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ON THE AMBARTSUMIAN FUNCTIONAL EQUATION

AHMED M. A. EL-SAYED1, MALAK M. S. BA-ALI2, E.M.A.HAMMDALLAH1

Abstract. In this work, we define the pantograph functional equation with
parameter and study the existence of solutions in two classes x ∈ C[0, T ]

and x ∈ L1[0, T ], we use the technique of the Banach fixed point theorem

and Schauder fixed point Theorem. In both cases we study the continuous
dependence of the unique solution on the pantograph functional equation.

The Hyers–Ulam stability will be studied. Additionally, we give an example
to illustrate our outcomes.

keywords: Pantograph equation; Banach fixed point Theorem; Schauder fixed
point Theorem; existence of solutions; continuous dependence; Hyers–Ulam stabil-
ity.

1. Introduction

A pantograph (or ”pan” or ”panto”) is an apparatus mounted on the roof of an
electric train, tram or electric bus to collect power through contact with an overhead
line. The pantograph equation is a fundamental mathematical model in the field
of delay differential equations. It is well known that the pantograph differential
equation is given by

dx

dt
= f

(
t, x(t), x(γt)

)
,

a special case of the pantograph equation is well known as the Ambartsumian delay
equation which has a particular application in Astrophysics.

dx

dt
= ax(t) + λx(γ t).

For papers studying such kind of problems (see [4, 11, 12]) and Pantograph differ-
ential equations have been studied in many papers and monographs [10].
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In this study, we define the pantograph functional equation with parameter,

x(t) = f

(
t, x(t), λ x(γt)

)
, t ∈ [0, T ] (1.1)

and its special case, the Ambartsumian delay equation

x(t) = ax(t) + λx(γ t).

Where λ > 0, γ ∈ (0, 1) and a is constant. Our aim here is study the existence of
solutions x ∈ C[0, T ] and x ∈ L1[0, T ] of equation (1.1). Moreover, the continuous
dependence of the unique solution on the functions f , γ and on the parameter λ > 0
will be proved. The Hyers – Ulam stability of (1.1) will be given.

The paper is organized as follows: Section 2 contains the solvability of unique
solution x ∈ C[0, T ] by Banach fixed point and discuss some stability facts of the
of (1.1). Moreover, the Hyers – Ulam stability of (1.1) will be studied. In Section
3, the solvability for the existence of the solutions x ∈ L1[0, T ] by Schauder fixed
point Theorem and the continuous dependence of the unique solution x ∈ L1[0, T ]
on the parameter λ ≥ 0 and on the function f . Some general discussion and
examples in Section 4.

2. Solution in C[0, T ]

Let C = C(I), be the class of continuous functions on I = [0, T ], T < ∞, with
the standard norm

∥x∥ = sup
t∈I

|x(t)|.

Consider the pantograph functional equation (1.1) under the following assumptions:
(i) f : I ×R×R → R is continuous in t ∈ I and satisfies Lipschitz condition,

|f(t, x1, x2)− f(t, y1, y2)| ≤ a |x1 − y1|+ λ |x2 − y2| ∀ t ∈ I, xi, yi ∈ R, i = 1, 2.
(ii) (a+ λ) < 1.

Now, we have the following existences theorem.

Theorem 2.1. Assume that (i) and (ii) be satisfied, then the pantograph functional
equation (1.1) has a unique solution x ∈ C(I).

Proof. Define the operator F by

Fx(t) = f

(
t, x(t), λ x(γt)

)
.

Now, let x ∈ C(I) and t1, t2 ∈ I, t1 < t2, |t2 − t1| < δ and denote
θf (δ) = sup

x,y∈C(I)

{|f(t2, x(t), y(t))− f(t1, x(t), y(t))| : t1, t2 ∈ I, t1 < t2, |t2 − t1| <

δ},
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then we have

|Fx(t2)− Fx(t1)| =

∣∣∣∣f(t2, x(t2), λ x(γt2)

)
− f

(
t1, x(t1), λ x(γt1)

)∣∣∣∣
≤

∣∣∣∣f(t2, x(t2), λ x(γt2)

)
− f

(
t1, x(t2), λ x(γt2)

)
+ f

(
t1, x(t2), λ x(γt2)

)
− f

(
t1, x(t1), λ x(γt2)

)
+ f

(
t1, x(t1), λ x(γt2)

)
− f

(
t1, x(t1), λ x(γt1)

)∣∣∣∣
≤ θf (δ) + a |x(t2)− x(t1)|+ λ |x(γt2)− x(γt1)|.

This means that F : C(I) → C(I).
Now let x1, x2 ∈ C(I), then

|Fx2(t)− Fx1(t)| =

∣∣∣∣f(t, x2(t), λ x2(γt)

)
− f

(
t, x1(t), λ x1(γt)

)∣∣∣∣
≤

∣∣∣∣f(t, x2(t), λ x2(γt)

)
− f

(
t, x1(t), λ x2(γt)

)
+ f

(
t, x1(t), λ x2(γt)

)
− f

(
t, x1(t), λ x1(γt)

)∣∣∣∣
≤ a|x2(t)− x1(t)|+ λ|x2(γt)− x1(γt)|,

then

∥Fx2 − Fx1∥ ≤ a∥x2 − x1∥+ λ∥x2 − x1∥
≤ (a + λ) ∥x2 − x1∥.

Since (a+ λ) < 1, then F is a contraction and by Banach fixed point Theorem [8]
there exists a unique solution x ∈ C(I) of the equation (1.1).

2.1. Continuous dependence.

Theorem 2.2. Let the assumptions of Theorem 2.1 be satisfied for f, f∗, λ, λ∗, γ
and γ∗. Then the unique solution x ∈ C(I) depends continuously on f, λ and γ in
the sense that

∀ϵ > 0, ∃ δ(ϵ) such that

max{|λ− λ∗|, |f(t, x, y)− f∗(t, x, y)|, |γ − γ∗|} < δ, then ∥x− x∗∥ < ϵ.

where x∗ is the solution of

x∗(t) = f∗
(
t, x∗(t), λ∗ x∗(γ∗t)

)
.
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Proof.

|x(t)− x∗(t)| =

∣∣∣∣f(t, x(t), λ x(γt)

)
− f∗

(
t, x∗(t), λ∗ x∗(γ∗t)

)∣∣∣∣
≤

∣∣∣∣f(t, x(t), λ x(γt)

)
− f∗

(
t, x(t), λ x(γt)

)
+ f∗

(
t, x(t), λ x(γt)

)
− f∗

(
t, x∗(t), λ∗ x∗(γ∗t)

)∣∣∣∣
≤ δ + a

∣∣∣∣x(t)− x∗(t)

∣∣∣∣+ ∣∣∣∣ λ x(γt)− λ∗ x∗(γ∗t)

∣∣∣∣
≤ δ + a

∣∣∣∣x(t)− x∗(t)

∣∣∣∣+ ∣∣∣∣ λ x(γt)− λ∗ x(γt)

+ λ∗ x(γt)− λ∗ x∗(γt) + λ∗ x∗(γt)− λ∗ x∗(γ∗t)

∣∣∣∣
≤ δ + a|x(t)− x∗(t)|+ |λ− λ∗||x(γt)|+ λ∗|x(γt)− x∗(γt)|
+ λ∗|x∗(γt)− x∗(γ∗t)|
≤ δ + a|x(t)− x∗(t)|+ |λ− λ∗||x(γt)|+ λ∗|x(γt)− x∗(γt)|
+ λ∗ ϵ∗,

then

∥x− x∗∥ ≤ δ + a ∥x− x∗∥+ δ |x(γt)|+ λ∗ ∥x− x∗∥+ λ∗ ϵ∗.

Hence

∥x− x∗∥ ≤ δ + δ |x(γt)|+ λ∗ ϵ∗

1− (a + λ∗)
= ϵ.

2.2. Hyers-Ulam stability.

Definition 2.3. [6, 9] Let the solution x ∈ C(I) of (1.1) be exists. then equation
(1.1) is Hyers - Ulam stable if ∀ϵ > 0, ∃ δ(ϵ) such that for any δ−approximate so-
lution xs satisfies, ∣∣∣∣xs(t)− f

(
t, xs(t), λ xs(γt)

)∣∣∣∣ < δ, (2.1)

implies ∥x− xs∥ < ϵ.

Theorem 2.4. Let the assumptions of Theorem 2.1 be satisfied, then (1.1) is Hyers
- Ulam stable.

Proof. From (2.1), we have∣∣∣∣xs(t)− f

(
t, xs(t), λ xs(γt)

)∣∣∣∣ < δ,
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Now,

|x(t)− xs(t)| =

∣∣∣∣f(t, x(t), λ x(γt)

)
− xs(t)

∣∣∣∣
≤

∣∣∣∣f(t, x(t), λ x(γt)

)
− f

(
t, xs(t), λ xs(γt)

)
+ xs(t)− f

(
t, xs(t), λ xs(γt)

)∣∣∣∣
≤ a |x(t)− xs(t)|+ λ|x(γt)− xs(γt)|+

∣∣∣∣xs(t)− f

(
t, xs(t), λ xs(γt)

)∣∣∣∣,
then

∥x− xs∥ ≤ ∥x− xs∥+ λ ∥x− xs∥+ δ,

Hence

∥x− xs∥ ≤ δ

1− (a+ λ)
= ϵ.

3. Solution in L1(I)

Let L1 = L1(I), be the class of Lebesgue integrable functions on I = [0, T ],
T < ∞, with the standard norm

∥x∥1 =

∫ T

0

|x(t)|dt.

Take into account the following assumptions:

(iii) f : I × R → R is measurable in t ∈ I for any x ∈ R and continuous in
x ∈ R for all t ∈ I. Moreover, there exist a bounded measurable function
m : I → R and a positive constant b2 such that

|f(t, x, y)| ≤ |m(t)|+ a |x|+ λ |y| for each t ∈ I and forall x, y ∈ R , i = 1, 2.
(iv) (a+ λ

γ ) < 1.

Theorem 3.1. Let the assumptions (iii) − (iv) be satisfied, then the pantograph
functional equation (1.1) has at least one solution x ∈ L1(I).

Proof. Let Qr be the closed ball

Qr = {x ∈ L1(I) : ∥x∥1 ≤ r}.
Associate the operator

Fx(t) = f

(
t, x(t), λ x(γt)

)
.

Now, let x ∈ Qr, then

|Fx(t)| =

∣∣∣∣f(t, x(t), λ x(γt)

)∣∣∣∣
≤ |m(t)|+ b2

(
|x(t)|+ |λx(γt)|

)
,

then ∫ T

0

|Fx(t)|dt ≤
∫ T

0

|m(t)|dt+ a

∫ T

0

|x(t)|dt+ λ

γ

∫ T

0

|x(θ)|dθ
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and

∥Fx∥1 ≤ ∥m∥1 + a ∥x∥1 +
λ

γ
∥x∥1

≤ ∥m∥1 + a r +
λ

γ
r

≤ ∥m∥1 + a r +
λ r

γ
= r.

Then the class of functions {Fx} is uniformly bounded on Qr.
Now, let x ∈ Qr, then

∥(Fx)h − (Fx)∥1 =

∫ T

0

|(Fx(s))h − (Fx(s))|ds

=

∫ T

0

1

h

∣∣∣∣ ∫ t+h

t

|(Fx(θ))dθ − (Fx(s))

∣∣∣∣ds
≤

∫ T

0

1

h

∫ t+h

t

|Fx(θ)− Fx(s)| dθds

≤
∫ T

0

1

h

∫ t+h

t

∣∣∣∣f(θ, x(θ), λ x(γθ)

)
− f

(
s, x(s), λ x(γs)

)∣∣∣∣ dθds.
Since F ∈ L1(I), then

1

h

∫ t+h

t

∣∣∣∣f(θ, x(θ), λ x(γθ)

)
− f

(
s, x(s), λ x(γs)

)∣∣∣∣ dθds → 0, ash → 0.

This means that Fx(t)h → (Fx) uniformly in L1(I). Thus the class of functions
{Fx} is relatively compact [15]. Hence F is compact operator.
Now, let {xn} ⊂ Qr, and xn → x, then

Fxn(t) = f

(
t, xn(t), λ xn(γt)

)
and

lim
n→∞

Fxn(t) = lim
n→∞

f

(
t, xn(t), λ xn(γt)

)
.

Applying Lebesgue dominated convergence Theorem [15], then from our assump-
tions we get

lim
n→∞

Fxn(t) = f

(
t, lim

n→∞
xn(t), λ lim

n→∞
xn(γt)

)
= f

(
t, x(t), λ x(γt)

)
= Fx(t).

This means that Fxn(t) → Fx(t). Hence the operator F is continuous. Now, by
Schauder fixed point Theorem [15] there exists at least one solution x ∈ L1(I) of
(1.1).

3.1. Uniqueness of the solution. Now, replace the assumption (iii) by (iii)∗ as
follows:
(iii)∗ f : I × R → R is measurable in t ∈ I ∀x ∈ R and satisfies Lipschitz

condition,

|f(t, x1, x2)− f(t, y1, y2)| ≤ a |x1 − y1| + λ |x2 − y2| ∀ t ∈ I, xi, yi ∈ R, i = 0, 1.
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So, we have the following Lemma.

Lemma 3.2. The assumption (iii)∗ implies the assumption (iii).

Proof. From the assumption (iii)∗ let y1 = y2 = 0, then we have

|f(t, x1, x2)| − |f(t, 0, 0)| ≤ |f(t, x1, x2)− f(t, 0, 0)| ≤ a |x1| + λ |x2|,

|f(t, x1, x2)| ≤ |f(t, 0, 0)|+ a |x1| + λ |x2|
and

|f(t, x1, x2)| ≤ |m(t)|+ a |x1| + λ |x2|, where |m(t)| = sup
t∈I

|f(t, 0, 0)|.

Theorem 3.3. Let the assumptions (iii)∗ and (iv) be satisfied, then the solution
of a pantograph functional equation (1.1) is unique.

Proof. Let x, y be two solutions in Qr of (1.1), then

|x(t)− y(t)| =

∣∣∣∣f(t, x(t), λ x(γt)

)
− f

(
t, y(t), λ y(γt)

)∣∣∣∣
≤

∣∣∣∣f(t, x(t), λ x(γt)

)
− f

(
t, y(t), λ x(γt)

)
+ f

(
t, y(t), λ x(γt)

)
− f

(
t, y(t), λ y(γt)

)∣∣∣∣
≤ a |x(t)− y(t)|+ λ|x(γt)− y(γt)|,

then ∫ T

0

|x(t)− y(t)|dt ≤ a

∫ T

0

|x(t)− y(t)|dt+ λ

∫ T

0

|x(γt)− y(γt)|dt

∥x− y∥1 ≤ a ∥x− y∥1 +
λ

γ

∫ T

0

|x(θ)− y(θ)|dt

≤ a ∥x− y∥1 +
λ

γ
∥x− y∥1.

Hence

∥x− y∥1
(
1−

(
a +

λ

γ

))
≤ 0.

then x = y and the solution of (1.1) is unique.

3.2. Continuous dependence.

Theorem 3.4. Let the assumptions of Theorem 3.3 be satisfied for f, f∗, λ and
λ∗. Then the unique solution x ∈ L1(I) depends continuously on f and λ in the
sense that

∀ϵ > 0, ∃ δ(ϵ) such that

max { |λ− λ∗|, |f(t, x, y)− f∗(t, x, y)| } < δ, then ∥x− x∗∥1 < ϵ.

where x∗ be a solution of

x∗(t) = f∗
(
t, x∗(t), λ∗ x∗(γt)

)
.
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Proof.

|x(t)− x∗(t)| =

∣∣∣∣f(t, x(t), λ x(γt)

)
− f∗

(
t, x∗(t), λ∗ x∗(γt)

)∣∣∣∣
≤

∣∣∣∣f(t, x(t), λ x(γt)

)
− f∗

(
t, x(t), λ x(γt)

)
+ f∗

(
t, x(t), λ x(γt)

)
− f∗

(
t, x∗(t), λ∗ x∗(γt)

)∣∣∣∣
≤

∣∣∣∣f(t, x(t), λ x(γt)

)
− f∗

(
t, x(t), λ x(γt)

)∣∣∣∣
+ a

∣∣∣∣x(t)− x∗(t)

∣∣∣∣+ ∣∣∣∣ λ x(γt)− λ∗ x∗(γt)

∣∣∣∣
≤ δ + a

∣∣∣∣x(t)− x∗(t)

∣∣∣∣+ ∣∣∣∣ λ x(γt)− λ∗ x(γt)

+ λ∗ x(γt)− λ∗ x∗(γt)

∣∣∣∣
≤ δ + a |x(t)− x∗(t)|+ |λ− λ∗| |x(γt)|
+ λ∗|x(γt)− x∗(γt)|

then ∫ T

0

|x(t)− x∗(t)|dt ≤ δ + a

∫ T

0

|x(t)− x∗(t)|dt+ δ

γ

∫ T

0

|x(θ)|dθ

+
λ∗

γ

∫ T

0

|x(θ)− x∗(θ)|dθ

∥x− x∗∥1 ≤ δ + a ∥x− x∗∥1 +
δ

γ
r +

λ∗

γ
∥x− x∗∥1.

Hence

∥x− x∗∥1 ≤
δ + δ

γ r

1− (a + λ∗

γ )
= ϵ.

3.3. Hyers-Ulam stability.

Definition 3.5. [6, 9] Let the solution x ∈ L1(I) of (1.1) be exists, then equation
(1.1) is Hyers - Ulam stable if ∀ϵ > 0, ∃ δ(ϵ) such that for any δ−approximate so-
lution xs satisfies, ∥∥∥∥xs(t)− f

(
t, xs(t), λ xs(γt)

)∥∥∥∥
1

< δ, (3.1)

implies ∥x− xs∥1 < ϵ.

Theorem 3.6. Let the assumptions of Theorem 3.3 be satisfied, then (1.1) is Hyers
- Ulam stable.

Proof. From (3.1), we have∥∥∥∥xs(t)− f

(
t, xs(t), λ xs(γt)

)∥∥∥∥
1

< δ,
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Now,

|x(t)− xs(t)| =

∣∣∣∣f(t, x(t), λ x(γt)

)
− xs(t)

∣∣∣∣
≤

∣∣∣∣f(t, x(t), λ x(γt)

)
− f

(
t, xs(t), λ xs(γt)

)
+ xs(t)− f

(
t, xs(t), λ xs(γt)

)∣∣∣∣
then∫ T

0

|x(t)− xs(t)|dt ≤ a

∫ T

0

|x2(t)− x1(t)|dt+ λ

∫ T

0

|x2(γt)− x1(γt)|dt

+

∫ T

0

∣∣∣∣xs(t)− f

(
t, xs(t), λ xs(γt)

)∣∣∣∣dt
∥x− xs∥1 ≤ a ∥x− xs∥1 +

λ

γ
∥x− xs∥1 + δ.

Hence

∥x− xs∥1 ≤ δ

1− (a+ λ
γ )

= ϵ.

4. General discussion and examples

1- Let λ and γ = 1
q , then we have

x(t) = f

(
t, x(t),

1

q
x(

t

q
)

)
,

and

x(t) = ax(t) +
1

q
x(

t

q
).

2- Let λ = γ where γ ∈ (0, 1), then we have

x(t) = f

(
t, x(t), γ x(γ t)

)
,

and

x(t) = ax(t) + γ x(γ t).

Or

x(t) = f

(
t, x(t), λ x(λ t)

)
,

and

x(t) = ax(t) + λ x(λ t).

Example 1.
Taking into account the equation

x(t) =
t3

5
+

1

2

(
|x(t)|+ |x(0.5t)

4
|
)
, t ∈ [0, 1]. (4.1)
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Here

f

(
t, x(t), λ x(γt)

)
= t3 +

1

2

(
|x(t)|+ |x(0.5t)

4
|
)
, t ∈ [0, 1]

It is clear that our assumptions of Theorem (3.3) are satisfied,
then ∥m∥ = 1

5 , a = 1
4 , λ = 1

4 and γ = 1
2 .

and r satisfies

r =
∥m∥

1− (a+ λ
γ )

r =
4

5
.

and

(a+
λ

γ
) =

3

4
< 1.

Therefore, by applying to Theorem 3.3, the pantograph functional equation (4.1)
has a unique solution.

Example 2.
Taking into account the equation

x(t) = sint+
1

3

(
|x(t)|+ |x(0.5t)

5
|
)
, t ∈ [0, T ]. (4.2)

Here

f

(
t, x(t), λ x(γt)

)
= sint+

1

3

(
|x(t)|+ |x(0.5t)

5
|
)
, t ∈ [0, T ]

It is clear that our assumptions of Theorem (3.3) are satisfied,
then ∥m∥ = 1, a = 1

3 , λ = 1
5 and γ = 1

2 .
and r satisfies

r =
∥m∥

1− (a+ λ
γ )

r =
15

4
.

and

(a+
λ

γ
) =

11

15
< 1.

By applying to Theorem 3.3, the pantograph functional equation (4.2) has a unique
solution.

5. Conclusions

In this investigation, we have conducted a thorough examination of the panto-
graph functional equation. Firstly, we define the pantograph functional equation
(1.1) and its special case, the Ambartsumian delay equation (1.2) then, we dis-
cussed two cases for study investigated the solvability of (1.1): In the first case,
we studied the existence of unique solution x on the class C[0, T ], we employed
the Banach fixed point theorem [8]. Then, we studied the existence of solutions
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x on the class L1[0, T ], for(1.1) by applying Schauder fixed point Theorem [15].
Moreover, we have discussed the continuous dependence of the unique solution on
parameter λ and on the functions f, γ. Furthermore, we thoroughly investigated
the Hyers–Ulam stability of (1.1). Finally, we provided some illustrative examples
to demonstrate the practical application and validity of our obtained results.
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