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We investigated systems of three non-identical lasers coupled to each other in a ring 

topology. We introduced the coupling mechanism between the two lasers by direct and 

indirect coupling methods. In the weak coupling limit, a stable phase lock between lasers 

occurred at a critical coupling value. The analytic method revealed that the coupled lasers 

are described by a model which showed an amplitude and a phase dependence, for the 

first method of coupling. Also, the methodical investigations indicated that the coupled 

lasers in the second method of coupling are depicted by a coupled phase model only. 

Synchronization appeared in both methods at critical coupling constants. However, the 

synchronization mechanisms in the direct and indirect coupled lasers are interpreted in 

different ways. The unison behavior appeared at a small coupling constant for the indirect 

coupling technique in comparison to the case having the same conditions of the direct 

coupling technique. 
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1. Introduction 

Fathoming the synchronization phenomenon in many systems in nature is a 

challenging problem. It plays a crucial role in physics, chemistry, engineering, biology 

and social sciences [1-9]. Specifically, in physics of optical systems, coherent beam 

combining of several non-identical lasers can result in high power levels and better beam 

quality [6]. This process can be obtained by introducing a suitable coupling between the 

small-detuned lasers to synchronize their frequencies to a common value. A phase lock 

between two lasers of dissimilar frequencies exists by coupling them through a partially 

transmitting window, at a critical coupling [10]. By increasing the number of coupled 

lasers, synchronization of an array of class B lasers coupled by a local method in a ring 

and in a global coupled technique, are described by a local and global Kuramoto model 

[11], respectively. Recently, The Kuramoto model provides a successful explanation of 

coupled lasers [11-14].  
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A quantitative analysis of reaching the common frequency value requires starting from 

three lasers because this configuration is a borderline between the local and global 

coupled lasers [17, 18]. Upon understanding the synchronization of three coupled lasers, 

we can extend the method later to a larger number of lasers than three. Thus, we shall 

demonstrate the mechanisms of synchronization in both connectivity methods. Direct 

coupling between two lasers is achieved by placing the resonators in proximity to each 

other in a ring topology [14]. On the other hand, the indirect coupling is attained by 

inserting a passive cavity between two lasers to make them coupled in a ring [13, 14]. 

The two methods show different dynamical features to observe the frequency 

synchronization at a critical coupling. 

In the current work, we introduce the problem of coupled three laser resonators in a 

ring topology by two methods: Direct and indirect couplings. We study these systems 

analytically and we show that in the case of the direct coupling, the three lasers are 

represented by a model (phase and amplitude dependence) where synchronization 

appears as frequencies dependence without any general phase lock solution. Also, the 

common frequency is not given by a unique expression. In the indirect coupling case, we 

find the connected lasers are expressed by a phase model only. It is possible to find 

analytic expressions for the critical coupling constant (at a phase lock). Furthermore, 

analytic relations are found for the phase differences between each two lasers. 

This work is organized as follows: in section. 2, we investigate the system of three 

directly coupled lasers in a ring. In section. 3, we investigate the system of three lasers 

coupled to each other in a ring by an indirect interaction. A conclusion is given in 

sections. 4 and 5. 

2. Three directly coupled lasers in a ring. 

The laser (classes A and B) is a nonlinear dynamical system that can be described as a 

limit cycle oscillator [11-14]. The laser has three degrees of freedom, the electric field 

amplitude, the atomic inversion density, and atomic polarization. For class B lasers, the 

polarization degree of freedom relaxes faster than the other two degrees of freedom. In 

addition, the dynamics of the atomic inversion density becomes constant depending on 

the threshold [14-16]. In class A lasers, the atomic inversion density as well as the atomic 

polarization relax faster than the electric field [11-16]. Therefore, for both classes (A and 

B), the time evolution of polarization and the time evolution of the atomic inversion 

density are eliminated. Henceforward, for classes A and B, the dynamics of the electric 

field is described by a Stuart-Landau oscillator [13, 19]. Consequently, the field 

amplitude dynamics of the laser is written as [13, 19]:  

  

  
      

 

 
(   )  

 

 
     

    (1) 

In equation (1),   is the electric field amplitude, the laser field has frequency   

and a photon decay rate  . The spontaneous emission rate is  . The pump power is P and 

the threshold pump value is Pth=    . The parameter   is the pump parameter with 

  Pth/P. The. The limit cycle solution of equation (1) is ((   )  )    [13, 19].  
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Figure 1.a shows the direct three coupled lasers. The coupling allows photons to 

be exchanged between adjacent oscillators bidirectionally. For the three coupled lasers in 

a ring, as shown in figure 1.a, each laser amplitude is    with a decay rate   and pump 

parameter  . The three lasers L1, L2 and L3 are identical except for their frequencies.  

             
Figure 1. Schematic diagram of three coupled lasers in a ring topology. The arrows 

indicate directions of exchanging photons. (a) The lasers L1, L2 and L3 are coupled by 

placing the three cavities in proximity. (b) The indirect coupling is established by placing 

three cold cavities C1, C2 and C3 between each two adjacent lasers.  

The governing dynamics can be written as [13, 19]:  
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(         )  (2) 

for j =1, 2, 3. The periodic boundary conditions demand i     . In equation (2),   is 

the coupling constant. Utilize      ( ) 
    ( ) , we write the amplitude and phase 

evolution according to system (2), for j =1, 2, 3, as: 
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where    and    are a real amplitude and a phase of each laser, for j =1, 2, 3. The 

coupling constant between two nearest neighbor lasers is  . Thus, the direct coupling 

indicates dependence of the time evolution of amplitudes and phases on both phases and 

amplitudes    and   . Relations (3) indicate that upon increasing the value of  , the lasers 

can synchronize and have a common frequency at a critical coupling   . Numerical 

studies of equations (2.a and 3.b) reveal this fact and the results are shown in both 

diagrams of figure 2. We integrate (2.a and 3.b) using a time step         . In figure 

2.a we plot, at   , the amplitudes and the time evolution of the amplitude versus time, 

where   represents the sum of time steps    and the time is   rescaled by a decay rate   

of lasers. In figure 2.b we show the synchronization of the detuned lasers to a common 

value   when we plot the time average of the time evolution of phases versus the 

coupling constant. Figure 2.a confirms that the time evolution of the amplitudes and the 

amplitudes become time-independent at  c. Besides, at  c, it is not possible for the 

amplitudes to have the same value. Therefore, for the direct coupling method, it is not 
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possible to express the system by the phase model only although at  c the phases are time 

 nd p nd nt. Thus, th  phas s’ t m   volut on  n (3.b) shows that the lasers can 

synchronize to a common frequency     , where    (            )  , and 

the phases are locked at a critical coupling value  c see figure 2.b. This can be verified by 

adding the three phase equations in a relation (3.b), the cosinusoidal coupling functions 

(even functions) cannot cancel each other, which lead to 
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)    (       ) (

    

  
 

  

    
)   (       ) (

    

    
 
    

    
)   (         ))

 
   

where, the second term in the previous relation cannot reach zero. Thus, we call this case 

of a direct coupling (relations (3)) a coupled phase model as amplitude-phase model. 

  
Figure 2. (a)The amplitude dissimilarity of the three directly coupled lasers at the critical 

coupling constant. Each amplitude becomes time independent at  c. (b) Bifurcation 

diagram for the average instantaneous phases plotted against the coupling constant    In 

this figure, we used  ma           m               and  m n             with 

      s
-1         s-1

 and        

3. Three indirectly coupled lasers in a ring. 

The indirect coupling is performed by placing three cold cavities adjacently between 

each two lasers, see figure 1. b. Figure 1.b shows the indirectly three coupled lasers L1, 

L2 and L3 were each two lasers exchange photons through common cavities C1, C2 and 

C3. The coupling allowing photons to be exchanged between adjacent oscillators 

bidirectional. The coupled field’ amplitudes expressions for the three lasers are written as 

[12-14, 19] 
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(       )  (4) 

where i = 1, 2, 3, and j = 1, 2, 3. The periodic boundary conditions require i      and 

j     . The constant g depends on the coupling strength between the lasers. For the j
th

 

cold cavity, the complex intracavity field amplitude is   . The intracavity field of the cold 

cavity is expressed by the equation [13,14]: 
   

  
        

 

 
   

  

 
(       )                 (5) 

where   is the photon decay rate in each cold cavity.  
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We choose each laser cavity parameters identical. The natural frequencies of the 

lasers are detuned by a very small mismatch. Employ      ( ) 
    ( ), for j = 1, 2, 3, 

and      ( ) 
    ( ) for i =1, 2, 3, with           . Consequently, we write first the 

equation (5) in the polar forms, for the passive cavities, as:  

  
 

  
  

 
   

 

 
(                         )         (6.a) 

and 
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          )            (6.b) 

The nature of the passive cavities (do not contain amplifying media) does not allow 

  
 

    and   
 

    to fluctuate largely around their zero as well as       

        . Therefore, we expect, at a certain coupling constant (   
 ), to find the 

amplitudes and phases of cold cavities are time independent. As a result, at values of   < 

  
  we find  

 

    and  
 

     and at   
  we have  

 

    and  
 

    . Also, we obtain 

expressions for the amplitudes’ time evolution of the lasers and phases, for i =1, 2, 3, by 

relating the index i to the index j, as:  
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(                         )         (7.a) 

and 

  
 

     
 

 
(
  

  
         

    

  
          )                         (7.b) 

where the over dot indicates the time evolution. Equations (6 and 7) show, in the case of 

the indirect coupling, the time evolution of amplitudes and phases depend on amplitudes 

and coupled phase quantities.  
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Figure 3. (a) The time independence of the three amplitudes of the lasers is shown at the 

critical coupling constant. The rest three plots are dedicated to the bifurcation diagrams 

for the lasers’ instantaneous phases (averaged over time) versus the coupling constant. 

The data in this figure is obtained for          ,      ,         . (b) 

*            +  *            + . (c) *            +  *            + . (d) 

*            +  *            +. All frequencies are measured in      . 

Manipulate the above particulars,  
 

    and  
 

    , into equations (6.a and 6.b) we 

have    (     ) (                      )  and                          . 

Correspondingly, we reduce the four relations of (6 and 7) to the following expressions 
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(   )  

 

 
   

 )    
   

  
(       (       )         (       )) 

 (8.a) 

and 

  
 

     
   

  
(
    

  
   (       )  

    

  
   (       ))           (8.b) 

In the weak coupling limit, by increasing the coupling constant   to a critical value   
 , 

a phase lock exists between the lasers and the frequency synchronization occurs. The 

numerical investigations of equations (7 and 8) indicate that at the critical coupling   
 , 

each  
 

   , for j = 1, 2, 3, as well as the lasers’ amplitudes become equal and time 

independent. Figure 3.a shows these previously noticed observations, where we plot the 

amplitudes and their time derivatives versus time at different values of  . Similarly, the 

numerical studies of  
 

  show that the time evolution of the lasers’ phases at   
  

demonstrating that all  
 

    , for j = 1, 2, 3. According to plots (b – d) of figure (3), it 

noticed that there is an appeared synchronization at gc, however the system is not stable 

at gc. At   
 , all the three quantities  

 

  become time independent. Even if we start using 

equations (6 and 7) to perform the numerical examinations of the indirect coupled laser, 

we shall end up finding the same results when we employ relations of equations (8).  

In the weak coupling regime, the detuning between the laser frequencies is small and 

the photon lifetime in the cold cavity is not larger than the laser photon lifetime. For large 

   , the dominant terms on the r. h. s of any of the expressions (8.a) are the first terms. 

Henceforth, we safely set    √(   )  . Consequently, the remaining dynamics of 
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the indirectly coupled lasers will be the phase dynamics and the time evolution of the 

phases are controlled by the phase differences quantities. Accordingly, equation (8.b) 

becomes 

  
 

         
   

  
(   (       )     (         ))   

  
 

     
   

  
(   (       )     (       ))                       (9) 

  
 

         
   

  
(   (         )     (       ))   

which is the Kuramoto-like model [12, 13, 17, 18]. We can solve the Kuramoto-like 

model similar to the work in [17]. We find, for                          , 

that the phase difference at   
  is              . Thus, we find an analytic 

expression for   
  as 

   
   √

 

 
((       )  √ (       )(     ))            (10) 

Use this above expression, we obtain analytic forms for the phase differences between 

each two lasers: 

              
  (

(     ) √ √ ((       )(     ))

(       ) √ √ ((       )(     ))
)            (11.a) 

            
  (

(       ) √ √ ((       )(     ))

(       ) √ √ ((       )(     ))
)              (11.b) 

For the case of                           we find the phase difference is 

             , and the critical coupling constant,   
 , takes the form: 

   
   √

 

 
((       )  √ (     )(       ))           (12) 

Therefore, the phase differences between each two lasers obey the following relations: 

            
  (

(       ) √ √ ((     )(       ))

(       ) √ √ ((     )(       ))
)               (13.a) 

              
  (

(     ) √ √ ((     )(       ))

(       ) √ √ ((     )(       ))
)              (13.b) 

For a case when      , as shown in figure 3.d, the relations (10) and (12) give the 

value of the critical coupling   
 . In this case, the phase differences between each two 

lasers are given by the relations (11) and (13) and take the values:            
         , while             . 

Conclusion: 

In this work, we investigate systems of three lasers coupled to each other by two 

different connectivity methods. The direct coupling system exhibits a frequency 
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synchrony which spontaneously emerges when the coupling constant reaches a critical 

value. The direct coupling system reveals amplitudes and phases dependences. The 

indirect coupled case signifies a phase dependence only. The system in the second model 

is expressed by a Kuramoto-like model.  

It is clear from the equation (3), the direct coupling system exhibits a frequency 

synchrony which spontaneously emerges when the coupling constant reaches a critical 

value according to amplitude and phase dependences. The unison behaviour appears upon 

repulsive interactions between lasers. This case is very interesting to be investigated in a 

more details. Although, the indirect coupling system appears a more complicated in 

comparison to the direct coupling case, we find a synchronous state at a critical coupling. 

Correspondingly, the system is described by a phase model only as given by equations (7 

and 8). This description proves the fact that the system dynamics is explained in terms of 

the phases of each laser. We show how the system can be described by the Kuramoto-like 

model.  

Systems (3) and (8) have Hamiltonian dynamics. It is possible to examine in more 

details the two systems of direct and indirect coupling starting from effective 

Hamiltonians [20 - 26]. These studies will illustrate quantitatively how the potential 

energy due to coupling leading to the dependence of the synchronization, in first model, 

on the amplitudes and phases. Also, we shall have more evidence, in correspondence to 

the second model, on how the synchrony appears only due to forces that come because of 

the additional potential energy due to coupling. 

 

Declaration of Conflicting Interests 

The author(s) declared no potential conflicts of interest concerning the research, 

authorship, and/or publication of this article. 

References: 

1. S. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, 

Biology, Chemistry, and Engineering. 2
nd

 Ed (CRC Press, New York, USA) 

(2018), https://doi.org/10.1201/9780429492563 
2. S. Boccaletti, A. Pisarchik, C. Del Genio, A. Amann, Synchronization: From 

Coupled Systems to Complex Networks Cambridge: Cambridge University Press 

(2018), https://doi.org/10.1017/9781107297111 

3. J. A. Acebrón, L. L. Bonilla, C. J. P. Ritort, R. Spigler, The Kuramoto Model: A 

Simple Paradigm for Synchronization Phenomena. Rev. Mod. Phys. 77 (2005)137, 

https://doi.org/10.1103/RevModPhys.77.137 

4. T. A. Winfree, The geometry of biological time vol. 12. (Springer) 2001, 

https://doi.org/10.1007/978-1-4757-3484-3 

5. T. P. Vinayak, P. B. Prosen, T. H. Seligman, Spectral analysis of finite-time 

correlation matrices near equilibrium phase transitions Euro. Phys. Lett. 108(2014) 

20006, https://doi.org/10.1209/0295-5075/108/20006 

6. H. Chang, Q. Chang, J. Xi, T. Hou, R. Su, P. Ma, J. Wu, C. Li, M. Jiang, Y. Ma, P. 

Zhou, First experimental demonstration of coherent beam combining of more than 

100 beams, Photon. Res. 8(2020)1943-1948, https://doi.org/10.1364/PRJ.409788 

 



Egypt J. Solids, Vol. (46) 2024                                                                      9 
 

 
 

7. D. Dudkowski, K. Czołczyński, T. Kapitaniak, Synchronization of two self-excited 

pendula: Influence of coupling structure’s parameters, Mechanical Systems and 

Signal Processing 112 (2018)1-9, https://doi.org/10.1016/j.ymssp.2018.04.025 

8. J. Fell and N. Axmacher, The role of phase synchronization in memory processes 

Nat. Rev. Neurosci. 12(2011)105, https://doi.org/10.1038/nrn2979 

9. A. Motter, S. Myers, M. Anghel, T. Nishikawa, Spontaneous synchrony in power-

grid networks. Nature Phys. 9(2013)191–197, https://doi.org/10.1038/nphys2535 

10. M. B. Spencer, W. E. Lamb Jr, Theory of two coupled lasers, Phys. Rev. A. 5(1972) 

893, https://doi.org/10.1103/PhysRevA.5.893 

11. V. Pal, C. Tradonsky, C. Chriki, A. Friesem, N. Davidson, Observing Dissipative 

Topological Defects with Coupled Lasers, Phys. Rev. Lett. 119(2017)013902, 

https://doi.org/10.1103/PhysRevLett.119.013902 

12. Y. Kuramoto, Chemical oscillations, waves, and turbulence (Berlin, Germany: 

Springer) (1984), https://doi.org/10.1007/978-3-642-69689-3 

13. N. Takemura, K. Takata, M. Takiguchi, M. Notomi, Emulating the local Kuramoto 

model with an injection-locked photonic crystal laser array Sci. Rep.11(2021) 8587, 

https://doi.org/10.1038/s41598-021-86982-w 

14. J. Ding, I. Belykh, A. Marandi, M. Miri, Dispersive versus Dissipative Coupling for 

Frequency Synchronization in Lasers, Phys. Rev. Applied 12(2019)054039, 

https://doi.org/ 10.1103/PhysRevApplied.12.054039 

15. J. R. Tredicce, F. T. Arecchi, G. L. Lippi, G. P. Puccioni, Instabilities in lasers with 

an injected signal, JOSA B 2(1985)173, https://doi.org/10.1364/JOSAB.2.000173 

16. P. R. Rice, H. J. Carmichael, Photon statistics of a cavity-QED laser: a comment on 

the laser-phase-transition analogy, Phys. Rev. A. 50(1994) 4318–4329, 

https://doi.org/10.1103/PhysRevA.50.4318 

17. H. F. El-Nashar, Conditions and Linear Stability Analysis at The Transition to 

Synchronization of Three Coupled Phase Oscillators in A Ring, IJBC. 27(2017) 

1750095(1-15), https://doi.org/10.1142/S021812741750095X 

18. M. S. Mahmoud, H. F. El-Nashar, M. Medhat, Exact Solution of Four Coupled 

Nonidentical Kuramoto Oscillators at A Full Phase Locked State, IJBC. 

33(2023)2350005, https://doi.org/10.1142/S0218127423500050 

19. M. H. Latifpour, M. A. Miri, Mapping the XY Hamiltonian onto a network of 

coupled lasers, Phys. Rev. Res. 2(2020)043335, 

https://doi.org/10.1103/PhysRevResearch.2.043335 

20. A. Politi, S. Yanchuk, G. Giacomelli, Nearly Hamiltonian dynamics of laser systems, 

Phys. Rev. Res 5(2023) 023059, https://doi.org/10.1103/PhysRevResearch.5.023059 

21. G. Arwas, S. Gadasi, I. Gershenzon, A. Friesem, N. Davidson, O. Razet, Anyonic 

parity time symmetry in complex coupled lasers Sci. Adv .8(2022) eabm7454, 

https://doi.org/10.1126/sciadv.abm7454 

22. I. E. Protsenko, A. V. Uskov, Oscillator Laser Model Ann. Phys. 535(2022) 2200298, 

https://doi.org/10.1002/andp.202200298 

23. I. E. Protsenko, L. A. Lugiato, Laser generation with coloured input: I. Quantum 

Langevin equations for the laser. Quantum Semiclass. Opt. 8(1996) 1081, 

http://dx.doi.org/10.1088/1355-5111/8/5/012 

24. D. Witthaut, S. Wimberger, R. Burioni, M. Timme, Classical synchronization 

indicates persistent entanglement in isolated quantum systems, Nat Commun 

8(2017)14829, http://dx.doi.org/10.1038/s42005-024-01566-0 

25. G. Chimczak, A. Kowalewska-Kudłaszyk, E. Lange, K. Bartkiewicz, J. Peřina Jr, 

The effect of thermal photons on exceptional points in coupled resonators, Sci Rep. 

13(2023)5859, https://doi.org/10.1038/s41598-023-32864-2 

26. I. Gonskov, S. Gräfe, Light–matter quantum dynamics of complex laser-driven 

systems,  J. Chem. Phys. 154(2021)234106, https://doi.org/10.1063/5.0048930 


