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The use of artificial intelligence techniques for solving challenges 

has grown in popularity recently in a range of areas. Additionally, 

nanofluid is interesting for a variety of applications, especially in 

cooling and heat transfer systems, since it is used to improve the thermal 

features of fluid. In the present study, a design of a backpropagation 

learning algorithm is provided to analyze the flow properties in a 

magnetohydrodynamic mixed convective flow of Prandtl nanofluid 

(MHD-MCPNFF) with gyrotactic microorganisms over a stretchable 

surface affected by the activation energy. An ordinary differential 

equations ODEs system is obtained from a partial differential equations 

PDEs system of the original mathematical formulation by using suitable 

transformations. Applying the Lobatto IIIA technique to solve ODEs for 

various scenarios by changing the values of Prandtl fluid parameter (α), 

magnetic parameter (M), Brownian motion (Nb), thermophoresis (Nt), 

activation energy (E), chemical reaction rate (σ), and Peclet number (Pe) 

to find a set of data for the MHD-MCPNFF model. Using these 

solutions through nftool in MATLAB for designing the Levenberg–

Marquardt backpropagation learning algorithm (LMBLA). The 

effectiveness and accuracy of the designed LMBLA are verified through 

the mean squared error (MSE), error histograms, and regression 

illustration plots. The flow velocity has the opposite behavior for 

growing values for Prandtl fluid and magnetic parameters. For rising 

values of Brownian motion and thermophoresis parameters, the fluid 

temperature increases. The increasing values of the activation energy 

parameter imply the increasing concentration of nanoparticles 
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Introduction 

A fluid that includes nanoparticles, or 

particles smaller than a nanometer, is 

referred to as a nanofluid. Nanofluid is 

created by a small number of nanoparticles 

as metals or oxides pendant in traditional 

fluids such as water and oil. Nanofluids 

have superior thermal features useful in a 

wide range of heat transfer applications, 

such as coolants in many types of heat 

transfer devices, including radiators and 

electronic cooling systems. Actually, Choi 

and Eastmen (1995) presented the first 

study to use the term "nanofluid". 

Recently, many studies have investigated 

nanofluid mechanics. Al-Yaari et al., 

(2023) developed a model to evaluate the 

influence of nanofluid thermophysical 

properties in a heterogeneous porous 

media to enhance oil recovery. The impact 

of nanofluid type, nanoparticle 

concentration, and nanofluid depths on 

solar still performance was investigated by 

(Modi et al., 2023) using up-to-date 

literature. By evaluating the viscosity and 

thermal conductivity of magnet nanofluids 

(Selim et al., 2023) examined the effects 

of an external magnetic field on nanofluids. 

Hafeez et al., (2023) researched the impact 

of Cu-Al2O3 nanoparticles on the 

rheological, dynamic viscosity, and 

thermal conductivity of kerosene oil-based 

hybrid nanofluids . 

           The exploration of the dynamics of 

fluids that conduct electricity is known as 

magnetohydrodynamics (MHD). It derives 

from magneto, which means magnetic 

field, and hydro, which means water, and 

also dynamics, which means movement. 

MHD is used widely in industry and 

engineering but is largely employed in 

nanotechnology. In recent decades, many 

researchers studied the features of MHD. 

In the presence of an angled magnetization 

and viscous dissipation, (Galal et al., 

2024) explored the transfer rate of heat 

and mass for three-dimensional MHD 

nanofluid flow with thermal radiation and 

chemical reaction across the dual 

stretchable surface. Based on the MHD 

non-Newtonian (Maxwell) nanofluid flow 

with anArrhenius activation energy, 

(Ahmed et al., 2024) investigated both 

linear and nonlinear radiation patterns. 

Mahmood et al., (2023) studied the effects 

of mass suction and heat 

production/abstraction on MHD stagnation 

point flow in a nonlinearly 

shrinking/stretching sheet of a water-based 

tri-hybrid nanofluid. In the presence of 

internal heat generation and a sink, (Reddy 

et al., 2023) evaluated the effects of the 

MHD heat transfer features of an 

incompressible viscous fluid over a 

constantly stretching horizontal cylinder 

submerged in a porous medium. 
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 A theoretical structure called the Prandtl 

fluid model is employed to explain the 

dynamics of fluids with certain properties, 

especially those that have poor thermal 

conductivity and high viscosity. It takes 

the name of the German researcher and 

engineer Ludwig Prandtl who made 

important advances in fluid mechanics. 

Many engineering issues have been 

addressed using it, such as the 

investigation of heat transport close to 

solid surfaces and the aerodynamics of 

airfoils. In the flow of MHD Prandtl fluid 

along an unsteady stretched surface (Asad 

and Riaz, 2023) assessed entropy 

production using Soret and Dufour impact. 

The Prandtl-Eyring nanofluid was 

researched by (Shah et al., 2023) with base 

fluid motor oil passing across a heated 

stretching surface with the generation of 

entropy. 

The rate of chemical changes can vary 

depending on several factors, such as 

activation energy and it can be used to 

understand the entire process and the 

reaction mechanism. In 1889, the scientist 

Arrhenius first put up the concept 

''activation energy''. As the name implies, 

it is the least amount of energy desired to 

initiate a chemical process or mimic a 

reaction. Very few investigations have 

been conducted on the chemical process 

and activation energy. Bio-convected 

unstable Williamson fluid flow at a heated 

stretching surface in a porous medium was 

studied numerically by (Jabeen et al., 

2024). The research also examined the 

presence of specific viscous dissipation 

and activation energy. Waqas et al., (2023) 

investigated numerically the micropolar 

nanofluid flow over a three-dimensional 

rotating surface, including activation 

energy and heat source/sink influences 

throughout the rotating surface. Jawad et 

al., (2023) addressed the convective 

Darcy-Forchheimer flow of the Maxwell 

nanofluid via a porous stretched sheet and 

the effects of activation energy and mass 

transfer. Yasir et al. (2023) observed the 

impact of activation energy on the micro-

rotation characteristics of magnetized 

micropolar fluid flow at the stagnation 

point region on a porous shrinking surface 

harboring gyrotactic microorganisms . 

The artificial neural network (ANN) is a 

normal statistical method for analyzing the 

correlations between variables. An ANN is 

designed of continuous layers of different 

nodes that analyze input and provide 

outputs depending on activation functions 

that have been predetermined. One 

popular supervised learning technique for 

artificial neural network training is 

backpropagation. In 1974, Paul Werbos 

invented the backpropagation technique. 

Backpropagation uses the gradient descent 

technique, which minimizes network error. 

Generally, backpropagation learning 

algorithms are used for this such as the  

Levenberg–Marquardt backpropagation 
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learning algorithm LMBLA which is 

designed and used in this paper. Using 

Levenberg-Marquardt backpropagation 

neural networks, (Asghar et al., 2024) 

presented the numerical solutions to 

singular functional delay differential 

equations of third, fourth, and fifth orders, 

which occur in quantum calculus models. 

Goud et al., (2023) investigated the non-

Fourier unsteady heat transference of a 

trapezoidal porous fin by using the 

Levenberg-Marquardt technique of 

backpropagation artificial neural network 

to study the thermal variations in the fin. 

Mukdasai et al., (2022) used the 

effectiveness of stochastic numerical 

supervised neural networks to show 

numerical simulations of the novel 

fractional order Leptospirosis model. 

To the authors’ best knowledge, all 

previously published studies are limited to 

using the traditional numerical treatments 

to solve stiff nonlinear equations systems 

for flow models of nanofluidic problems. 

Consequently, this study lists the primary 

contributions to designing a 

backpropagation learning algorithm based 

on the Levenberg-Marquardt 

backpropagation learning algorithm 

LMBLA through the nftool package in 

MATLAB and it uses to find the 

numerical solution for a 

magnetohydrodynamic mixed convective 

flow of Prandtl nanofluid (MHD-

MCPNFF) with gyrotactic 

microorganisms over a stretchable surface 

affected by the activation energy. Also, 

current study used the numerical and 

graphical statistical data to verify the 

success and precision of this new 

algorithm to use it for predicting problem 

solutions in various fields.  Furthermore, 

this study provided numerical solutions of 

the MHD-MCPNFF model by LMBLA 

are used to examine the variants of flow 

dynamics such as flow velocity, fluid 

temperature, nanoparticle concentration, 

and microorganisms motile density by 

changing values of specific physical 

parameters. 

Nomenclature: 

MHD
 

Magnetohydrodynamics 

ANN
  

Artificial neural network  

LMBLA Levenberg Marquardt 

backpropagation learning algorithm 

ODE
 

Ordinary differential equations 

Tw Fixed temperature 

Cw Fixed concentration 

 

Fixed motile density 

 

kinematic viscosity 

 

Grashof number 

  
Gravitational acceleration  

 
Local Weissenberg number 

MCPNFF Mixed convective flow of 

Prandtl nanofluid 

 
Cartesian coordinates  

PDE
 

Partial differential equations 

MSE
 

Mean squared error 

 
Free motile density 

 
Free flow temperature  

 
Free flow concentration 

 
 Thermal diffusivity  

Kr

 
Chemical reaction constant 

m
 

Fitted rate constant 

S1 

C1 

Scenario 1,…, etc 

Case 1,…, etc 
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Model of the problem 

The model of the problem can be seen in 

Fig. (1). Here, let us suppose an 

incompressible MHD mixed convective flow 

of Prandtl nanofluid in the presence of 

microorganisms with the impact of activation 

energy across a stretchable surface. Consider 

in this problem the following 

 The velocity components are  and  in 

the x-direction and y-direction, 

respectively along the stretching surface. 

 , , and  represent the fluid temperature, 

nanoparticle concentration, and 

microorganism density close to the surface, 

respectively. 

 For the present model flow, the additional 

stress tensor was defined as (Kumar et al., 

2017). 

 

Where  represent the material variable 

of the Prandtl fluid model.  

 

Fig. (1): The problem geometry 

The governing PDEs for the suggested flow 

model are (Zafar et al., 2023). 

The boundary conditions are 

where  is the fluid electrical conductivity, 

 is the fluid thermal diffusivity,  is the 

fluid kinematic viscosity,  is the 

activation energy, is the particle heat 

capacity to the fluid heat capacity, , , 

and  are the thermophoretic, Brownian 

motion, and microorganism diffusion 

parameters, respectively. 

Using the dimensionless variables 

This gives the following ODEs 

 
(9) 

 (10) 

 
(11) 

 (12) 

 

 

(1) 

 

(2) 

 
(3) 

 
(4) 

 
(5) 

 at 

 
(6) 

 as . (7) 

. 

(8) 
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where  is the Prandtl fluid 

parameter,  is the elastic 

parameter,  is the magnetic 

parameter,  is the mixed 

convective parameter,  is 

the  buoyancy ratio parameter, 

 is the 

bioconvection Rayleigh number,  

is the Prandtl number,  is 

Brownian motion parameter,   

is thermophoresis parameter,  is 

Schmidt number,  is chemical 

reaction parameter  is 

temperature ratio,  is fitted rate 

parameter which it lies in the range −1 < 

m < 1,  is activation energy 

constant,  is the bioconvection 

Lewis number,  is the Peclet 

number, and   is the motile 

microbes parameter.  

Boundary conditions as  

 

at  

 as 

 

(13) 

 

(14) 

Additionally, the physical quantities are 

(Bafakech et al., 2022) 

where  is the skin friction coefficient, 

 is shear stress,  is the local Nusselt 

number,  is the surface heat flux,  is 

the local Sherwood number,  is the 

surface mass flux,  is the local density 

of microorganism, and  is the motile 

microorganism flux. Therefore 

 

(16) 

With these quantities, and the provided 

similarity transformation, 

 

 

(17) 

Here,  represents the local 

Reynolds number. 

Methodology explanation 

The backpropagation learning of 

ANN is regarded as a function 

optimization problem, in which the aim is 

to find the ideal network parameters 

(weights and biases) to minimize neural 

network error. The Levenberg-Marquardt 

backpropagation learning algorithm 

LMBLA is one of several functional 

optimization techniques that can be 

directly used in network learning. To 

design this algorithm, there are two steps: 

the first step is to find the numerical 

solutions used to create a dataset for 

 

 

 

(15) 
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LMBLA and the other step is the process 

of applying this algorithm and verifying its 

accuracy and effectiveness. 

The LMBLA data set is the numerical 

solutions of the dimensionless flow model 

MHD-MCPNFF represented by ODEs in 

Eqs. (8)-(12) with Eqs. (13)-(14). Using 

the Lobatto IIIA approach to find these 

solutions with the help of MATLAB 

software. The numerical solutions are 

determined by input values between 0 and 

6, with a 0.001 step size for several 

scenarios S1-S7 by the changes of 

physical parameters α, M, Nb, Nt, E, σ, and 

Pe, each with four cases C1-C4 of MHD-

MCPNFF, as explained in Table (1). 

The recommended LMBLA methodology 

is designed to find the numerical 

treatments of the MHD-MCPNFF model 

for various scenarios using the command 

"nftool" through the MATLAB program in 

the neural network toolbox. For 6001 

input points, the data set can be divided as 

follows: 

 75% of the data set is employed for the 

training process. 

 15% of the data set is used in the testing 

process. 

 15% of the data set is utilized for the 

validation process. 

Additionally, the number of neurons is 

changed to 20 under the required level of 

accuracy for computing results.  

Figure 2 indicates the architecture of the 

recommended network.  

Table (1): Details of scenarios and cases for 

MHD-MCPNFF 

 

 

Fig. (2): The architecture of the recommended 

network 

 

 

 

Scenarios 

 

Cases 

Physical Quantities  

      
Pe 

1 1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 

2 0.2 0.1 0.1 0.1 0.1 0.1 1.0 

3 0.3 0.1 0.1 0.1 0.1 0.1 1.0 

4 0.4 0.1 0.1 0.1 0.1 0.1 1.0 

2 1 0.1 0.1 0.1 0.1 0.1 0.5 1.0 

2 0.1 0.2 0.1 0.1 0.1 0.5 1.0 

3 0.1 0.3 0.1 0.1 0.1 0.5 1.0 

4 0.1 0.4 0.1 0.1 0.1 0.5 1.0 

3 1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 

2 0.1 0.1 0.3 0.1 0.1 0.1 1.0 

3 0.1 0.1 0.5 0.1 0.1 0.1 1.0 

4 0.1 0.1 0.7 0.1 0.1 0.1 1.0 

4 1 0.1 0.1 1.0 0.1 0.1 0.1 1.0 

2 0.1 0.1 1.0 0.3 0.1 0.1 1.0 

3 0.1 0.1 1.0 0.5 0.1 0.1 1.0 

4 0.1 0.1 1.0 0.7 0.1 0.1 1.0 

5 1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 

2 0.1 0.1 0.1 0.1 0.5 0.1 1.0 

3 0.1 0.1 0.1 0.1 1.0 0.1 1.0 

4 0.1 0.1 0.1 0.1 1.5 0.1 1.0 

6 1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 

2 0.1 0.1 0.1 0.1 0.1 0.2 1.0 

3 0.1 0.1 0.1 0.1 0.1 0.3 1.0 

4 0.1 0.1 0.1 0.1 0.1 0.4 1.0 

7 1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 

2 0.1 0.1 0.1 0.1 0.1 0.1 1.2 

3 0.1 0.1 0.1 0.1 0.1 0.1 1.4 

4 0.1 0.1 0.1 0.1 0.1 0.1 1.6 
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Results and discussion 

The effectiveness and accuracy 

evaluation of LMBLA processes for seven 

scenarios with varying cases in MHD-

MCPNFF through the comparison 

between target data (solutions by Lobatto 

IIIA) and output data (solutions by 

LMBLA), is illustrated graphically in 

Figs. 3, 4, 5, 6, and 7.  

As shown in Table (2), the analysis of all 

numerical data including MSE for 

training, testing and validation, 

performance, gradient, mu, epochs, and 

time for each of the four cases of the seven 

scenarios. Table (2) indicates that the 

MSE performance of the LMBLA 

processes is in the range (10
-10

 to 10
-11

). 

These numerical results demonstrate the 

best performance of LMBLA in the MHD-

MCPNFF solution. 

Table (2): Total numerical analysis of LMBLA for MHD-MCPNFF 

  

 

Scenario 

 

Case 

MSE Performance Mu Gradient Epochs Time 

(S) Training Validation Testing 

 

S1 

C1 4.36E-10 4.23E-10 4.15E-10 4.36E-10 1.00E-10 9.98E-08 123 22 

C2 9.33E-10 1.00E-09 9.14E-10 9.33E-10 1.00E-09 9.98E-08 431 36 

C3 1.79E-10 1.74E-10 1.87E-10 1.79E-10 1.00E-10 9.89E-08 135 11 

 C4 1.87E-10 1.90E-10 1.85E-10 1.87E-10 1.00E-10 9.93E-08 132 11 

 

S2 

C1 7.47E-11 6.73E-11 7.92E-11 7.47E-11 1.00E-09 1.68E-08 573 50 

C2 8.52E-11 8.55E-11 8.35E-11 8.52E-11 1.00E-10 9.99E-08 290 23 

C3 1.56E-10 1.61E-10 1.61E-10 1.56E-10 1.00E-09 4.26E-08 141 11 

 C4 5.35E-10 4.98E-10 5.49E-10 5.35E-10 1.00E-10 9.85E-08 116 9 

 

S3 

C1 3.49E-10 3.26E-10 3.54E-10 3.49E-10 1.00E-10 9.91E-08 131 10 

C2 4.28E-10 4.47E-10 4.43E-10 4.28E-10 1.00E-10 9.79E-08 139 11 

C3 1.91E-11 1.94E-11 1.83E-11 1.91E-11 1.00E-10 9.91E-08 497 43 

 C4 3.40E-11 3.44E-11 3.35E-11 3.40E-11 1.00E-10 9.95E-08 540 45 

 

S4 

C1 4.45E-10 4.95E-10 4.44E-10 4.45E-10 1.00E-10 9.99E-08 126 10 

C2 1.56E-10 1.59E-10 1.57E-10 1.56E-10 1.00E-09 9.97E-08 664 57 

C3 1.87E-10 1.91E-10 1.97E-10 1.87E-10 1.00E-10 9.85E-08 210 17 

 C4 4.96E-11 5.16E-11 4.91E-11 4.96E-11 1.00E-10 9.94E-08 371 31 

 

S5 

C1 1.23E-11 1.26E-11 1.28E-11 1.23E-11 1.00E-10 9.93E-08 569 50 

C2 4.07E-11 4.08E-11 4.15E-11 4.07E-11 1.00E-10 9.99E-08 401 32 

C3 6.50E-11 6.54E-11 6.68E-11 6.50E-11 1.00E-10 1.00E-07 271 22 

 C4 5.25E-11 5.82E-11 5.36E-11 5.25E-11 1.00E-10 9.96E-08 347 28 

 

S6 

C1 4.36E-10 4.23E-10 4.15E-10 4.36E-10 1.00E-10 9.98E-08 123 9 

C2 4.78E-10 4.42E-10 4.61E-10 4.78E-10 1.00E-10 9.94E-08 123 10 

C3 2.49E-10 2.61E-10 2.61E-10 2.49E-10 1.00E-09 9.99E-08 482 41 

 C4 4.47E-10 4.10E-10 4.66E-10 4.47E-10 1.00E-09 9.99E-08 501 44 

 

S7 

C1 4.46E-10 4.64E-10 4.48E-10 4.46E-10 1.00E-10 9.72E-08 125 13 

C2 1.76E-10 1.79E-10 2.02E-10 1.76E-10 1.00E-09 4.29E-08 159 17 

C3 1.82E-11 1.82E-11 1.74E-11 1.82E-11 1.00E-10 9.96E-08 456 53 

 C4 5.82E-11 6.00E-11 5.85E-11 5.82E-11 1.00E-10 9.99E-08 426 51 
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In all seven scenarios with different cases 

of MHD-MCPNFF, the mean square error 

(MSE) between target data and output data 

for training, testing and validation 

processes is displayed in subfigures 3a-3g. 

The optimal precision and performance 

are approximately (10
−10

 to 10
−11

) at 123, 

290, 540, 371, 401, 123, and 456 epochs, 

respectively.  Furthermore, the specific 

values of gradient and Mu appear to 

correspond to the step size of the back 

propagation of different cases for seven 

scenarios in MHD-MCPNFF, which are 

approximately (9.98×10
-8

, 9.99×10
−8

, 

9.95×10
−8

, 9.99×10
−8

, 9.99×10
−8

, 

9.98×10
−8

 and 9.99×10
−8

) and (10
−10

), as 

shown in subfigures 4a-

4g. These plots demonstrate the convergen

ce of LMBLA for every scenario in MHD-

MCPNFF. The results of error histograms, 

which further investigate the patterns of 

error for each output and target data, are 

displayed in subfigures 5a–5g for MHD-

MCPNFF. For each of the seven scenarios 

in a variety of cases, the zero axes and 

error box are approximately (−5.8×10
−6

, 

−6.4×10
−7

, −3.4×10
−7

, −2.2×10
−6

, 2×10
−7

, 

−4.8×10
−6

 and 4.68×10
−6

). The 

effectiveness of LMBLA for MHD-

MCPNFF is illustrated in Figure 6 by the 

regression study and correlation 

analysis of the errors between the target 

and output data, which is proven by a 

correlation value R = 1 in the testing, 

validation, and training processes. Figure 

(7) depicts the accuracy of the LMBLA-

based outputs generated, which are further 

validated by error graphs and target results 

obtained from the Lobatto IIIA numerical 

solver for all scenarios of MHD-

MCPNFF. For various cases of the MHD-

MCPNFF system, the largest errors for 

training, testing, and validation data of 

the LMBLA are around 5×10
-5

, 2×10
-5

, 

5×10
-6

, 2×10
-5

, 1×10
-5

, 5×10
-5

 and 2×10
-5

.  

 

 

 

Fig. (3a): S1-C1: MSE outcomes  Fig. (3b): S2-C2: MSE outcomes 



 
Fig. (3c): S3-C4: MSE outcomes 

 

Fig. (3d): S4-C4: MSE outcomes 

 

 
Fig. (3f):S6-C1: MSE outcomes 

 
Fig. (3g): S7-C3: MSE outcomes 

              Fig. (3e): S5-C2: MSE outcomes        

Fig. (3): LMBLA performance outcomes for various cases of MHD-MCPNFF 
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Fig. (4a): S1-C1: Transition state study 

 

Fig. (4b): S2-C2: Transition state study 

 

Fig. (4c): Transition state study 

Fig. (4d): S4-C1: Transition state study 

 

Fig. (4e): S5-C2: Transition state study 

 

Fig. (4f): S6-C1: Transition state study 
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           Fig. (4g): S7-C4: Transition state study 

Fig. (4): LMBLA transition state study for various cases of MHD-MCPNFF 

 

Fig. (5a): S1-C4: Error histogram representation 

 

Fig. (5b): S2-C3: Error histogram representation 

 

  Fig. (5c): S3-C3: Error histogram representation 

 

Fig. (5d): S4-C4: Error histogram representation 

 



 

198  Alshehery et al., (2024) 

 

 

Fig. (5e): S5-C1: Error histogram representation 

 

Fig. (5f): S6-C4: Error histogram representation 

 

Fig. (5g): S7-C2: Error histogram representation 

Fig. (5): LMBLA error histogram representation for various cases of MHD-MCPNFF 

 

Fig. (6a): S1-C1: Regression illustration 

 
Fig. (6b): S2-C2: Regression illustration 
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Fig. (6c): S3-C3: Regression illustration 

 
Fig. (6d): S4-C4: Regression illustration 

 
Fig. (6e): S5-C1: Regression illustration 

 
Fig. (6f): S6-C2: Regression illustration 

 
Fig. (6g): S7-C3: Regression illustration

 

Fig. (6): LMBLA regression illustration for various cases of MHD-MCPNFF 
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Fig. (7a): S1-C2: Fitting description 

 
Fig. (7b): S2-C3: Fitting description 

 
Fig. (7c): S3-C3: Fitting description 

 
Fig. (7d): S4-C2: Fitting description 

 
Fig. (7e): S5-C1: Fitting description 

 
Fig. (7f): S6-C3: Fitting description 

 
Fig. (7g): S7-C2: Fitting description 

 

Fig. (7): LMBLA fitting description for various cases of MHD-MCPNFF 
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Figures 8-11 display the numerical 

solutions of the MHD-MCPNFF model by 

LMBLA which represent the effects of the 

different values of physical parameters 

such as the Prandtl fluid ( ), magnetic 

parameter ( ), Brownian motion ( ), 

thermophoresis ( ), activation energy ( ), 

the reaction rate ( ), and Peclet number 

( ) on the behavior changes of the flow 

velocity , temperature distribution , 

nanoparticle concentration  , and 

microorganisms motile density . Sub-

figures 8a-8b are illustrations of the effects 

of the Prandtl fluid and magnetic 

parameters on the flow velocity, which is 

the increasing value of the Prandtl fluid 

parameter causes the rising of the flow 

velocity while the flow velocity is 

decreased for the growing rates of magnetic 

parameter. Physically, the increase in 

Prandtl fluid parameter values implies 

reduced fluid viscosity and that leads to the 

flow velocity being raised. Also, the rising 

of a magnetic parameter generates resistive 

force and this causes the decreasing flow 

velocity. As shown in Figure 9, the fluid 

temperature rises with larger quantities 

of thermophoresis and Brownian motion. 

The physical meaning of that is 

the enhanced Brownian motion and 

thermophoresis characteristics cause the 

increasing internal motion energy of the 

nanoparticles and this implies increasing 

heat transmission and temperature 

distribution. Figure 10 demonstrates that 

the nanoparticle concentration has the 

opposite behavior for growing values of 

activation energy parameter and chemical 

reaction rate. In physics, higher values of 

chemical reaction rate are associated with 

more destructive chemical reactions that 

effectively eliminate fluid species. 

Furthermore, the increased activation 

energy parameter deprecates the modified 

Arrhenius function that supports the 

generated chemical process. The growth of 

the Peclet number reasons the enhanced 

diffusivity for microorganisms and this 

implies that the motile density is decreasing, 

as plotted in Fig. (11). 
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Fig. (8a): Variants of  for  

 
Fig. (8b): Variants of for  

 

Fig. (8): The variants of flow velocity for the Prandtl fluid parameter and magnetic parameter 

 
Fig. (9a):  Variants of for  

 
Fig. (9b): Variants of for  

Fig. (9): Variants of temperature distribution for Brownian motion and thermophoresis 

 
Fig. (10a): Variants of for  

 

Fig. (10b): Variants of for  

 

Fig. (10): Variants of nanoparticle concentration for activation energy parameter and chemical 

reaction rate 
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Fig. (11): Variants of microorganisms motile 

density for Peclet number 

Conclusion and Recommendations 

       In this work, the designed Levenberg-

Marquardt backpropagation learning 

algorithm LMBLA was used for studying 

the flow features of the 

magnetohydrodynamic mixed convective 

flow of Prandtl nanofluid MHD-MCPNFF 

with gyrotactic microorganisms influenced 

by activation energy across a stretchable 

surface. The non-linear partial differential 

equations PDEs system that represents the 

MHD-MCPNFF was transmuted into a 

dimensionless non-linear ordinary 

differential equations ODEs system. The 

Lobato IIIA approach was employed to 

construct the data set for designing 

LMBLA by solving ODEs for different 

physical parameters. The suggested 

LMBLA with 20 hidden neurons is created 

using 75%, 15%, and 15% of the data set 

chosen for training, testing, and validation 

steps. 

The basic outcomes of this study are 

 The convergence of the designed 

LMBLA for MHD-MCPNFF is shown 

through the gradient outcomes and Mu 

variable values of 10
-8

 to 10
-10

.  

 The accuracy of the proposed LMBLA 

for MHD-MCPNFF is represented 

through error analysis plots such as 

MSE, error histograms, and fitting 

illustrations, which the errors between 

10
-6

 to 10
-11

. 

 The flow velocity is rising for large 

values of the Prandtl fluid parameter 

while it decreases with the increasing 

magnetic parameter rate. 

 For growing values of Brownian 

motion and thermophoresis, the fluid 

temperature is rising. 

 The nanoparticle concentration has 

opposite behavior for high rates of 

activation energy and chemical reaction 

rate. 

 The rising value for the Peclet number 

leads to a decrease in the motile 

density. 

Finally, Since the designed LMBLA 

proved effective and accurate in this study, 

It can be used for many problems of the 

nanofluid influenced by the activation 

energy (Jawad et., 2023; Taj and 

Salahuddin, 2023) in future work.   
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الهيذروديٌاهيكي الوغٌاطيسي  تذفق الحول الحراريتصوين خىارزهيت تعلن الاًتشارالعكسي  ل

 هع طاقت التٌشيط الوختلط لسىائل براًذتل الٌاًىيت

إيواى فايس الشهري
1
د/ ايواى سالن العيذروش.ا ، 

1
د/ راًيا الحربي.ا ، 

1
د/ هحوذ اسف زاهىر راجا.ا ، 

2 

1
 الوولكت العربيت السعىديت -جذة -جاهعت الولك عبذالعسيس -كليت العلىم -قسن الرياضياث 
2

 تايىاى -يىًليي -دوليى -جاهعت يىًليي الىطٌيت للعلىم والتكٌىلىجيا -هركس أبحاث تكٌىلىجيا الوستقبل 
 

اسخخذاً حقنٍاث اىزماء الاططناعً فً حو اىخحذٌاث قذ صادث شيشحو ٍؤخشًا فً ٍجٌَعت ٍخنٌعت ٍن 

خنٌعت ٍن اىخطبٍقاث، خاطت فً عخبش اىنانٌفيٌٌذ ٍثٍش ىلاىخَاً فً ٍجٌَعت ٌٍاىَجالاث. بالإضافت إىى رىل، 

أنظَت اىخبشٌذ ًنقو اىحشاسة، حٍث ٌخٌ اسخخذاٍو ىخحسٍن اىخظائض اىحشاسٌت ىيسائو. فً ىزه اىٌسقت اىبحثٍت، 

ٌخٌ حقذٌٌ حظٌٍَ ىخٌاسصٍٍت حعيٌ الانخشاس اىعنسً ىخحيٍو خٌاص اىخذفق عنذ حذفق اىحَو اىحشاسي 

ئو بشانذحو اىنانٌٌت ٍع اىنائناث اىحٍت اىذقٍقت اىٍَنشًسنٌبٍت عيى اىيٍذسًدٌناٍٍنً اىَغناطٍسً اىَخخيط ىسٌا

ٌخٌ اىحظٌه عيى نظاً ٍعادلاث حفاضيٍت عادٌت ٍن نظاً ٍعادلاث  سطح ٍطاطً ٍخأثش بطاقت اىخنشٍط.

ىحو  IIIAحفاضيٍت جضئٍت  ىيظٍغت اىشٌاضٍت الأطيٍت باسخخذاً ححٌٌلاث ٍناسبت. ٌخٌ حطبٍق حقنٍت ىٌباحٌ 

اىَغناطٍسٍت ٍعاٍو (، αىسٍناسٌٌىاث ٍخخيفت ٍن خلاه حغٍٍش قٌٍ سائو بشانذىج ) ث اىخفاضيٍت اىعادٌتاىَعادلا

(M( حشمت بشاًنٍت ،)Nb( اىحشمت اىحشاسٌت ،)Nt( طاقت اىخنشٍط ،)E( ٍعذه سدة اىفعو اىنٍٍَائٍت ،)σ ،)

خخذاً ىزه اىحيٌه ٍن خلاه أداة . باساىخذفق( ىيعثٌس عيى ٍجٌَعت ٍن اىبٍاناث ىنٌَرج Peًٍعاٍو بٍنيٍج )

nftool  ًٌخٌ اىخحقق ٍن فعاىٍت ًدقت  ٍاسمٌاسدث.-ىخظٌٍَ خٌاسصٍٍت اىخعيٌ اىعنسً ىيٌفنبشغ ٍاحلابف

اىخطأ اىَشبع ًحٌصٌع الأخطاء ٍاسمٌاسدث اىَظََت ٍن خلاه ٍخٌسط -خٌاسصٍٍت اىخعيٌ اىعنسً ىيٌفنبشغ

اىخذفق بسيٌك ٍعامس ىيقٌٍ اىَخضاٌذة ىَعاٍلاث سائو بشانذحو ًسسٌٍاث الانحذاس اىخٌضٍحٍت. حخَخع سشعت 

ًاىَغناطٍسٍت. ٍن أجو صٌادة قٌٍ حشمت بشاًنٍت ًحشمت اىخسخٍن اىحشاسي، حضداد دسجت حشاسة اىسائو. حشٍش 

 اىقٌٍ اىَخضاٌذة ىَعاٍو طاقت اىخنشٍط إىى صٌادة حشمٍض اىجسٍَاث اىنانٌٌت.


