $p \geq 3$ vertices,

$$
\gamma_{s t}\left(P_{p}\right)= \begin{cases}\frac{p}{2} ; & p \equiv 0(\bmod 4) \\ \frac{p+1}{2}+1 ; & p \equiv 1(\bmod 4) \\ \frac{p}{2}+1 ; & p \equiv 2(\bmod 4) \\ \frac{p+1}{2} ; & p \equiv 3(\bmod 4) \\ \text { does not exist } & p=3,5,6,9\end{cases}
$$

(ii) For any Cycle C_{p} with $p \geq 3$ vertices,

$$
\gamma_{s t}\left(C_{p}\right)=\left\{\begin{array}{lc}
\frac{p}{2}+2 ; & p \equiv 0(\bmod 4) \\
\frac{p+1}{2}+1 ; & p \equiv 1(\bmod 4) \\
\frac{p}{2}+1 ; & p \equiv 2(\bmod 4) \\
\frac{p+1}{2} ; & p \equiv 3(\bmod 4) \\
\text { does not exist } & p=4,5,8
\end{array}\right.
$$

(iii) For any Complete graph K_{p} with $p \geq 3$ vertices,

$$
\gamma_{s t}\left(K_{p}\right)=p-1
$$

(iv) For any Wheel graph $W_{p}=C_{p-1}+K_{1}$ with $p \geq 4$ vertices,

$$
\gamma_{s t}\left(W_{p}\right)=3
$$

(v) For any Fan graph $F_{p}=P_{p-1}+K_{1}$ with $p \geq 3$ vertices,

$$
\gamma_{s t}\left(F_{p}\right)=2
$$

(vi) For any Complete bipartite graph $K_{m, n}$ with $1 \leq m \leq n$ vertices, $\gamma_{s t}\left(K_{m, n}\right)$ does not exist.

3. Bounds and Characterizations

3.1. In terms of domination number.

Theorem 3.1. For any connected graph G with $p \geq 3$ vertices,

$$
\gamma(G) \leq \gamma_{s t}(G) \leq p-\gamma(G)
$$

Furthermore, the lower bound is achieved on the graph $G(p \geq 3)$ contains at least one end-vertex or the graph $G \cong G^{*}$.

Similarly, the upper bound is achieved when $G \cong K_{p}(p \geq 3), G_{1} \circ K_{1}$, or the path P_{4}, where G_{1} is any non-trivial connected graph.
Proof. We will prove the inequalities separately for the lower and upper bounds.
Let D be a γ-set and T be a γ_{t}-set of a connected graph G. Consider the case where G contains at least one end-vertex. In this case, any end-vertex v must be included in either D or T since it has degree one. This means that $\gamma_{s t}(G) \geq \gamma(G)$, achieving the lower bound.

Proof of the Upper Bound: Consider a connected graph G with p vertices. Let D be a γ-set of G, and let $T=V-D$ be the corresponding γ_{t}-set. We want to show that $\gamma_{s t}(G) \leq p-\gamma(G)$.

Notice that, the set D is a $D S$ of G, which means that every vertex in $V-D$ must be adjacent to at least one vertex in D. Therefore, $V-T$ is a $D S$ of G, as it includes all the vertices not in T that are adjacent to at least one vertex in T.

Now, consider the induced graph $\langle V-T\rangle$, which consists of the vertices in $V-T$ and the edges between them that are present in G. Since $\langle V-T\rangle$ is a $D S$ of G, every vertex in $\langle V-T\rangle$ is adjacent to at least one other vertex in $\langle V-T\rangle$, forming a subgraph with no isolated vertices.

By definition, a set T is a $S T D S$, which must be a satisfy the following two properties: $V-T$ is not a $D S$, and $V-T$ is a $D S$ of the induced graph $\langle V-T\rangle$. Since $V-T$ is a $D S$ of G, it follows that $V-T$ is a $D S$ of $\langle V-T\rangle$. However, this means that $V-T$ cannot satisfy the first property of an $S T D S$, which requires that $V-T$ is not a $D S$. Therefore, T must be an $S T D S$ of G, and by definition, $\gamma_{s t}(G) \leq|T|=p-|D|=p-\gamma(G)$.

Thus, we have shown that $\gamma_{s t}(G) \leq p-\gamma(G)$, completing the proof of the upper bound.

3.2. In terms of order, size and degrees.

Theorem 3.2. For any connected graph G with $p \geq 3$,

$$
2 \leq \gamma_{s t}(G) \leq p-1
$$

Furthermore, the lower bound is achieved one of the following condition:
(i) $G \cong H^{*}$, where H^{*} is a graph forming an exactly one vertex u in a complete graph $K_{n} ; n \geq 3$ or a cycle C_{4}, which u is adjacent to at least one endvertex.
(ii) $G \cong H^{* *}$, where $H^{* *}$ is a graph forming an exactly two adjacent vertices u and v in a complete graph $K_{n} ; n \geq 2$ or a cycle C_{4}, which each u and v are adjacent to at least one end-vertex.
(iii) $G \cong K_{2}+\overline{K_{t}} ; t \geq 2$ or each adjacent vertices of K_{2} in G is adjacent to at least one end-vertex.
Similarly, the upper bound is achieved on $G \cong K_{p} ; p \geq 3$.
Proof. Let T be a γ_{t}-set of a connected graph G with $p \geq 3$ vertices. Then every vertex of T in G are adjacent to each other. So that $\langle T\rangle$ of G has no isolates. Therefore $2 \leq \gamma_{t}(G) \leq \gamma_{s t}(G)$ and hence the lower bound follows.
For every vertex in T of G dominates at least one vertex in $V-T$. Therefore $|V-T| \geq 1$. Since $V-T$ is not contains $T D S$ and contain a $D S$ of a graph G. Hence T is a $S T D S$ of a graph G. This implies that $|T| \leq|V|-1=p-1$.
Thus the upper bound follows.
Further, the lower and upper bounds are achieved some specific families of graphs, hence we omit the proof.

Theorem 3.3. For any connected graph G with $p \geq 3$ vertices,

$$
\operatorname{Max} .\left\{p-q+1,\left\lceil\frac{p}{q}\right\rceil\right\} \leq \gamma_{s t}(G) \leq \operatorname{Min} .\{q, 2 q-p+1\}
$$

Proof. Let G be a connected graph with $p \geq 3$ vertices. If D is a $D S$ and $|V-D|=$ r, then there are at least q edges from $V-D$ to D, and $|D|=p-r$. Since $r \leq q$, we have $p-q \leq|D|=\gamma(G)$ and $(D \cup\{v\}) \subseteq T$ for $v \in V-D$. Also, we know that $\gamma_{t}(G) \leq \gamma_{s t}(G)$. This implies that $p-q+1 \leq \gamma_{s t}(G)$. Since $\left\lceil\frac{p}{q}\right\rceil \leq 2 \leq \gamma_{t}(G)$, we have $\left\lceil\frac{p}{q}\right\rceil \leq \gamma_{s t}(G)$. Thus, the lower bound follows.

By Theorem 3.2, we have $\gamma_{s t}(G) \leq p-1 \leq q$ and $\gamma_{s t}(G) \leq p-1=2(p-1)-p+1 \leq$ $2 q-p+1$. Thus the upper bound follows.

To prove our next result, we make use of the following theorems.
Theorem 3.4. [1, 22] For any non-trivial graph G with no isolates,

$$
\left\lceil\frac{p}{\Delta(G)+1}\right\rceil \leq \gamma(G) \leq p-\Delta(G)
$$

Theorem 3.5. [15] For any non-trivial graph G with no isolated vertex,

$$
\gamma_{t}(G) \geq \frac{p}{\Delta(G)}
$$

Theorem 3.6. For any connected graph G with $p \geq 3$,

$$
\left\lceil\frac{p}{\Delta(G)}\right\rceil \leq \gamma_{s t}(G) \leq\left\lfloor\frac{p \Delta(G)}{\Delta(G)+1}\right\rfloor
$$

Proof. By Theorem 3.5 and every STD-set is a TD-set of a connected graph G (i.e., $\left.\gamma_{t}(G) \leq \gamma_{s t}(G)\right)$, the lower bound follows.
By Theorem 3.4 and $\gamma_{s t}(G) \leq p-\gamma(G)$, we have the desired upper bound in terms of order and maximum degree of a graph G.

3.3. In terms of Total domination number.

Observation 3.1. The difference between $\gamma_{s t}(G)$ and $\gamma_{t}(G)$ is arbitrarily large. For example, $\gamma_{s t}\left(K_{p}\right)-\gamma_{t}\left(K_{p}\right)=p-3$ with $p \geq 3$.

Theorem 3.7. Let G be a connected graph with $p \geq 3$ vertices. Then every STDS is a TDS of G is achieved one of the following conditions:
(i) $G \cong H^{*}$, where H^{*} is a graph forming an exactly one vertex u in a complete graph $K_{n} ; n \geq 3$ vertices or cycle C_{4}, which u is adjacent to at least one end-vertex.
(ii) $G \cong H^{* *}$, where $H^{* *}$ is a graph forming an exactly two adjacent vertices u and v in a complete graph $K_{n} ; n \geq 2$ vertices or cycle C_{4}, which each u and v are adjacent to at least one end-vertex.
(iii) $G \cong K_{2}+\overline{K_{t}}$; $t \geq 2$ or each adjacent vertices of K_{2} in G is adjacent to at least one end-vertex.
(iv) $G \cong G^{*} ; s, t \geq 1$ and $k \geq 2$.

Proof. Since every $S T D S$ is a $T D S$ of a connected graph G with $p \geq 3$ vertices. Clearly, $\gamma_{t}(G) \leq \gamma_{s t}(G)$. Further, let T be a $\gamma_{s t}$-set of G. Then an induced subgraph $\langle V-T\rangle$ contains at least one isolated vertex. Thus the conditions (i)-(iv) holds.

3.4. In terms of Maximal total domination number.

Theorem 3.8. For any connected graph G with $p \geq 3$,

$$
\gamma_{t}(G) \leq \gamma_{m t}(G) \leq \gamma_{s t}(G)
$$

Proof. Since every $S T D S$ is a $M T D S$ and every $M T D S$ is a $T D S$ of a connected graph G with $p \geq 3$. Hence the desired bounds follow. Further, let v be an endvertex of a connected graph G and T be a γ_{t}-set of $G . v \notin T$ and is adjacent to some vertex in $u \in T$. This implies that v is an isolate in $\langle V-T\rangle$ and hence T is a $\gamma_{m t}$-set as well as $\gamma_{s t}$-set of G.

Further, the bounds are attained if G contains an end-vertex or $G \cong C_{p}$ with $p=4 n+2$ and $p=4 n+3$ for $n \geq 2$. Also, $\gamma_{s t}\left(C_{p}\right)=\gamma_{m t}\left(C_{p}\right)+1=\gamma_{t}\left(C_{p}\right)+2$ with $p=4 n$ for $n \geq 3$.

3.5. In terms of Inverse domination number.

Observation 3.2. The difference between $\gamma_{s t}(G)$ and $\gamma_{i}(G)$ is arbitrarily large. For example, $\gamma_{s t}\left(K_{p}\right)-\gamma_{i}\left(K_{p}\right)=p-2$ for $p \geq 3$.
Observation 3.3. There is no good relation between IDS and STDS of a connected graph G.
For example,
(i) $\gamma_{i}(G)=\gamma_{s t}(G)$ if $G \cong G_{1} \circ K_{1}$.
(ii) $\gamma_{i}(G)>\gamma_{s t}(G)$ if $G \cong G_{1} \circ \overline{K_{t}} ; \quad t \geq 2$.
(iii) $\gamma_{i}(G)<\gamma_{s t}(G)$ if $G \cong K_{p} ; p \geq 3$,
where G_{1} is a non-trivial connected graph.
By the definitions of $D S, I D S, T D S, I T D S$ and $S T D S$ of a connected graph with $p \geq 4$ vertices, we have the following schematic representation as in Figure-3 to obtain some results in terms of two disjoint $I D S$ (say, D_{1}^{\prime} and D_{2}^{\prime}) of a connected graph G without proof.

Figure 3. Schematic Representation of domination related parameters.

Theorem 3.9. Let D and T are the γ-set and γ_{t}-set of a connected graph G with $p \geq 3$, respectively. Then
(i) $\left|D_{1}^{\prime}\right|=\left|D_{2}^{\prime}\right|$ if and only if $T-D=\phi$.
(ii) $\left|D_{1}^{\prime}\right|>\left|D_{2}^{\prime}\right|$ if and only if $T-D \neq \phi$,

Theorem 3.10. Let G be a connected graph with $p \geq 3$ vertices. Then
(i) $\gamma(G) \leq \gamma_{i}(G) \leq p-\gamma(G)$.
(ii) $\gamma_{t}(G) \leq \gamma_{i t}(G) \leq p-\gamma_{t}(G)$.
(iii) $\gamma_{i}(G) \leq \gamma_{i t}(G)$.
(iv) $\gamma_{s t}(G) \leq p-\gamma_{i}(G)$.

Further, we have
(i) $\gamma(G)=\gamma_{i}(G)=\gamma_{t}(G)=\gamma_{s t}(G)=\frac{p}{2}$ if $G \cong G_{1} \circ K_{1}$, where G_{1} is a non-trivial connected graph.
(ii) $\gamma_{t}(G)=\gamma_{i t}(G)=\frac{p}{2}$ if $G \cong C_{p} ; p \equiv 0(\bmod 4)$ or K_{4} or $K_{4}-e ; e \in E\left(K_{4}\right)$.
(iii) $\gamma_{t}(G)=\gamma_{i t}(G)=\stackrel{2}{2}$ if $G \cong \underline{K_{p}}$ or $K_{m, n} ; 2 \leq m \leq n$
(iv) $\gamma_{t}(G)=\gamma_{i t}(G)=4$ if $G \cong \overline{K_{m, n}} ; 2 \leq m \leq n$.

3.6. In terms of domatic and total domatic number.

We known that, $d(G) \leq \delta(G)+1$ and $d_{t}(G) \leq \delta(G)$ for any simple graph G. If these bounds are attains, then we call as domatically full and total domatically full, respectively. Similarly, we can define the superlative total domatically full (i.e., $\left.d_{s t}(G)=\delta(G)\right)$ of a graph G.

By Theorem 3.9, we have
Theorem 3.11. Let D and T are the γ-set and γ_{t}-set of a connected graph G with $p \geq 3$, respectively. Then
(i) $d(G)=1$ if and only if $\gamma_{s t}$-set of G does not exist.
(ii) $d(G)=2$ if and only if $\gamma_{s t}$-set of G exist for $D_{1}^{\prime} \subseteq V-D ; D_{1}^{\prime} \subseteq V-$ T and $D_{1}^{\prime} \subseteq T-D$.
(iii) $d(G)=3$ if and only if $\gamma_{s t}$-set of G exist for $D_{1}^{\prime} \subseteq T-D$ and $D_{1}^{\prime} \subseteq V-T$, where D_{1}^{\prime} and D_{2}^{\prime} are two disjoint IDS of G.

Theorem 3.12. Let G be a connected graph $p \geq 3$. Then $d_{t}(G)=1$ if and only if $\gamma_{s t}$-set of G exists and $\left\langle V-D_{t}\right\rangle$ has at least one isolated vertex.

Proof. On the contrary, suppose $d_{t}(G)=1$ holds. Then there exist at least four vertices u_{1}, u_{2}, u_{3} and u_{4} such that $u_{1}-u_{2}-u_{3}-u_{4}-u_{1}$ form a cycle. This implies that $\left\{u_{1}, u_{2}\right\}$ and $\left\{u_{3}, u_{4}\right\}$ form a disjoint $T D S$ of G (i.e., $d_{t}(G)=2$). But $\gamma_{s t}$-set does not exist for this G, which is a contradiction. Further, if any two non-adjacent vertices are adjacent, say u_{1}, u_{3} such that $e=u_{1} u_{3}$ in $G+e$, then again the sets $\left\{u_{1}, u_{2}\right\}$ and $\left\{u_{3}, u_{4}\right\}$ form a disjoint $T D S$ of $G+e$ (i.e., $d_{t}(G)=2$) and the set $\left\{u_{1}, u_{3}\right\}$ form a $\gamma_{s t}$-set of $G+e$, which is again a contradiction.
The converse is obvious.
Observation 3.4. Let G be a connected graph $p \geq 4$. If $d_{t}(G)=2$ with $3 \leq$ $\Delta(G) \leq p-1$, then the $\gamma_{s t}$-set of G exists.
Converse need not be true. For example, the complete bipartite graph $K_{m, n}$ with $3 \leq m \leq n$ does not exist.

4. Conclusion and Open Problems

In this paper, we initiated a new total domination-related parameter as a superlative total domination in graphs, which connects to both dominating set (or, total dominating set) and the inverse dominating set of graphs. Being a new parameter for the comparative advantages, applications and mathematical properties point of view, we pose the following open problems:

1. Find the complexity issues of $\gamma_{s t}(G)$.
2. Obtain some bounds and characterizations of $\gamma_{s t}(G)$ in terms of $\gamma(G)$, $\gamma_{t}(G), \gamma_{i}(G), \gamma_{m}(G), \gamma_{m t}(G)$ and other domination related parameters.
3. Find some results towards the superlative total domatically full.
4. Characterize when $D_{1}^{\prime} \cap D_{2}^{\prime}=\phi$, where $D_{1}^{\prime} \subseteq V-D$ and $D_{2}^{\prime} \subseteq V-T$.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Acknowledgement

We thank the unknown referees for the suggestions that have improved the overall presentation of the paper.

References

[1] C. Berge, Theory of graphs and its applications, Methuen, London (1962).
[2] E. J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs. Networks, 10 (1980), 211-219.
[3] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7 (1977), 247-261.
[4] M. Chellali and T. W. Heynes, Total and paired domination numbers of a tree, AKCE Internat. J. of graphs combin., 1 (2004), 69-75.
[5] B. Chaluvaraju and N. D. Soner, Complementary total domination in graphs, J. Discrete Mathematical Sciences and Cryptography., 10(4) (2007) 505-516.
[6] B. Chaluvaraju and K.A. Vidya, Generalized perfect domination in graphs, Journal of Combinatorial Optimization, Springer, 27 (2) (2014) 292-301.
[7] B. Chaluvaraju, V. Lokesha and S. A. Diwakar, Association scheme with PBIB designs for minimum co-independent dominating sets of circulant graphs, Electronic Journal of Mathematical Analysis and Applications, 10(1), (2022) 144-153.
[8] F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
[9] T. W. Haynes, Structures of domination in graphs. Springer Nature, 2021.
[10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.
[11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs: Advanced topics, Marcel Dekker, Inc., New York, 1998.
[12] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning (Eds.,), Topics in Domination in Graphs, Springer International Publishing AG, 2020.
[13] M. A. Henning, Graphs with large total domination number. J. Graph Theory, 35(1) (2000), 21-45.
[14] M. A. Henning, A survey of selected recent results on total domination in graphs, Discrete Mathematics, 309 (2009) 32-63.
[15] M. A. Henning and A. Yeo, Total domination in graph, Springer., 2013.
[16] B. Janakiram, N. D. Soner and B. Chaluvaraju, Total split domination in graphs, Far East J. Appl. Math, 6(1) (2002) 89-95.
[17] V. R. Kulli, Graphs with equal total domination and inverse total domination numbers, International Journal of Mathematics and its Applications, 4(1-B) (2016) 175-179.
[18] V. R. Kulli and R. R. Iyer, Inverse total domination in graphs, Journal of Discrete Mathematical Sciences and Cryptography, 10(5) (2007) 613-620.
[19] V. R. Kulli and B. Janakiram, The maximal domination number of a graph, Graph Theory Notes of New York, New York Academy of Sciences, 33 (1998), 11-13.
[20] V. R. Kulli and S. C. Sigarkanti, Inverse domination in graph, Nat. Acad. Sci. Letters, 14 (1991), 473-475.
[21] N. D. Soner and Puttaswamy, Maximal total domination in graphs, Aligarh Bull. Math., 22 (2003), 29-33.
[22] H. B. Walikar, B. D. Acharya and E. Sampathkumar, "Recent developments in the theory of domination in graphs", Mehta Research instutute, Alahabad, MRI Lecture Notes in Math. 1 (1979).
[23] B. Zelinka, Total domatic number and degrees of vertices of a graph, Mathematica Slovaca, $\mathbf{3 9 (1)}$ (1989), 7-11.

VEENA BANKAPUR
Department of Mathematics, Bangalore University, Janabharathi Campus, Bengaluru560 056, Karnataka, INDIA

Email address: veenabankapur88@gmail.com
B. CHALUVARAJU

Department of Mathematics, Bangalore University, Janabharathi Campus, Bengaluru560 056, Karnataka, INDIA

Email address: bchaluvaraju@gmail.com

[^0]: 2020 Mathematics Subject Classification. 05C69, 05C70.
 Key words and phrases. Domination, Inverse domination, Total domination, Maximal total domination, Superlative total domination.

 Submitted: June 26, 2023.

