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ABSTRACT 
 

This work deals with the reduction of vibration levels for rolling systems such as 
ropeway gondola, cranes and ships using a dynamic vibration absorber (DVA). The 
optimum values of the DVA damping factor and the spring constant are determined 
numerically through minimizing a maximum response of the main system. Single 
DVA (SDVA) and multi- masses DVA (MDVA) in parallel configurations are 
examined. A Mini-max criterion optimization method is utilized to calculate the 
optimum design parameters of the DVA for many numbers of DVA masses with a 
constant total mass. The results obtained that the rising of the mass ratio leads to 
decrease the vibration levels. Using the MDVA leads to enhanced robustness and 
vibration attenuation in the main system at the expense of growing the vibration in 
the absorber. MDVA compared with SDVA have some advantages such as lower 
frequency ratios and low fatigue. 
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INTRODUCTION 
 
Dynamic vibration absorbers (DVA) are effective control devices, which attached to a 
vibrating system for attenuating unwanted vibrations. The DVA’s parameters are 
tuned with the primary structure, therefore a vibrating energy is transmitted to the DVA 
and then absorbed by a damper consequently the safety of the primary structure is 
extremely boosted [1-20]. For rolling systems in engineering applications such as, 
ships and ropeway gondola several control devices have been suggested and studied 
for improving their dynamic response under various types of excitation. Passive DVAs 
display more advantages over other because they have a simple design and low cost. 
Moreover, the efficiency of a DVA depends on appropriate selection of its parameters 
[1, 2]. Several optimal design techniques for the DVA have been suggested to reduce 
the unwanted vibration under various types of excitation. Asami et al.  [3] presented 
analytical optimal solutions to H1 (Taylor series approximation) and H2 (algebraic 
solution) optimization of single mass DVA.  Lin [4], proposed a new design of the DVA 
by connecting the damper of the DVA to the ground rather than the primary structure, 
and derived the new optimum tuning which is best over the conventional one.  Elliott 
et al. [5] presented the optimal parameters for the kinetic energy of the primary 
structure is minimized or the energy absorption by the DVA is maximized. Tigli [6] 
presented the optimal design of the DVA connected to the damped system under 
random excitation.  
 
Cheung and Wong [7] proposed a H2 optimization of the DVA. They used H∞ 
optimization to drive new optimal parameters to minimize the maximum system 
response [8]. Many other researchers studied the effectiveness of multiple absorbers 
under dynamic loads. Kareem and Kline [9] studied the multiple absorbers under 
random forcing.  Zuo and Nayfeh [10, 11] proposed Multi-masses DVA (MDVA) with 
distributed masses. They obtained the design parameters by modeling the system as 
a decentralized control problem Love and Tait [12], proposed a numerical method to 
simulate the structure-MDVA systems. MDVAs, which distribute the tuning of several 
masses in a range close to the natural frequency, were more effective than traditional 
DVA systems. For a damped system, the optimal parameters of the DVA are 
determined numerically and an analytical optimization cannot be performed [13, 14]. 
Morga and Marano [15] investigated two different criteria about displacement and 
acceleration for DVAs on slender structures under wind excitations. Also, a tuning 
process has been developed by Salvi and Rizzi [16] considering the minimax 
optimization algorithm for the reduction of seismic vibrations with the pas with the 
passive DVAs.  
 
Pennestrì [17] developed a Mini-max procedure to determine the optimum design 
parameters. Six constraint equations with seven design parameters were solved. 
Brown [18] developed a Mini-max procedure of a passive DVA for uncertainties 
frequency range. One may observe from the literature that numerical optimization 
method based on Minimax technique has been probably the most common 
computational techniques adopted to evaluate the optimal DVA parameters in the 
case of damped primary structures, when the main system is subjected to standard 
typical loadings, such as harmonic or Gaussian white noise force or base excitation 
[19,20,21]. 
 
In this study, a simple and effective procedure for vibration reduction of rolling 
systems under external excitation is presented through the optimal design of the 
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DVA.The response properties of a SDVA are analyzed. The performances of a MDVA 
applied to the rolling system are compared. A Mini-max approach is presented for the 
optimal design of the DVA’s parameters for the uncertain frequency range. This 
method decreases the system amplitude to a value lower than the other available 
methods. The optimum design parameters of DVA such as the damping factor and 
frequency ratio are determined with a Mini-max numerical optimization. The results for 
the undamped main system are compared with those studied by Matshuhisa [22, 23]. 
The effect of the structure damping, mass ratio, relative position and number of DVA 
masses on the design parameters and the maximum system response were studied.  
 
 

EQUATIONS OF MOTION (EOMS) 
 
Single Mass DVA (SDVA) 
 

Referring to Fig. 1, the rolling system is modeled as a pendulum with a mass m, 

length l and damping constant C. the main system has an angular variation θ. The 
DVA is mounted at a distance l� from the point o with a displacement u. where,	m�, k� 

and C� are the mass, stiffness and damping constant of the DVA.	f� and ω are the 
amplitude and frequency of the external force.  The locations of the main system 
mass (x, y) and the DVA mass (x�, y�) can be expressed as:  
 

x = lsinθ   ,    y = lcosθ 
 (1) 

x� = l�sinθ + ucosθ , y� = l�cosθ − usinθ 
 
The kinetic energy K.E. is given by: 
 

K. E. = 	12ml�θ� � +
1
2m��θ� �	�l�� + u�� + 2l�u� θ� + u� �� (2) 

 
The potential energy P.E. is given by: 
 

P. E.= mgl�1 − cos θ� + m�g�l��1 − cos θ� + u	sinθ� + 1
2Ku� (3) 

 

The dissipation function D.E. is given by: 
 

D.E. = 
�
�C�u� � + �

�Cθ��  (4) 

 
The EOMs of the system can be obtained using Lagrange equations as follows:  
 

θ" #ml� +m��l�� + u��$ + m�	l�u" + 2	m�uθ� u� + g�ml + m�	l��sinθ + m�gucosθ +
	Cθ� = f�le&'(  
 

(5) 
 
 

m�u" + m�l�	θ" + C�u� + m�g	sinθ + �K −m�θ� ��u = 0 (6) 
 

Considering that θ and u are small values, the EOMs can be linearized by neglecting 
higher order terms; 
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*ml� +m�l�� m�	l�m�	l� m�	 + *
θ"
u" + + *C 0

0 C�+ *
θ�
u� + + *g�ml + m�	l�� m�gm�g Ku + ,θu- = *f�le&'(0 +  (7) 

 
Introducing the following dimensionless terms: 
 

μ = /0
/  , γ = 20

2 	, 	 ,r = '
'4	,  r5 =

'6
'4	 ,  ω5 = 890

/0,  ω: = 8;
2  , ζ5 =	 =0

�/0'6 ,  

 

ζ> =	 =
�/2?'4, 	U: =	 A

BC2//; ,  θ: =	 E
BC//;	 

 
where, θ:	 and U: are the normalized vibration amplitudes of the main system and the
DVA respectively, 	μ is the mass ratio, γ		is the relative position, r5 is the DVA 
frequency ratio,   ω5 is the natural frequency of the DVA,	ω: is the natural frequency 
of the main system , ζ5 is the DVA damping factor and r is the excitation frequency 
ratio. 
 
The steady state responses of the main system and the DVA are given by: 
 

θ = Θ	e&'(										and							u = Ue&'( (8) 
 
Combining Eqs. 7 and 9 yields: 
 

where θ:	 and U: are the normalized vibration amplitudes of the main system and the 
DVA respectively. 
 

Multi-Masses DVA (MDVA) 
 
For the main system with MDVA, the EOM can be formulated in a matrix form as:  
 

 
where; 

D� = �1 + ∑ μ&γ�K&L� �gl  ,  A& = gμ&γ  ,    	B& = μ&ω:� 

*�1 + μγ� − �1 + μγ��r� + 2irζ>
μ�1 − γr��  

μ�1 − γr��
μr5� − μr� + 2iμrr5ζ5+ *

θ:U:+ = ,10- 
 

(9) 

OP
PP
Q D� A�A� . AKB� 0 . 0

B� . 0
. 0sym BKR

SS
S
T

OP
PP
Q θ"u"�u" �..u"KR

SS
ST +

OP
PP
Q 	D� 0 0 . 0

E� 0 . 0
E� . 0

. 0sym EKR
SS
S
T

OP
PP
Q θ�u��u� �..u�KR

SS
ST		 

+
OP
PP
PQ
DU	 gB� gB� . gBK

B�ω5�� 0 . 0
	B�ω5�� . 0

. 0
sym 	BKω5K� RS

SS
ST

OP
PP
Q θu�u�..uKR

SS
ST =

OP
PP
PQ
f�g
m eV'(�
0
0..0 RS

SS
ST
 

(10) 
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D� = �WX;?
'4   , E& = 2μ&ω5&ω:�ζ5&  , DU = �1 + ∑ μ&γK&L� �g� 

 

And the displacement of YZ[ mass of DVA is ui (i = 1, 2, ......., N). The mass ratio is 
expressed as; 

μ = 1
m\m&

K

&L�
 

 
For ith mass the design parameters are the mass ratio μ&,  the damping factor ζ5& , and 
the frequency ratio	ω5& . where; 
 

ζ5& = C& 2	m&ω5&⁄    ,  ω5& = ^k& m&⁄    ,   μ& = _
K     

 
The normalized vibration amplitudes of the main system and of the MDVA are: 
 

OP
PP
Q d� a� a� . aKb� 0 0 0

b� 0 0
. .sym bKR

SS
S
T

OP
PP
Q θ:U�:U�:.
UK:R

SS
ST =

OP
PP
Q10
0
.
0R
SS
ST
 (11) 

where; 
d� = 1 + μγ − �1 + μγ��r� + 2irζ> , 
 a& = �1 − γr��μ&  , b& = μ&r5&� − μ&r� + 2irμ&r5&ζ5& 
                                     
 

NUMERICAL OPTIMIZATION OF THE DESIGN PARAMETERS 
 
The minimax optimization offers the advantage to find the values of design variables 
which minimize the maximum objective function value over a given range of a set of 
uncertain variables. In the current optimization case, the uncertain variable is the 
frequency of the excitation function and the objective function is the normalized 
vibration amplitude of the main system  θ:/5a. The design variables are the damping 
factor ζ5and frequency ratio r5of the vibration absorber subsystem. The main system 
damping factor	ζ> and the mass ratio μ are assumed to be given parameters which 
can be decided firstly by the designer according to space restriction for added mass 
on the main system. Therefore, for SDVA the parameters to be searched are the 
SDVA optimum damping factor ζ5� and optimum frequency ratio r5�. While the MDVA 
requires a search over combinations of N of optimum frequency ratios		r5��& and N 
optimum damping factors ζ5��& where i =1 to N.  
 
Therefore, the optimization problem is defined as: 
 
Find          r5� and ζ5�                                                                                              (12) 
 
To minimax          θ:				for			r/&: ≤ r ≤ r/5a 
 
With                    lb� ≤ r5 ≤ ub� , lb� ≤ ζ5 ≤ ub� 
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where: r/&:	and r/5a are the upper and lower limits for the excitation frequency ratio 
respectively. The MATLAB code is written to simulate the minimax problem of the 
main system with SDVA and MDVA. To start the optimization process, it is necessary 
to initialize the values of the two variable parameters	r5 and  ζ5 . For engineering 
applications, it is suitable to assume	r5=1 and ζ5=0.1 as starting values. The tests of 
the numerical procedure have displayed that such presumption does not influence 
significantly the effectiveness of the optimization process. The process is 
unconstrained except that the lower and upper bound vectors of the two 
parameters r5 and ζ5  are also taken into account. To optimize the DVA, every 
researcher considers a range of these bounds [23, 24]. In this manuscript, the range 
for frequency ratio and damping factor of DVA (in MATLAB vector notation) has been 
chosen as lb = c0.5; 0.001f  and   ub = c1.5; 1f , which provide quite wide intervals for 
the optimization process. 
 
 

RESULTS AND DISCUSSION 
 

The suggested numerical process is first tested on the pendulum system without the 
damped element. The results for the undamped main system with SDVA are 
emulated with those presented by Matshuhisa [21, 22]. As shown in TABLE I the two 
results are very close each other. 
 

Table 1. Optimum frequency ratio for undamped sdof system. 
 

µ γγγγ ghi ghi [21] DIV % 

0.05 

0.25 1.0097 1.00926 0.042 

0.5 1.0126 1.01204 0.054 

0.75 1.0091 1.00845 0.063 

0.1 

0.25 1.0175 1.018330 0.081 

0.5 1.0231 1.023228 0.012 

0.75 1.0176 1.015271 0.227 

 

 
Effect of the Main System Damping 
 

Figure 2 shows that the increases in the mass ratio increase the optimum damping 
factor ζ5�	for any value of the damping factor of the main system  ζ>. The increasing of 
the damping factor for the main system (ζ>	> 0.1) leads to increase ζ5�	 for a given µ. 
Referring to Fig. 3, increasing the damping factor ζ>	leads to decrease the optimum 
frequency ratio  r5�. Furthermore, the optimum frequency ratio r5 is close to unity. The 
maximum normalized amplitude θ:/5a is ploted in Fig. 4 for many values of ζ>	by 
employing the calculated optimum values ζ5�	and r5�. From this figure, it can be 
noticed that the rise of the damping factor ζ> leads to a reduction in the normalized 
amplitude. Moreover, when ζ> is low, θ:/5a is mainly dependent on µ, but for the high 
value of ζ>	it becomes less sensitive to µ. Actually when ζ>	≥ 0.2, the curves of θ:/5a 
vary little whatever the value of µ is. It may seem from these results that the DVA is 
suitable for the systems with a high damping factor, but in fact, the efficiency of the 
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DVA does not calculate directly from the value of θ:/5a	at a given µ. The efficiency of 
the DNA can be expressed as following;  
 

DVA	effeciency	% =	θ:/5a�l − θ:/5a	
θ:/5a�l 	X	100 

 
where; θ:/5a�l	is the maximum normalized amplitude of the main system without the 
DVA. 
 
Figure 5 illustrates the efficiency of the DVA for various values of ζ>, it can be 
observed that the rising the damping in the main system leads to reduce the DVA 
efficiency. The DVA is ineffective when the damping of the main system becomes 
high.  
 

Effect of the Relative Position 
 

The effect of mass ratio on the optimum damping factor and optimum frequency ratio 

respectively is illustrated in Figs. 6 and 7 for three relative positions γ = 0.25, 0.5 and 
0.75. From these figures, it can be observed that the rising of µ leads to an increase in 
both optimum frequency ratio and optimum damping factor for any relative position. 
Furthermore, Fig. 6 displays that the optimum damping factor grows considerably as 
the DVA moves to the center of the swing. For example it is increasing from ζ5�= 0.06 

to ζ5� =0.29 when the DVA is moved from γ = 0.75 to γ = 0.25. Fig. 7 clearly shows 
that the influence of rising the relative position on the optimum frequency ratio is small 
particularly for low mass ratios. Referring to Fig. 8, the variation of the damping factor 
of the main system with SDVA in free vibration is obtained for different relative 
positions. For µ=0.1and ζ> = 0.02, the total damping factor (the damping factor of 

structure- DVA system) is increasing from ζ = 0.027 to ζ =0.058 when the DVA is 

moved from γ = 0.75 to γ = 0.25, the total damping factor is increased by about 114%. 
Fig. 9 shows the maximum normalized amplitude of the main system under external 
excitation function with an optimally tuned SDVA and ζ>= 2%. It can be noticed that 
the maximum normalized amplitude increases with the relative position. In the case of 

using SDVA with µ = 0.05, the maximum normalize amplitude (θ:/5a =13.4) for γ = 

0.75 is greater than the maximum normalized amplitude (θ:/5a = 6.5) for γ = 0.25. It is 
clear that the DVA is effective and that it is dependent on the relative position. 
 

Effect of the MDVA 
 
Figures 10 to 14 show the effect of the MDVA on a dynamic performance of the rolling 
system. The total absorber mass is equally distributed among N masses (N = 2, 3, 4).  
Fig. 10 shows the main system normalized amplitude in the frequency domain for 
various values of N. The maximum response of the main system decreases by raising 
the number of MDVA masses with a constant total mass. In addition, the frequency 
response includes N troughs at the MDVA natural frequencies and N+1 crests. 
Moreover, the flatness of the frequency response curve increases with raising the 
number of DVA masses.  
 
Figure 11 shows the influence of the number of DVA masses on the maximum 
normalized amplitude. It can be noticed that the increasing the number of DVA 
masses leads to a steady decrease in the maximum normalized amplitude of the main 
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system. For example at γ = 0.25 the maximum normalized amplitude is decreasing 
from θ:/5a = 5.65 to θ:/5a= 4 for N=1 to 4, nearly 30% improvement.  As shown in 
Fig. 12, The effectiveness of the MDVA can be improved by increasing its number of 
masses, for example for SDVA with mass ratio 20%, the efficiency is 92%, which can 
be achieved by a MDVA with N = 4 and  mass ratio 10%.  
 
Figure 13 shows the effect of the number of DVA masses on the optimum frequency 
ratios. It can be noticed that the optimum frequency ratio is nearly equal to unity. The 
lower frequency ratio decreases by decreasing the relative position and raising the 
number of DVA masses. Referring to Fig. 14, optimum damping factor increases by 
increasing the relative position of the MDVA and it decreases by raising the number of 
masses.  
 
 

CONCLUSIONS 
 

From the results discussed in this paper, it may be concluded that growing the 
damping of the main system leads to decrease the efficiency of the DVA and 
increases its optimal mass.  Moreover, they will be totally inactive when the system 
damping factor is greater than 0.1. As the mass ratio is increased, the vibration level 
decreases. Generally, high mass ratios are not recommended due to functional 
considerations of the whole system. The effect of growing the relative position on the 
optimum frequency ratio is small, particularly for low mass ratios. Raising the number 
of DVA masses without changing the total DVA mass leads to reduce the system 
vibration and improves the DVA efficiency. The MDVA has several features over the 
SDVA such as a lower ratio of tuning frequencies, lower requirement of anti-fatigue 
materials and lower mass ratio. The presented optimization approach shows 
improvement compared with the findings given in the previous studies by profiting 
knowing of the excitation frequency range for a damped rolling system. 
 
 

REFERENCES 
 

[1] Semin Chun, Youngil Lee and Tae Hyoung  ,”H∞ optimization of dynamic 
vibration absorber variant for vibration control of damped linear systems”, 
journal of sound and vibration, 335, 55-65, 2015. 

[2] Younes M.F., “Numerical study for dynamic vibration absorber using Coriolis 
force for pendulum system”, journal of american science, 11 (12), 157-162, 
2015. 

[3] Asami T., Nishihara O. and Baz A. M., “Analytical solutions to H1 and H2 
optimization of dynamic vibration absorbers attached to damped linear 
systems”, journal of vibration and acoustics, 124(2), 284-295, 2002. 

[4] Lin J., “An active vibration absorber of smart panel by using a decomposed 
parallel fuzzy control structure”, engineering applications of artificial 
intelligence, 18 (8), 985-998, 2005. 

[5] Elliott S.J., Zillettin M. and Rustighi E., “Optimization of dynamic vibration 
absorbers to minimise kinetic energy and maximize internal power 
dissipation”, journal of sound and vibration, 331, 4093–4100, 2012. 

[6] Tigli, O.F., “Optimum vibration absorber (tuned mass damper) design for linear 
damped systems subjected to random loads”, journal of sound and vibration, 
331, 3035–3049, 2012. 



9 DV    Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018 

 

              
 

[7] Cheung Y.L. and Wong W.O., “H2 optimization of a non-traditional dynamic 
vibration absorber for vibration control of structures under random force 
excitation”,  journal of sound and vibration, 330, 1039–1044, 2011. 

[8] Cheung Y.L. and Wong W.O., “H-infinity optimization of variant design of the 
dynamic vibration absorber-revisited and new results”, journal of sound and 
vibration, 330, 3901–3912, 2011. 

[9] Kareem A. and Kline S., “Performance of multiple mass dampers under 
random loading”, journal of struct. eng., 121 (2), 348–361, 1995.  

[10] Zuo L. and Nayfeh S., “Minimax optimization of multi-degree-of-freedom 
tuned-mass dampers”, journal of sound and vibration, 272(3–5), 893–908, 
2004. 

[11] Zuo L. and Nayfeh S., “The two-degree-of-freedom tuned-mass damper for 
suppression of single-mode vibration under random and harmonic excitation”, 
journal of vibration and acoustics, 128(1), 56–65, 2006. 

[12] Love J.S.  and Tait M.J., “Estimating the added effective damping of SDOF 
systems incorporating multiple dynamic vibration absorbers with nonlinear 
damping”, engineering structures, 130, 154–161, 2017. 

[13] Chien-Liang L., Yung-Tsang C. and Lap-Loi C., “Optimal design theories and 
applications of tuned mass dampers”, journal of engineering structures, 28, 
43-53, 2006. 

[14] Liu K. and Coppola G., “Optimal design of damped dynamic vibration absorber 
for damped primary systems”, Tran. Can. Soc. Mech. Eng., 34, 119–135, 
2010. 

[15] Morga, M. and Marano, G. C., “Optimization criteria of TMD to reduce 
vibrations generated by the wind in a slender structure.” journal of vibration 
and control, 20, 16, 2404-2416,2014. 

[16] Salvi J. and Rizzi E., “Optimum tuning of Tuned Mass Dampers for frame 
structures under earthquake excitation”, struct. control health monit., 22,4, 
707–725, 2015. 

[17] Pennestri E., “An application of Chebyshev’s min-max criterion to the optimal 
design of a damped dynamic vibration absorber”, journal of sound and 
vibration 217(4), 757–765, 1998. 

[18] Brown B. and Singh T., “Minimax design of vibration absorbers for linear 
damped systems. journal of sound and vibration”, 330, 2437–2448,2010. 

[19] Kerk C. K., “Minimax design of parallel multi-mass dynamic vibration 
absorbers”, MSc thesis,State University of New York at Buffalo, 2011. 

[20] Jie Fang, Shi-Min Wang and Qi Wang, “Optimal design of vibration absorber 
using minimax criterion with simplified constraints”, journal of acta mechanica 
sinica, 28(3), 848–853, 2012. 

[21] Matshuhia H., Nishihara Osamu, Susumu Sato, “Vibration control of a 
ropeway carrier by passive dynamic vibration absorbers”, JSME international 
journal 38, 4, 1995. 

[22] Matshuhisa H. and yasuda M., “Dynamic vibration absorber for rolling 
structures”, Asia-Pacific vibration conference, 439-444, 2009. 

[23] Nigdeli, S. M. and Bekdaş, G., “Optimum tuned mass damper design in 
frequency domain for structures.” KSCE journal of civil engineering, 21,3, 1–
11, 2016. 

[24] Houshyar E. K. and Nahmat K., “Optimization of response of a dynamic 
vibration absorber forming part of the main system by the fixed-point theory”, 
ksce journal of civil engineering, 1-8, 2017. 

 



10 DV    Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018 

 

              
 

 

 
 
 
 Fig. 1. Dynamic model of a rolling system with a dynamic absorber. 
 
 

 
  

Fig. 2. Optimum damping factor variations with mass ratio for different main system 
damping factors. 
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Fig. 3. Optimum frequency ratio variations with mass ratio for different main system 

damping factors. 
 
 

 
 

Fig. 4. Maximum normalized amplitude for different values of damping factor 
at	γ = 0.5. 
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Fig. 5. Variation of DVA efficiency versus mass ratio for different main system 
damping factors. 

 
 

 
 

Fig. 6. Optimum damping factor variations with mass ratio for different relative 
positions at   ζ> = 0.02. 
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Fig. 7. Optimum frequency ratio variations with mass ratio for different relative 
positions at  ζ> = 0.02. 

 
 

 
 
Fig. 8. Total damping factor variations with mass ratio for different relative positions 

at ζ> = 0.02, ζ5�	and	r5�. 
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Fig. 9. Variation of maximum normalized amplitude with mass ratio for different 
relative positions at ζ> = 0.02, ζ5�	and	r5�. 

. 
 

 
 

Fig. 10. Effect of number of DVA masses for ζ> = 0.01, γ = 0.25	and	μ = 0.1. 
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Fig. 11. Maximum normalized amplitude vs number of DVA masses for different 
relative positions at ζ> = 0.01	and	μ = 0.1. 

 
 
 

 
 

Fig. 12. Variation of DVA efficiency with mass ratio for different number of DVA 
masses when ζ> = 0.01	and		γ = 0.25	. 
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Fig. 13. Optimum DVA frequency ratio vs number of DVA masses for different 
relative positions when	ζ> = 0.01	and	μ = 0.1. 

 
 

 
 

Fig. 14. Optimum DVA damping factor vs number of DVA masses for different 
relative positions when ζ> = 0.01	and	μ = 0.1. 


