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ABSTRACT

In this paper, a hybrid three-step approach is introduced to bring the data to approximate
normality. This approach uses two different transformations jointly with flipping and, in
some cases, with Winsorization. The first step is to achieve approximate symmetry by
transforming the data using the generalized modulus family of transformations. If the
quantile to be estimated is in the longer tail, the resulting transformed sample is then
Winsorized. The second step is to achieve exact sample symmetry by flipping the lower
(upper) half of the transformed sample when estimating quantiles smaller (larger) than the
median. The third step is to approximately Gaussianize the resulting sample using the sinh-
arcsinh transformation. Estimating the quantile of the new data and then double back
transforming, the new proposed nonparametric quantile estimator can be obtained.
Through a simulation study, the new proposed quantile estimator is evaluated and
compared with some competitor existing estimators. Simulation results show stable
empirical performance and unrestricted outperformance of the proposed estimator
compared to all other competitor estimators under investigation.

Keywords: Quantiles, Robust Estimators, Modulus Family of Power Transformation,
Generalized Modulus Family of Power Transformation, Sinh-arcSinh family of
Transformations, Winsorized Sample, Flipped Sample.
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I. INTRODUCTION

Applications of quantiles arise in diverse areas such as: Hydrology, Finance,
Business, Insurance, Biology, Metrology, Economics, Reliability, Quality
control, Medicine, Engineering, Demography, etc. For example, quantiles are
used to determine warranty periods of goods in reliability analysis, the process
capability index (PCI) in quality control. In medicine, quantiles are used to
determine reference intervals within which some percentage of the values of a
particular analyte in a healthy population would fall (Horn, Pesce, & Copeland,
1998). In environmental sciences, they are used to determine safety margins over
which pollution of chemicals would be dangerous. In traffic engineering, they
are used to set speed limits of cars and typical walking speeds. In business and
finance, they are used as values at risk (VaR). Extreme quantiles of wave heights
do really help design offshore platforms, breakwaters, or dikes. Quantiles are
frequently used in descriptive as well as inferential statistical analysis. They help
identify and capture key aspects of a distribution such as: central tendency,
spread, skewness, and tail-heaviness. They help in the box-whiskers, the Q-Q,
and the violin plots. The most well-known quantile is the median which is the

0.50" quantile or the 50” percentile.

Let X4, X5, +++, X, be a random sample of size (n) drawn from a population with
distribution function F(-), and let X(q),X(2), =+, X(n) be the corresponding
order statistics. The p” population quantile, Q(p), is defined as Q(p) =
inf{x:F(x) = p}. If X is a normally distributed random variable with a mean
of u and a variance of 02, the p" normal quantile can be given as Q" (p) = p +
0Zy, where Z, is the p" standard normal quantile. Replacing # and o by
corresponding different estimators leads to corresponding different normal

quantile estimators. The most well-known estimators of normal quantiles are:
(1) The biased normal p™ quantile defined as

') =X+ S.Zy, (r1)

where S is the unbiased sample standard deviation.

(2) The uniformly minimum variance unbiased estimator (UMVUE) introduced
by Chakraborti and Li (2007). Itis defined as

QAY() =X +c,S. Zy (1.2)
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where ¢, = [,/O.S(n —1)r(0.5(n— 1))/r(o.5n)].

(3) The t-based estimator used by Wang and Horn (2016). It is defined as
’le\’] (p) =X+ t(n—l,p)S\/ (n+1)/n, (1-3>

where t(;,_1p) is the p* quantile of the Student’s T distribution with (n — 1)

degrees of freedom.

Under symmetric models, and using robust location and scale estimators, Horn

(1988) introduced the following robust quantile estimator:

Qu(p) = Tp,(x,¢q) + t(n—1,p)\/5%(% c) + Sﬁi(x. 2, (1.4)

where Ty (x, ¢1) is the bi-weight location estimator with tuning constant (cy),
s#(x,¢;) is the bi-weight estimator of the variability of Tp,(x,¢1), and
Sgi (x,c3) is the square of the bi-weight estimator of dispersion with tuning
constant (). Due to the Equivariance-under-Monotonic-Increasing-
Transformation property that quantiles have, transformed retransformed
quantile estimators are applicable. Transformations can be applied to
nonnormally distributed variables to bring them to approximate normality.
Using Gaussian-based (e.g., QY (p), QY (p), Q¥ (), or Qy(p)) or symmetric-
based estimators, the quantile of the transformed variable is calculated and back
transformed to get an estimator of the original variable’s pth quantile.
Accordingly, most quantile estimators can be divided into two broad categories;
Order-Statistics-Based estimators and Gaussian-Based estimators. Estimators in
the first category may be based on only one, two, or all order statistics. Huang
and Brill (1999) introduced a quantile estimator based on only one order
statistics. Hyndman and Fan (1996) show 9 quantile estimators each based on
two order statistics. Harrell and Davis (1982), Kaigh and Lachenbruch (1982),
Sfakianakis and Verginis (2008), Navruz and Ozdemir (2020), and Hutson
(2022) introduced some quantile estimators based on all order statistics.
Estimators based on one, two, or three sample order statistics experience
substandal lack of efficiency caused by the variability of individual order
statistics. The efficiency of order-statistics-based estimators can be improved by
forming weighted averages of all sample order statistics (see, Sheather & Marron,
1990). Estimators in the second category rely mainly on replacing location and

scale estimates in the Gaussian quantile form.
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Although the statistical literature is rich in various estimators of population
quantiles, there is no one specific estimator that do best for all sample sizes (n),
all quantile levels (p), or all different distributional shapes. For this reason, there
will always be a continuous need to new quantile estimators that can do best

with different patterns of the data.

This paper is organized as follows. Section 2 introduces two families of
transformations on which the proposed quantile estimator relies; the generalized
modulus family of power transformations introduced by Halawa (1989) and the
sinh-arcsinh family of transformations introduced by Jones and Pewsey (2009).
For each transformation, this section gives the form of the transformation, its
inverse function, and all functions required to get the maximum likelihood
estimate of each transformation’s parameter(s). Section 3 is devoted to six
competitor existing quantile estimators. The proposed quantile estimator is
described in section 4. The design of the simulation study used to evaluate and
compare the empirical performance of the proposed quantle estimator is
described and the main results are reported in section s. Section 6 gives concise

conclusions of the study.

2. TWO FAMILIES OF TRANSFORMATIONS

Under location-scale models, the main goal of a transformation T (X, 1) is to
achieve some degree of normality, or at least symmetry, required for the validity
of applying a certain statistical technique. This section presents the generalized
modulus family of power transformations and the Sinh-arcSinh family of

transformations which are valid to handle both positive and negative data.
2.1 THE GENERALIZED MODULUS FAMILY OF POWER TRANSFORMATIONS

Halawa (1989) introduced the Two-domain family of power transformations
which is a generalization of the Modulus family of power transformations

introduced by John and Draper (1980). This transformation is defined as:

(1-A-XM)/2 if X<0andd #0

—In(1-X) if X<0andi; =0
T (X; 44, 15) = 2.1
hat (Xi A1, 2) (A+Xx)*2-1)/2, if X>0andl, #0 @D
' m@a+x if X>0andl,=0
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The inverse transformation of Tyq;(X; A4, A3) is given as:

(1= (1= 4Tuad)VW) if Tya(X;241,4;) <0 and A, # 0

_ 1 — e~ THal if Tha(X;41,42) <0 and i, =0
Hal (That) ((1 + Ay Tya) /2 — 1) if Tya(X;24,4) >0 and A, #0 (2.2)
eTHal -1 lf THal(X;Al'AZ) >0 and AZ =0

According to the results of Van Zwet (1964), it can be shown that the
transformation Ty (X; A4, 15) can be used with (0 < A; <1and 1, > 1) to
normalize negatively skewed distributions and with (4; > 1and 0 < 4, < 1)

to normalize positively skewed distributions.

Assume that there exist unknown values of the transformation parameters

(A4 and 4,) such that the model
T (X = M; A1, 22) = ptyar + Opa (23)

holds with € having a standard normal distribution, where (M) refers to the

sample median.
The Jacobian of the transformation THal(X - M; A4, /12) is given as:
JnaXiAud) = L+ M=) (X < M)+ (1 - 7+ %) 7"1(x > 1)

and hence, under model (2.3), the log-likelihood function used to estimate the
parameters vector Oyq; = (Upa Onar, A1, A2)" is given as:

n

-n 1 . 2
It Brars X1, ey Xg) = 7171(27'[) —nn(oya) — FZ[THal(xi = M; 24, 22) = Maai
Hal =7

+30, ((Al —Din(1+M - xi)) I(x; < M)+ ((Az - Din(1-M+ xi)) 1(x; > 1\71)] (2.4)

The partial derivatives of (2.4) with respect to Upqr, Onar, A1, and A, are

respectively,

—alHal = %Z?:l[ THal(xl' - M’ 11’12) - ,uHal]' <2'S)

OuHal 9Hal

al -n 1 —~ 2
—Hal + P 12?:1[ Thai (xi - M; /11,12) - HHaz] ) (2.6)
a

90Hal OHal g

Olyg -1 = 0Ty (xi—M;11,25) =
a: L= pe) 21{;1[ THal(xi - Mi/11,/12) - HHal] x —Habo—rues Xal 4 Z?ﬂ ln(l +M - xi)v (2.7)
1 Hal 1

Alya -1 -~ 0T a1 (xi—M;A 4,2, ~
Bonat = L5 [ Taa (o = M5 A4, 25) = pipqr] x T2CIRD) 5 p(1 - +)  (28)
2 Hal 2
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where,

(= [T (i = 520, 2) + (1 + 7 =) tn(1 + M = x)| /2y if % <M and 2, #0

0THa R N
ﬁ = i —0.5[ln(1 + M- xi)]z if x;<M andl, =0" (2.9)
0 if  x>M VA,
( 0 if x, <M, v,
aaTTHzal - i_ [THal(xi = M;A,0,) - (1-M+ xi)lzl"(l - M+ xi)]/ﬂz if x;>Mandl #0, (210)
0.5[ln(1 - M+ xi)]z if x,>Mand2, =0

For fixed ( A1 and A;), setting (2.5) and (2.6) equal to zero, we get the estimates,
Aar = = Xy Tuar (i = M5 20, 22), (2.11)

N 1 o .12
And Gy = ;Z?ﬂ[Tyaz (xi = M; 24, 22) = Ayl (2.12)

Setting (2.7) and (2.8) equal to zero and substituting the estimators from (2.11)

and (2.12) for Uy 4 and oy4 respectively, estimates (/il and /Tz) of (A;and A,)

can be obtained using an algorithm for solving nonlinear systems of equations.
The normal likelihood vector of estimators (éHal) is determined by iteratively
updating (2.11) and (2.12) by (/Tl and /'iz) and updating (2.7) and (2.8) by figq
and G4, until a certain convergence criterion is reached.

2.2 THE SINH-ARCSINH FAMILY OF TRANSFORMATIONS

Jones and Pewsey (2009) introduced the following two-parameter family of

transformations:
Tjp(X; @, B) = sinh[a + Bsinh™!(X)],—0 <a <o and f>0 (2.13)

where @ serves as a skewness parameter and ff serves as a tail-weight

parameter.

In this paper, a special case of Jones-Pewsey transformation is used. Based on the
results of Van Zwet (1964) and after some algebra, it is easy to show that setting
(a) equal to zero produces a transformation, T;p(X; ), that can be used to

normalize symmetric distributions.
The inverse transformation of Tjp (X; B) is given as:
X = TjM(T;p(X; B), B) = sinh [sinh—1 ( T)p(X; /;)) /[)’], —0 < Tjp(X;B) <o and >0 (214)

According to the results of Van Zwet (1964), it can be shown that the transformation
Tip (X ; Aﬁ) can be used with (0 <  <1) to normalize heavy-tailed symmetric

distributions and with (f > 1) to normalize light-tailed symmetric distributions.
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Assume that there exists an unknown value of the transformation parameter (f)

such that the model
Tip(X — M; B) = wyp + gjpe (2.15)

holds with & having a standard normal distribution, where (M) refers to the

sample median.

The Jacobian of the transformation Tjp(X; ) is given as:

J;p(X; B) = B cosh(B sinh=(x — i1))/ |1 + (X — i)’
and hence, under model (2.15), the log-likelihood function used to estimate the

parameters vector 8;p = (‘Lljp, gp, ,B)t is given as:
-n 1 v _ 2
l]p(elp;xl, ....,Xn) = 71”(27‘[) - nITl(O']P) - ﬁZ[T]P(Xl - M; ﬂ) - 'ulp]
TP

+3¥%,In [,8 cosh(B sinh=(x; — M))/ 1+ (x; — M)Z] (2.16)

The partial derivatives of (2.4) with respect to i;p, 0p;, and f are respectively,

al 7

# = U]%Z?:l[ Typ(xi = M; B) = wye ), (2.17)

al - 07 z

e = e 0= ) =] =

aTjp(x;—M;f)

al - i
J:(T]leyzl[T]P(xi—M;ﬁ)_ﬂ]P] X o

B
+31,[(1/B) + sinh™(x; — M) tanh(B sinh~*(x; — M))], (2.19)
where,

dT;p(X-M;pB)

T = sinh™'(x; — M) cosh(p sinh™*(x; — M)) (2.20)

For fixed (), setting (2.17) and (2.18) equal to zero, we get the estimates,
fyp = =2y Ty (x; — M B), (2.21)

A _ . 12
and UJZP = %Z‘L{lzl[T]P (xi - M; ,8) - Ii/P] (2.22)

Using the same iterative algorithm described for the generalized modulus family

of power transformations, the normal likelihood vector of estimators
~ A ~ A t .
(9]1: = (ﬂ]p, GJP,,B) ) can be obtained.

[93]



A Double Transformed- Flipped- Retransformed Quantile Estimator for Skewed Distributions

3. COMPETITOR QUANTILE ESTIMATORS
In this section, a review of six of the best existing quantile estimators are
considered.

3.1 CHENG ESTIMATOR

Based on Bernstein polynomials, Cheng (1995) introduced a nonparametric

quantile estimator depending on a linear combination of order statistics. It is

defined as:

R Srm—1y .

0 = (72 ) a - X, 0<p <t (3.1
i=1

3.2 MODIFIED HARRELL-DAVIS ESTIMATOR

Based on a modified form of the empirical distribution function, Huang (2001)
introduced an improved version of the quantile estimator introduced by Harrell
and Davis (1982). This is defined as:

QmodHD (p) = Z{l:l WiX(i) ’ (3-2)

where

w; = Iy ((n + Dp, (0 + DA = p)) = Ly ((n + Dp, (n + (1 = p)),

A(0) =0,

A@) =X A*();i=12,,n and

n—

2 .
0'5[1_Jr1(n——1)’ i=1,n.
1/ynn—1) i=23-,n—1

The regularized incomplete beta function I, (@, b) is defined as:

8G) =

I,(ab) = [ f ta-1(1 — t)b-l.dt] / Beta(a, b)
0

According to Huang (2001), this quantile estimator is more efficient, especially

for the tails of the distributions and small sample sizes.

3.3 SFAKIANAKIS-VERGINIS ESTIMATOR

Stakianakis and Verginis (2008) introduced three nonparametric quantile estimators in
the forms of binomially weighted sum of all sample order statistics. In this paper, as

recommended by previous studies, only the following two estimators is considered:
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Qsv2(p) =X B(i — Ln,p)Xy + (2X(n) — X(n1y)B(;m,p),  (3.3)

Qsva®) = ) B p)Xey + (2Xa — X)) BO; 1), (34)

i=1
where B(i;n,p) = (})p'(1 —p)*™*
3.4 NAVRUZ-0ZDEMIR ESTIMATOR

Going on the same lines of Sfakianakis and Verginis (2008), Navruz and Ozdemir

(2022) proposed the following quantile estimator:

Qns) = [Bp — DXy + (2 — 3p) X2y — (1 — p)X(3)|B(0; 1, p) Z[(l —p)B(@ — 1;n,p) + pB(i;n,p)1X)

i=1
+[-pXn-2) + B30 — DX(n_1) + (2 — 30)X(ny | B(n; 1, p) (3.5)
3.s HUTSON-HYBRID-GS ESTIMATOR

Based on a newly defined generalized expectile function, termed the sigmoidal

quantile function, Hutson (2022) proposed a new quantile estimator defined as:

0u(p) = arg m:in {(Zp -1 Z(Xi S Z[ln(l + e_‘/ﬁ(xi—t)/s) +in(1+ eﬁ(xi—t)/S)] (3.6)
i=1 i=1

TR
where (S) is the unbiased sample standard deviation.

He also introduced a hybrid quantile estimator, thb 1 (p), which combines the
optimal properties of the classical kernel estimator, Qx(p), with his new

estimator Q (p). This hybrid quantile estimator is defined as:

_ 1 )
QH(p)_QH<n+1)+QK(n+1> ifo<p£n+1
Onyorr(p) = 0k () f —w<p<—t—, G7)
QH(p)_QH(nil)-l-QK(nil) ifn11Sp<1
where,
) =Z[6i /> 8 X, (38)
i=1 i=1

and 5 = @ (i:()f__:)p) - (i:(lf—_rj).s)

where ®(+) is the standard normal distribution function.

Hutson (2022) recommended using the proposed hybrid quantile estimator
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thb 1 (p), that's why it is included in the simulation study.

4. THE PROPOSED QUANTILE ESTIMATOR

In this section, the new proposed quantile estimator, Qso1(p) , is described.
Whether the distribution is positively or negatively skewed slightly affects how to
get the estimator. For positively skewed distributions, the proposed quantile
estimator, Qgo;(p), can be obtained through the following detailed seven steps

in a random sample of size (n):

[1] Apply the transformation THal(xi — M; /11,/12) to the original sample
observations and use equations (2.7) up to (2.12) to get the

estirnate(/ijL and /iz) of the transformation parameters ( A; and 4,).

[2] Find the transformed observations, Y;, defined as Y; = Tyy (xi —
M, /:{1, /:{2)

[3] This third step depends on the quantile level to be estimated,

a) To estimate quantiles below the median, the lower half of ¥; is flipped and the

new pseudo sample is denoted as Y.
b) To estimate quantiles above the median,
i. Calculate U. F.= Q4(Y;) + 1.5[Q5(Y;) — Q. (Y))].
ii. Determine the number (m) of values of Y; thatexceed U.F.

iii. Winsorize ¥; by a proportion of ([m/n] x 100)% and denote the
Winsorized sample by Y;.

iv. Flip the upper half of the sample Y, and denote the new Winsorized pscudo
sample by Y.

[4] Apply the transformation T]p( Yi; B ) to the new pseudo sample ¥;and use

equations (2.19) up to (2.22) to get the estimate (f8) of the transformation

parameter (f3).
[5] Find the new double transformed sample, Y5, defined as ¥, = T]p( Y. B )
[6] Calculate the quantile estimator Qgy5(p) of Y.

[7] Calculate the new proposed quantile estimator of the original data Qs,;(p)

[96]
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through the following equation:

QSOl(p) =M+ TI-?C}Z (Tﬁal(ésm (»); B): 11'/12)

For negatively skewed distributions, the sample observations are first multiplied
by (—1) then the above first 5 steps are executed to the new sample. In the sixth
step, Calculate the quantile estimator Qsy3(1 —p) for Y,. The new proposed

quantile estimator of the original negatively skewed data Qgo;(p) can be

calculated through the following equation:
Qsot(p) = -1 % [M + Tﬁc%l(Tjﬁl(ésvs(l - D); B); /11;22)]
It worth mentioning that, if X4, X5, -+, X, is a random sample of size (n) with

sample median (My) and X1y X(2), **» X is the corresponding order statistics
then,

a) The corresponding Winsorized sample X) by a proportion of ([m/n] x
100)% can be expressed as:

Xm) fori=12,---,m
Xp =9 Xu fori=m+1m+2,-,n—-m
X-m)y fori=n—-m+1ln-m+2,-,n

b) The corresponding lower half flipped pseudo sample (X™) can be expressed as:

X ifi=1.2-,[05(n+1)—1]
X* = 0)
O 7 \2My —Xgoizny ifi=105m+1) =114 1,[0.5(m+1) — 1]+ 2,-+,2[0.5(n + 1) — 1]

Where [] refers to the ceiling function.

¢) The corresponding upper half flipped pseudo sample (X**) can be expressed as:

P 2My — X(n-i+1) ifi=12,-,[05(n+1)—1]
O~ X ifi=[05(n+1)-11+1,[05(0+1) — 1]+ 2,-,2[0.5(n + 1) — 1]

S. SIMULATION STUDY

The simulation study was executed using R version 4.2.2. For each experimental
situation described below, 10000 pseudo random samples, of sizes n=20, n=so,
and n=100, were generated with initial seced 9831815. These samples are then used
to estimate the population quantles at seven different levels,
p =0.025,0.10,0.25,0.50,0.75,0.90,0.975 , using the first six
quantile estimators described in Sections 3 and the proposed one described in

section 4. The empirical performance of estimators is evaluated and compared

[97]



A Double Transformed- Flipped- Retransformed Quantile Estimator for Skewed Distributions

based on the mean squared error, MSE, criterion. Four degrees of positive
skewness (1.14, 2, 4, and 6.18) are covered through the standard Gumbel
distribution for maximum, the standard exponential distribution, the
generalized lambda distribution (GLD), and the standard lognormal distribution
respectively. Two degrees of negative skewness are covered by muldplying
generated data from positively skewed standard exponential and generalized

lambda distributions by (-1).

For all quantile estimators and for each distribution at each and every
combination of the considered different levels of “n and p”, the MSEs are given
in tables 1 up to 6. The main results deducted from these six tables can be

summarized as follows:
[1] Increasing the sample size substantially reduce the MSEs of all estimators.

[2] As the degree of skewness increases, the empirical performance of all

estimators gCtS ‘WOrse.

[3] As the value of (p) gets closer to the longer tail, the MSEs of all estimators

increase.

[4] As the value of (p) gets closer to (0.5), the empirical performance of all

estimators improves in terms of decreasing MSEs.

[5] The proposed estimator (Sol) shows the best performance in terms of least
MSEs.

6. CONCLUSIONS

In this paper, a new nonparametric estimator is proposed for estimating the
quantiles of skewed distributions. There are no sample restrictions from which
the proposed estimator suffers. Simulation results show that the proposed
estimator outperforms all other competitor estimators in most cases covered. It is
recommended to estimate the population quantiles using the proposed new

estimator.
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Table 1: Mean squared errors (MSEs) of quantile estimators under the standard Gumbel
Distribution (Coefficient of skewness (y) = 1.14)

] Some Point Estimators of Population Quantiles
P 00® [ Cuen® [ 0e® | Qos® | Qo® [ Qu® [ Q@)
0031076278 | 0019669694 | 033145812 08798712 | 09312387 | 013943757 | 0.091833
751 71067581 149453 98762891
004040453 0876916 86811774
20 4976786 85107106 77 0.115439883
0.162012153 0.153968192 0241677166 | 0487
1094095941 | 0.366742794 | 0388300 0.298513
LI88389954 | LATIOR395% 16194747 LI38279
0.044573454 | ¢ 0.034400733
50
D 79006365
0102674893 0 0159880404
0.564144 985 1849243113 2.288792782
21831344 | 0.021845269 0.026978736
15043138 | 0.013195163 : 7926506
13791223 13834518 0.01§81306
100 18594858 1856995
138281634 35443741
; ; 06824853 C C 086927926
097y | 0317571343 | 0356817794 7794 | 0415186225 | 0326647578
Table 2: Mean squared errors (MSEs) of quantile estimators
under the Standard Exponential Distribution (y = 2)
Some Point Estimators of Population Quaniles
i derm (p) stz (p) sta (p) Quo(p) thhH (p)
0004330452 | 0.005659744 | © 91362 | 0.0083060 0.01277
5894134 02435
20 45393776 45347258 708524
0119715550 | 0.1260780063 1839631 0184129675
0.043040123
294429093
50
0.145493598
0.5450808¢4 2317884184
09381 0442909
01934
8514
100 9987995 133108
9475909
7456699 19862043
15009896 | 0.3464067159 | 0811041373
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Table 3: Mean squared errors (MSEs) of quantile estimators under the generalized Lambda
Distribution gld (—0.74575,—0.28726,—0.00989,—0.18315) (y =4)

Some Point Estimators of Population Quantiles
i Quuoarn®) | Q@) | Quya(p) Qo®) | Quus® | Qsu(p)
24792 048171 | ¢ 049187 | 0.012432419 | 0.0058167
6741224 1992 453481
13925285
20 637236 0.07748721
99481064 0.148815177
0.437324769 | 0.84164707 0. 746 ] ]
2321428612 | 2.979134992 1966944752
992838 1871296 371662
026972 03784 7805
1846346
50 1564486 953148 70
0.038673873 .037668293 | 0.0437103
0158163862 | 022981212
0958952802 | 6815239489
[0¢
1894464
. 586
2386434984 | 059394327 | 0.580347137 | LOB4399357
Table 4: Mean squared errors (MSEs) of quantile estimators
under the standard lognormal distribution (y = 6.1849)
Some Point Estimators of Population Quandiles
" P Qeu(p) Quoarn®) | Qs12(p) Qs3(p) Qs (p) thhH (p)
0.013033444 | 0.010728509 | 0013389309 | 0.01039166 | 0.019299553 | 0.065448017
0.001453229 | 0.01495935% | 0.008134177 onRsog
] 0.0188190306 754085
x 67638732 84437704
0314398635 13266105
1.018818292 | 1282349659 | 2.086524921 | 2.007376045
16.93173081 5353708763 | 1262848366 10.4759081
18896 } 904588
58 147661
769 9243647 1943287
30 9538484 29467196 | 0.034937308
075 | 0133496924 | 01399870634 0.27§33294 | 0135937776 | 06686571
078689145 | 0.857860083 | L8O 0.747701445 | 0793998616 | Lo9g8o0I7
8.170360872 ; 2831018 §8.06988896
y 5 (634268
tik)
100 1519631
0954387 979104 :
0.380994352 0361219838 | 0.459231581
188109022 | 4.856917247 1570155401 | 6.974717239 | 2.631§37
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Table 5: Mean squared errors (MSEs) of quantile estimators
under the Negative of Standard Exponential Distribution (y = —2)

Some Point Estimators of Population Quantiles

n Y P P = = = =
" 20® | Gi® [ 8® [ Qs® [ C® [ Qpe® | Qsu®)
0.025 122003671 1315420693 12173908064 3126938123 1574317155 1233638634 1128695
0.10 0.361993703 0418973695 0.145035982 1082836237 0.372230858 0.412290315 0.343301
0.5 0122341092 | 0128934249 0.113243197 0.206132119 0.123368427 0.1338543%3 0.108956
20 050 | 0.045193776 | 0.045347258 | 0.038436815 | 0.058708524 | 0.045472899 | 0.045841068 | 0.0367981
075 | 0.017035962 0.015881272 0.01875872 | 0.019983647 | 0.016986139 0.015333363 001179862

0.90 | 0.008041122 | 0.007031412 | 0.003568499 | 0.00953094 | 0.008709516

0.003438

0975 | 0.003528367 | 0.004394576 | 0.003233399 | o.00s701271 | 0.008293399 | 0.020980080 | 0.003149

0.025 | 0532204908 | 0.6700399 05471926358 1842068435 | 0.623853608 0.662571411 0519387

010 | 0146760178 | 0156940968 | o0u43158408 | 0.248436034 0.146925128 0.165411315 0.138287

0.25 0.0509184 0.032127457 0.04930088 0.001591422 | 0.050877423 | 0.0§3310034 0.048404
50 0.50 | 0.013488846 | 0.018501264 0.017317455 | 0.020528936 | 0.018470448 | o0.019631906 | 0.01663987

0.7% 0.00046010 0.000247237 0.008520711 000(\95[931 0.00b4470062 0.00@42.29(1‘0\ 0.0054544

090 | 0.00248133 | 0.002228944 | 0.001627486 | 0.002623434 | 0.002472634 | ©.001150303 0.001599

0.97§ 0.00104904%3 0.000 7Y 0.00040I117 0.001

881 | oc.oon7eley | o.000421220 0.000401

0.025 | 0291807471 | 0.32886076 0.289471221 0.80042543 0.29843765 0.322443704 0.2

0.0 | 0.076416496 | 0.078833815 | 0.075633467 | 0.095205059 | 0.076361702 | 0.088912418 0.074326

025 | 0.027191363 0.02753359 0026713838 | 0.029941879 | 0.027179578 | 0.029497967 0.026431

100 050 | 0.009543169 | 0.009548282 | 0.009298b42 | 0.009987995 | 0.00953576 0.01031494 0.008831

0.75 | 0.003107706 | 0.003054229 | 0.002863764 | 0.003233776 0.00310518 0.00]258818 0.002844

0.90 0.0011295 0.001066761 | 0.000919076 | 0.001164498 | o0.00127736 0.001123071 0.000911

0.97% 0.000370831 0.000304127 0.00017241% 0.000}78008 0.000374347 0.00022779 0.000171

Table 6. Mean squared errors (MSEs) of quantile estimators
under the Negative of the Generalized Lambda Distribution
gld (—0.74575,—-0.28726,—0.00989,—-0.18315) (y = —4)

Some Point Estimators of Population Quantiles

"L 00a® T Guno® [ 00e® | 0s®) [ Go® [ Cuw® [ 0@
0.015 | 2084137437 1590524917 2.046236123 7.702649003 1.03904022 1638300613 163139
000 | 0439849642 | o0.546280323 1993758452 0.41133883 0.375578756 0.324815
0.2 | 0.099420809 | 0.1047040687 0.19793707 0.102342315 | 0.097470802 0.079027

20 0.50 0.0276317236 0.027421199 0.030858398 0.027 812111 0.026567632 0.02253%

0.74 0.010518908 0.00985059 0.012252805 | 0.010462789 | 0.009683419 0.0073819

0.90 | 0.006227870 | 0.005394646 | 0.004736864 | 0.006724111 | 0.006371941 | 0.005540263 0.0044312

0.975 | 0.007000027 | 0.006231069 | 0.008612936 | 0.007200916 | 0.010022661 0.02632013 0.0059638
0.025 LIS02743 1760767403 LI130219714 £.338695419 0.999166025 | LOBbL63T23 0.973804
0.10 015436201 0.167968853 0.32435317 0.153408108 0.157959242 0.131043
0.2 0.03845441 0.039611021 0.036349535 | 0.049044046 | 0.038531046 | 0.039407334 0.035134
50 050 | 0.010359963 | 0.010564486 | 0.009859305 | 0.0n775437 0.010553145 | ©0.01064689 0.010331
0.75 0.003823121 | 0.003724383 | 0.003398747 | 0.004074025 | 0.003814831 | 0.003908865 | 0.0031498
0.90 | 0.00:0%712 | 0.001919053 | 0.001780498 0.00211239 0.002026127 | ©0.002124893 0.0017
0.975 | 0.001970164 | 0.001877439 | ©0.003362547 | 0.001990455 | 0.002333424 | 0.00442362r | 0.00183549
0.025 | 0.607397033 | 0.743490619 | 0.596074125 | 2490108088 | 0.583700182 0.§32341546 0.487656
0.10 0.07991179 0.08300951 0.078376124 | 007921784 | 0.080005724 | 0.086518371 0.074462
0.2 0.018711933 | o0.019010179 | 0.018235094 0.021126367 0.018714683 | 0.019700491 0.01791
100 050 | 0.004293081 | 0.005294298 | o.005103892 | 0.005604367 | 0.005291093 | 0.005606111 0.004101
0.75 | 0.001894337 | 0.001870647 | 0.001794438 | 0.001934595 | o.001892719 0.0020099 0.001792
0.90 | 0.000970034 | 0.000939038 | 0.000892347 | 0.000990215 | 0.000968229 | 0.001057647 | o0.000892
0.975 | 0.000910261 | 0.000907952 | 0.001481495 0.000914292 | 0.000950389 | 0.00120§273 0.000888
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